Normalization Algorithm

1. Identify functional dependencies (try to involve as many attributes as possible)
2. Find candidate keys by applying the inference rules
X is a candidate key iff $X \rightarrow A 1, \ldots, A n \backslash X$ and X is minimal
(in large relational schema there are usually more than one)
3. Find and mark all prime (\mathbf{X}) and non-prime attributes
4. Choose one of the candidate keys for a primary key
(5) 1NF (your relation is already in 1NF if you have followed the translation algorithm)

Normalization Algorithm

6. 2NF: (Make sure your tables are in 1NF.)

Question: Are there non-prime attributes functionally dependent on a part of a candidate key?
Yes: Split the tables by moving the determining and determined attributes to a new table.
Remove the determined attributes from the old table and restart the algorithm for both tables.
No: Continue to 3NF
7. 3 NF : Make sure your tables are in 2NF.

Question: Are there non-prime attributes functionally dependent on something that is not a candidate key?
Yes: Split the tables by moving the determining and determined attributes to a new table. Remove the determined attributes from the old table and restart the algorithm for both tables.
No: Continue to BCNF
8. BCNF: Make sure your tables are in 3NF.

Question: Does it exist a functional dependency for which the determinant is not a candidate key?
Yes: Split the tables by moving the determining and determined attributes to a new table. Remove the determined attributes from the old table and restart the algorithm for both tables.
No: Done

Normalization

Personal Number	Student Name	StudentID	Course Code	Course Name	Exam Moments	Examiner	Email
19890723-1324	Harry Potter	harpo581	course1	dark arts	\{exam, practical exercise\}	P. McGonagall	pmc@hogwarts.co.uk
19890723-1324	Harry Potter	harpo581	course2	transformation	\{laboration, home exam\}	P. McGonagall	pmc@hogwarts.co.uk
19890723-1324	Harry Potter	harpo581	course3	potions	\{laboration\}	S. Snape	ssn@hogwarts.co.uk
19880824-3422	Ron Weasley	rowea982	course1	dark arts	\{exam, practical exercise\}	P. McGonagall	pmc@hogwarts.co.uk
19880824-3422	Ron Weasley	rowea982	course2	transformation	\{laboration, home exam\}	P. McGonagall	pmc@hogwarts.co.uk
19880824-3422	Ron Weasley	rowea982	course3	potions	\{laboration\}	S. Snape	ssn@hogwarts.co.uk
19870922-2135	Draco Malfoy	drama001	course1	dark arts	\{exam, practical exercise\}	P. McGonagall	pmc@hogwarts.co.uk
19870922-2135	Draco Malfoy	drama001	course3	potions	\{laboration\}	S. Snape	ssn@hogwarts.co.uk

Step 1, Functional dependencies:

StudentID->Personal number, StudentName
Course Code->Course Name, Exam Moments, Examiner
Examiner->Email
Personal Number -> Student ID

Assumptions:
Student names not unique
Course names not unique
One email per examiner
Examiner is unique
Only one examinerper course

Step 2, Candidate keys:

(1) Course Code \rightarrow Course Name, Exam Moments, Examiner imply Course Code \rightarrow Examiner (decomposition)
(2) Course Code \rightarrow Examiner and Examiner \rightarrow Email imply Course Code \rightarrow Email (transitive)
(3) Course Code \rightarrow Course Name, Exam Moments, Examiner and Course Code \rightarrow Email imply Course Code \rightarrow Course Name, Exam Moments, Examiner, Email (union)
(4) Course Code \rightarrow Course Name, Exam Moments, Examiner, Email imply Course Code, StudentID \rightarrow StudentID, Course Name,
Exam Moments, Examiner, Email (augmentation)
(5) Course Code, StudentID \rightarrow StudentID, Course Name, Exam

Moments, Examiner, Email
imply Course Code, StudentID \rightarrow Course Name, Exam
Moments, Examiner, Email (decomposition)
(6) StudentID \rightarrow Personal number, StudentName imply Course Code, StudentID \rightarrow Course Code, Personal number, StudentName (augmentation)
(7) Course Code, StudentID \rightarrow Course Code, Personal number, StudentName imply Course Code, StudentID \rightarrow Personal number, StudentName (decomposition)
(8) (5) and (7) imply Course Code, StudentID \rightarrow Personal number, StudentName, Course Name, Exam Moments, Examiner, Email (union)
i.e. (StudentID, Course Code) is a candidate key

