
Index Exercises and Solutions, TDDD12 Databasteknik, April 22 2013, Fang Wei-Kleiner 1

Assume an ordered file whose ordering field is a key. The file has 1000000 records of size 1000 bytes
each. The disk block is of size 4096 bytes (unspanned allocation). The index record is of size 32 bytes.
How many disk block accesses are needed to retrieve a random record when searching for the key field

1. Using no index ?

2. Using a primary index ?

3. Using a multilevel index ?

Solution: (1) Without the index, we can run a binary search to find a given value of the ordered field. In
the worst case, this takes dlog2 be where b is the number of blocks to store the data file. To compute b,
compute first the blocking factor (i.e. number of data records per block):

bf = b(4096/1000)c = 4

Note that we used the floor function because of unspanned allocation (i.e. records must be store com-
pletely in the block). Then,

b = d(1000000/4)e = 250000

data blocks. Then, the number of data blocks to access is at most

dlog2 250000e = 18.

(2) In a primary index, we have as many index records as data blocks we have, i.e. 250000. Let us first
compute how many blocks we need to store the index. The blocking factor for the index is

bfi = b(4096/32)c = 128

Then, we need

bi = d(250000/128)e = 1954

blocks to store the index. Since the index file is ordered by definition, we can run a binary search to find
the data block of the required value. Then, we need at most

dlog2 1954e+ 1 = 12

block accesses to get to the data. Note that the “+1” comes from the access to read the data whereas the
other eleven come from the search for the pointer to the data block in the index file.

(3) To construct a multilevel index, we construct an index of the index file constructed in (2). Since this
index file is ordered according to a key value, the index we are going to construct is a primary index and,
thus, it has as many entries as blocks in the index in (2), i.e. 1954. Since the blocking factor for the index
is 128, we need d(1954/128)e = 16 blocks to store the new index. This new index is called a level 2
index, whereas the one built in (2) is a level 1 index. Now, let us build a level 3 index, i.e. an index of the
level 2 index file. Again, the index we are going to construct is a primary index and, thus, it has as many
entries as blocks in the level 2 index, i.e. 16. Since the blocking factor for the index is 128, we need only
one block to store the new index. And we are done.

To access a data entry, we need to read the block of the level 3 index, find the pointer to the appropriate
block of the level 2 index and read this block, find the pointer to the appropriate block of the level 1
index and read this block, find the pointer to the appropriate data block and read this block. So, we need
4 block accesses.



Index Exercises and Solutions, TDDD12 Databasteknik, April 22 2013, Fang Wei-Kleiner 2

B-tree and B+-tree.

B = 4096 bytes, P = 16 bytes, K = 64 bytes, node fill percentage=70 %.

For both B-trees and B+-trees:

1. Compute the order p.

2. Compute the number of nodes, pointers and key values in the root, level 1, level 2 and leaves.

3. If the results are different for B-trees and B+-trees, explain why this is so.

Solution:

B-tree:

(1) From the structure of a node in the B-tree, we have

p ∗ P + (p− 1) ∗ (P +K) = B ∗ 70%

where P = 16 is the size of a pointer (either the block pointer or the record pointer), and K = 64 is the
size of the search key field. B = 4096 is the block size. Accordingly, we get

p ∗ 96 = 2947 thus p = 30.

(2) At the root level, we have one node, 30 pointers and 29 key entries. Note that the number of key
entries is one less than the number of pointers. At level one, we have 30 nodes, because for each pointer
from the root node there is one node at the level one. Then there are 30 ∗ 29 = 870 key entries, and
30 ∗ 30 = 900 pointers respectively. At level two, there are 30 ∗ 30 = 900 nodes, 900 ∗ 29 = 26100
key entries, and 900 ∗ 30 = 27000 pointers. At the leaf level, we have 900 ∗ 30 = 27000 nodes,
27000 ∗ 29 = 783000 key entries, and 27000 ∗ 30 = 810000 pointers. In summary, the values are as
follows:

Level nr. nodes nr. key entries nr. pointers
Root 1 29 30

Level 1 30 870 900
Level 2 900 26100 27000

Leaf 27000 783000 810000

B+-tree:

(1) With B+-trees we distinguish the internal nodes from the leaf nodes. For an internal node, we have

p ∗ P + (p− 1) ∗K = B ∗ 70%

where P = 16 is the size of a block pointer, and K = 64 is the size of the search key field. B = 4096 is
the block size. Accordingly, we get

p ∗ 80 = 2931 thus p = 36.

On the other hand, pleaf is calculated as follows:

pleaf ∗ (P +K) + P = B ∗ 70%

where P = 16 is the size of a pointer (either the block pointer or the record pointer), and K = 64 is the
size of the search key field. B = 4096 is the block size. Accordingly, we get

pleaf ∗ 80 = 2851 thus pleaf = 35.

(2) The number of nodes, key entries and the pointers for a B+-tree can be obtained analogously to those
of B-tree:



Index Exercises and Solutions, TDDD12 Databasteknik, April 22 2013, Fang Wei-Kleiner 3

Level nr. nodes nr. key entries nr. pointers
Root 1 35 36

Level 1 36 1260 1296
Level 2 1296 45360 46656

Leaf 46656 1632960

Note that the number of key entries of the leaf nodes is calculated with 46656 ∗ 35 = 1632960, where
46656 is the number of nodes and 35 is pleaf . Moreover, the value of pleaf as 35 is incidentally one less
than p, which is 36 in this example. However, there is no such a correlation in general.

(3) One observation is that the p value is larger for B+-tree than B-tree, given the same value of the block
size. The reason is that there are no pointers at the key entries of the internal nodes of B+-trees. As a
result, nodes in B+-trees have larger fan-out. Accordingly, there are more key entries at the leaf nodes of
B+-trees.


