
TDDD08 � Tutorial 6

Who? Victor Lagerkvist

From? Theoretical Computer Science Laboratory, Linköpings Universitet,

Sweden

When? 9 oktober 2015



E�cient Prolog

There are many techniques that can be used to make a
Prolog program more e�cient. Some of them are given
in this tutorial.

Basic guidelines.

Indexing.

Cuts, if-then-else.

Tail recursion.

Open structures and di�erence lists.



Basic guidelines

Complexity.

First and most important issue: which algorithm is being
implemented? Worst-case running time (O(n) notation)
still applies for Prolog but with a few additional
complications.

Sorting and reverse examples on whiteboard.



Basic guidelines

Order of queries. The ordering of the clauses for a
predicate and the subqueries within a clause matters.
Consider these two versions of a query:

| ?- student(X), father(X).

| ?- father(X), student(X).

Which is better? If we are working with a database of
(1) the people in Linköping or (2) the people at LiU? In
general: put the most restrictive query �rst! Also, put
facts and base cases before recursive cases in a program.



Use the libraries

Be lazy whenever possible!

Builtins and library methods are usually faster than
hand-written code.

use_module(module_name) at the prompt.

:- use_module(module_name) in the code.

Lots of functions for free: append/3, member/2, map/2,
reverse/2 etc. See the SICStus Prolog documentation.



Uni�cation and indexing

Uni�cation is very fast in most Prolog systems. Failing in
the uni�cation step is faster than using a rule and then
failing. Consider:

len3_a([_X,_Y,_Z|_Xs]).

len3_b(Xs) :- length(Xs, L), L >= 3.

Imagine what happens when we call len3_a/1 or
len3_b/1 with a list of thousands of elements.



Uni�cation and indexing

Prolog identi�es rules to try based on:

Predicate name and arity (e.g. append/3).

Type of �rst argument (e.g. empty list, non-empty list,
f(X), symbol anna, number 0...)

Place identi�ers, etc, in �rst argument! Silly example:
with the program

p(1, 1).

p(2, 2).

p(3, 3).

...

p(10000, 10000).

Queries of the form p(999, X) are substantially faster
than queries of the form p(X, 999). Indexing on
multiple arguments are available in some Prolog system
but is not yet something that you can take for granted.



Pruning branches of the search tree: the cut!

The cut (!/0) is used to remove remove super�ous
branches in the search tree. Examples on whiteboard.



Tail recursion

Well-known trick in functional programming. Replace
recursion with iteration. Possible in Prolog when:

The recursive call is the last one in its clause.

There are no untried alternatives for the clause (e.g. the
clause is the last rule for the predicate).

There are no untried alternatives for the other subqueries
of the clause. In this case, Prolog does not have to
perform a full recursion (create a stack frame, keep track
of traceback points) but can �skip� back into the clause.

Consider middle/2 from lab 2.

middle(X, [X]).

middle(X, [_First|Xs]) :-

append(Middle, [_Last], Xs),

middle(X, Middle).

Is middle/2 tail-recursive?



Di�erences lists and open structures

We have already seen di�erence lists in relation to
de�nite clause grammars. More examples of open
structures on the whiteboard.