Similarly (Personal Number, Course Code) is also a candidate key Step 3, Prime attributes: Personal Number, Studentld, Course Code

Non-prime attributes: Student Name, Course Name, Exam Moments, Examiner, Email
Step 4: We choose (Personal Number, Course Code) for primary key;

Step 5: 1NF

Non-prime attributes: Student
Name, Course Name, Exam
Moments, Examiner, Email

- 1NF: Split all non-atomic values
- Before:

Personal number	Student Name	StudentID	Course Code	Course Name	Exam Moments	Examiner	Email

- After:

Personal			
number	Student Name StudentID	Course Code Course NameExaminer	Email

Step 6: 2NF

- 2NF: No nonprime-attribute should be dependent on part of candidate key
- Before:

Exam
Course Code Moments

| Personal | Student
 number | name | StudentID | Course Code Course NameExaminer |
| :--- | :--- | :--- | :--- | :--- |\quad Email | nem |
| :--- |

- After:
Course Code Exam Moments
Personal number Student name
Course Code Course Name \quad Examiner \quad Email
Personal number StudentID Course Code

Step 7: 3NF

- 3NF: No non-prime attribute should be dependent on any other set of attributes which is not a candidate key
- Before: Course Code Exam Moments

Course Code \quad Course Name \quad Examiner \quad Email
Personal number StudentID \quad Course Code
- After:

Step 8: BCNF

Non-prime attributes: Student
Name, Course Name, Exam
Moments, Examiner, Email

- BCNF: Every determinant is a candidate key
- Before:

Course Code	Exam Moments
	Student name
Course Code	Course Name

- After:

Course Code	Exam Moments	
Personal number	Student Name	
Course Name		
Examiner	Email	
Personal number	Course Code	
Personal number	StudentID	

Example 0

Given the relation $\mathbf{R (A , B , C , D , E , F)}$ with functional dependencies $\{\mathbf{A} \rightarrow \mathbf{B C}, \mathbf{C} \rightarrow \mathbf{A D}$, $\mathrm{DE} \rightarrow \mathrm{F}\}$,

1. Find all the candidate keys of R. Use the inference rules in the course to reach your conclusion. Do not use more than one rule in each derivation step.
2. Normalize R to BCNF. Explain the process step by step.
Step 1: The functional dependencies are given;

Example 0 - Solution

Step 2: We now show that $A E$ is a candidate key.
(1) $\mathbf{A} \rightarrow \mathbf{B C}$ implies $\mathbf{A} \rightarrow \mathbf{C}$ (decomposition)
(2) $\mathbf{C} \rightarrow \mathbf{D A}$ implies $\mathbf{C} \rightarrow \mathbf{D}$ (decomposition)
(3) $\mathbf{A} \rightarrow \mathbf{C}$ and $\mathbf{C} \rightarrow \mathbf{D}$ imply $\mathbf{A} \rightarrow \mathbf{D}$ (transitive rule (1) and (2))
(4) $\mathbf{A} \rightarrow \mathbf{D}$ implies $\mathbf{A E} \rightarrow \mathbf{D E}$ (augmentation)
(5) $\mathbf{A E} \rightarrow \mathbf{D E}$ and $\mathbf{D E} \rightarrow \mathbf{F}$ implies $\mathbf{A E} \rightarrow \mathbf{F}$ (transitive rule (4) and (DE $\rightarrow \mathrm{F})$)
(6) $\mathbf{A} \rightarrow \mathbf{B C}$ and $\mathbf{A} \rightarrow \mathbf{D}$ imply $\mathbf{A} \rightarrow \mathbf{B C D}$ (union $(\mathbf{A} \rightarrow \mathrm{BC}$) and (3))
(7) $\mathrm{A} \rightarrow \mathrm{BCD}$ implies $\mathrm{AE} \rightarrow \mathrm{BCDE}$ (augmentation with E)
(8) $\mathrm{AE} \rightarrow \mathrm{BCDE}$ implies $\mathrm{AE} \rightarrow \mathrm{BCD}$ (decomposition)
(9) $\mathbf{A E} \rightarrow \mathbf{B C D}$ and $\mathbf{A E} \rightarrow \mathbf{F}$ implies $\mathbf{A E} \rightarrow \mathbf{B C D F}$ (union (8) and (5))

Example 0 - Solution

We now show that CE is a also candidate key.
(10) $\mathbf{C} \rightarrow \mathbf{D A}$ implies $\mathbf{C} \rightarrow \mathbf{A}$ (decomposition)
(11) $\mathbf{C} \rightarrow \mathbf{A}$ implies $\mathbf{C E} \rightarrow \mathbf{A E}$ (augmentation with E)
(12) $\mathrm{CE} \rightarrow \mathrm{AE}$ and $\mathrm{AE} \rightarrow$ BCDF implies $\mathrm{CE} \rightarrow$ BCDF
(transitive rule (11) and (9))
(13) CE \rightarrow BCDF implies CE \rightarrow BDF (decomposition)
(14) $\mathbf{C E} \rightarrow \mathbf{A E}$ implies $\mathbf{C E} \rightarrow \mathbf{A}$ (decomposition)
(15) $\mathbf{C E} \rightarrow \mathbf{A}$ and $\mathbf{C E} \rightarrow$ BCDF imply $\mathbf{C E} \rightarrow \mathbf{A B D F}$ (union (14) and (13))

Step 3: Prime attributes: A, C, E
Non-prime attributes B, D, F

Example 0 - Solution

Step 5: Already in 1NF since there are no non-atomic values

Step 6: Since $\mathbf{A} \rightarrow \mathbf{B D}$ violates the definition of 2NF, we have to split the original table into: (from (6) $A \rightarrow B C D$, however C is prime, i.e., we may or may not move it with B and D)
R1(A,C,E,F) with AE and CE as candidate keys and functional dependencies $\{\mathbf{A E} \rightarrow \mathbf{F}, \mathbf{A} \rightarrow \mathbf{C}, \mathbf{C E} \rightarrow \mathbf{F}, \mathbf{C}$ $\rightarrow \mathbf{A}$ \}
R2(A, B, D) with A as candidate key and functional dependencies $\{\mathbf{A} \rightarrow \mathbf{B D}\}$
Now, R1 and R2 satisfy the definition of 2NF.

Example 0 - Solution

Step 7: Relations R1 and R2 are already in 3NF since there are no non-prime attributes which are dependent on a set of attributes that is not a candidate key.
Step 8: Relation R2 is in BCNF since every determinant (A in this case) is a candidate key.
Relation R1 is not in BCNF since determinant C (or A) is not a candidate key. Therefore, we need to split R1 into:
R11(A, E, F) with AE as candidate key and functional dependencies $\{\mathbf{A E} \rightarrow \mathbf{F}\}$ and
R12(A, C) with A and C as candidate keys and functional dependencies $\{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{C} \rightarrow \mathbf{A}\}$

Example 1

Given the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H})$ with functional dependencies $\{\mathbf{A B} \rightarrow \mathbf{C D E F G H}, \mathbf{C D} \rightarrow \mathbf{B}$, $\mathbf{D} \rightarrow \mathbf{E F G H}, \mathbf{E} \rightarrow \mathbf{F G H}, \mathbf{F G} \rightarrow \mathbf{E}, \mathbf{G} \rightarrow \mathbf{H}\}$,

1. Find all the candidate keys of R. Use the inference rules in the course to reach your conclusion. Do not use more than one rule in each derivation step.
2. Normalize R to 2NF. Explain the process step by step.
Step 1: The functional dependencies are given;

Example 1 - Solution

Step 2: The functional dependency AB \rightarrow CDEFGH implies that $A B$ is a candidate key. We now show that ACD is also a candidate key.
$\mathrm{AB} \rightarrow$ CDEFGH implies $\mathrm{AB} \rightarrow$ EFGH (decomposition)
AB \rightarrow EFGH and CD \rightarrow B imply ACD \rightarrow EFGH (pseudotransitive)
$\mathbf{C D} \rightarrow \mathrm{B}$ implies $\mathrm{ACD} \rightarrow \mathrm{AB}$ (augmentation)
$\mathbf{A C D} \rightarrow \mathbf{A B}$ implies $\mathbf{A C D} \rightarrow \mathbf{B}$ (decomposition)
$A C D \rightarrow B$ and ACD \rightarrow EFGH imply ACD \rightarrow BEFGH (union)

Example 1 - Solution

Step 3: The solution to Step 2 implies that A, B, C and D are prime and E, F, G and H non-prime.
Step 6: Since $\mathbf{D} \rightarrow \mathbf{E F G H}$ violates the definition of 2NF, we have to split the original table into
$\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D})$ with AB and ACD as candidate keys and functional dependencies $\{\mathbf{A B} \rightarrow \mathbf{C D}, \mathbf{C D} \rightarrow \mathbf{B}\}$
R2(D,E,F,G,H) with D as candidate key and functional dependencies\{D $\rightarrow \mathbf{E F G H}, \mathbf{E} \rightarrow \mathbf{F G H}, \mathbf{F G} \rightarrow \mathbf{E}, \mathbf{G} \rightarrow \mathbf{H}\}$
Now, R and $R 2$ satisfy the definition of $2 N F$.

Example 2

Normalize ($1 \mathrm{NF} \rightarrow 2 \mathrm{NF} \rightarrow 3 \mathrm{NF} \rightarrow \mathrm{BCNF}$) the relation $\mathbf{R (A , B , C , D}, \mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H})$ with functional dependencies $\mathrm{F}=\{\mathbf{A B C} \rightarrow \mathrm{DEFGH}, \mathrm{D} \rightarrow \mathbf{C E F}, \mathrm{EF} \rightarrow \mathbf{G H}\}$. Explain your solution step by step.
Step 1: The functional dependencies are given;

Example 2 - Solution

Step 2: The functional dependency ABC \rightarrow DEFGH implies that $A B C$ is a candidate key. We now show that $A B D$ is also a candidate key.
ABC \rightarrow DEFGH implies ABC \rightarrow EFGH (decomposition)
$\mathbf{D} \rightarrow \mathbf{C E F}$ implies $\mathbf{D} \rightarrow \mathbf{C}$ (decomposition)
ABC \rightarrow EFGH and D \rightarrow C imply ABD \rightarrow EFGH (pseudotransitive)
$\mathbf{D} \rightarrow \mathbf{C}$ implies $\mathbf{A B D} \rightarrow \mathbf{C}$ (augmentation)
ABD $\rightarrow \mathbf{C}$ and ABD \rightarrow EFGH imply ABD \rightarrow CEFGH (union)

Example 2 - Solution

Step 3: The candidate keys above imply that A, B, C and D are prime and E, F, G and H non-prime.
Step 6: Since $\mathbf{D} \rightarrow \mathbf{E F G H}$ violates the definition of 2NF, we have to split the original table into
R1(A,B,C,D) with ABC and ABD as candidate keys and functional dependencies $\{\mathbf{A B C} \rightarrow \mathbf{D}, \mathbf{D} \rightarrow \mathbf{C}\}$
R2(D,E,F,G,H) with D as candidate key and functional dependencies $\{\mathbf{D} \rightarrow \mathbf{E F G H}, \mathbf{E F} \rightarrow \mathbf{G H}\}$.

Example 2 - Solution

Step 7: Now, R1 and R2 satisfy the definition of 2NF. However, R2 does not satisfy the definition of 3NF due to $\mathbf{E F} \rightarrow \mathbf{G H}$. Then, we have to split R2 into

R21(D,E,F) with D as candidate key and functional dependencies $\{\mathbf{D} \rightarrow \mathbf{E F}\}$
R22(E,F,G,H) with EF as candidate key and functional dependencies $\{\mathbf{E F} \rightarrow \mathbf{G H}\}$.

Example 2 - Solution

Step 8: Now, R1, R21 and R22 satisfy the definition of 3NF. However, R1 does not satisfy the definition of BCNF due to $\mathbf{D} \rightarrow \mathbf{C}$. Then, we have to split R1 into R11(A,B,D) with candidate key A,B,D.

R12(D,C) with candidate key D

CarSale Example

Consider the following relation CarSale(Car\#, Salesman\#, Commission, DateSold, Discount).
Assume that a car may be sold by multiple salesman and hence Car\#,Salesman\# is the primary key. Additional dependencies are:
DateSold \rightarrow Discount

Salesman\# \rightarrow Commission

Based on the given primary key, is the relation in 1NF, 2NF or 3NF? Why or why not? How would you successively normalize it completely?

CarSale Example - Solution

Car\#,Salesman\# is the primary key, that is:
Car\#,Salesman\# \rightarrow Commission, DateSold, Discount
Step 3: Prime attributes Car\#,Salesman\#, the rest nonprime;
Step 5: It is in 1NF
Step 6: Not 2NF because of Salesman\# \rightarrow Commission
R1 (Car\#, Salesman\#, DateSold, Discount)
R2 (Salesman\#, Commission)

CarSale Example

Step 7:
R1 Not in 3NF:
R1 (Car\#, Salesman\#, DateSold, Discount) is not in 3NF because of DateSold \rightarrow Discount R11 (Car\#, Salesman\#, DateSold) R12 (DateSold, Discount)

