
Försättsblad till skriftlig
tentamen vid Linköpings Universitet

Datum för tentamen 2017-08-16

Sal

Tid

8-12

Kurskod

TDDD04

Provkod

Kursnamn/benämning

Programvarutestning

Institution IDA
Antal uppgifter som
ingår i tentamen

Antal sidor på tentamen (inkl.
försättsbladet)

6

Jour/Kursansvarig Lena Buffoni
Telefon under skrivtid 013-28 40 46

Besöker salen ca kl. 09:00
Kursadministratör
(namn + tfnnr + mailadress)

Anna Grabska Eklund

Tillåtna hjälpmedel

Ordbok

LiTH, Linköpings tekniska högskola
IDA, Institutionen för datavetenskap
Lena Buffoni

Written exam

TDDD04 Software Testing

2017-08-16

Permissible aids
Dictionary (printed, NOT electronic)

Teacher on duty
Lena Buffoni, tel: 013-28 40 46

Instructions and grading
You may answer in Swedish or English.

Your grade will depend on the total points you score on the exam. This is the grading scale:

Grade 3 4 5

Points required 50% 67% 83%

Important information: how your answers are assessed

Many questions indicate how your answers will be assessed. This is to provide some
guidance on how to answer each question. Regardless of this it is important that you answer
each question completely and correctly.

Several questions ask you to define test cases. In some cases you are asked to provide a
minimal set of test cases. This means that you can’t remove a single test case from the ones
you list and still meet the requirements of the question. Points will be deducted if your set of
test cases is not minimal. (Note that “minimal” is not the same as “smallest number”; even
when it would be possible to satisfy requirements with a single test case, a set of two or
three could still be minimal.)

You may find it necessary to make assumptions in order to solve some problems. In fact,
your ability to recognize and adequately handle situations where assumptions are necessary
(e.g. requirements are incomplete or unclear) will be assessed as part of the exam. If you
make assumptions, ensure that you satisfy the following requirements:

• You have documented your assumptions clearly.

• You have explained (briefly) why it was necessary to make the assumption.

Whenever you make an assumption, stay as true to the original problem as possible.

You don’t need to be verbose to get full points. A compact answer that hits all the important
points is just as good – or better – than one that is long and wordy. Compact answers also
happen to be quicker to write (and grade) than long ones.

Please double-check that you answer the entire question. In particular, if you don’t give a
justification or example when asked for one, a significant number of points will always be
deducted.

Note: When I visit the exam, I will take a slow walk among all students, so you don’t need
to sit with your hand raised. Just call for my attention when I pass your desk.

1. Definitions (4p)

Describe the difference between a fault of commission and a fault of omission. Give an
example of each.

2. Coverage criteria (6p)

a) Is it possible to have code for which branch coverage and statement coverage

tests are the same? Justify your answer. 2p
b) Give examples of 2 artefacts other than code where coverage criteria can be

applied. 2p
c) Is 100% coverage a guarantee of test suite quality? Justify your answer. 2p

3. Defect classification (6p)

You are given the following description of a software defect:

“The application does not warn the user that they are running low on disk space allows them to

edit the file. Once the user tries to save the file he is informed that this is not possible to do as

there is not enough disk space left. The specification states that the application shall ensure

sufficient space is available before attempting to save the file.”

Fill in appropriate values for the columns in the table below (copy to a separate paper first)

when you classify the defect above.

Fault/Defect Attribute Value

 Asset

 Artefact

 Effect

 Mode

 Severity

4. True/false (6p)

a. A complete analysis cannot give false negatives

b. Validation checks that a product meets the needs of the customer

c. Performance testing tests not functional requirements

d. Threads cannot be used for testing at system level

e. The goal of software testing is to aim for completeness

f. An error is the result of a fault in the specification

5. Black box testing (16p)

You are asked to test PaySafe an application for online payment security. When making a

payment online the user receives a 4 digit identifier and has then one minute to input their

personal code (a 8-12 digit numerical value) and this identifier in the application to

authorize the payment.

First the user inputs the 4 digit commerce identifier. If this identifier is wrong the

application returns code UNKNOWN_TRANSACTION. If the identifier is correct, the

application asks for the user code. If the code is correct, the application returns OK and

the payment is processed. If the code is wrong the application asks to renter the code

again. After 3 tries the application is blocked and returns BLOCKED. If the user takes

more than one minute to enter the code and identifier, the transaction is timed out, the

application returns TIMED_OUT and the user has to restart.

Follow a suitable test case design method in order to test the given method. Justify your

choice of test case design method, and any assumptions you make about the system.

You can receive up to 8 points for an appropriate representation of the problem, and up to

8 points for an appropriate translation of your representation into test cases. An excessive

amount of test cases (based on the choice of test case design method) will lead to a

deduction of points.

6. White box testing (16p)

 Given the code for the Fibonacci function below,

a) create a set of basis paths for the code, and justify why your set is sufficient, (6p)

b) create test cases for 100% decision coverage based on the basis paths (6p), choosing

values that are interesting to test apart from helping you achieve 100% decision

coverage, and

c) explain how Symbolic Execution may be used one the given method to generate

possible test cases. Also, explain how path constraints work when generating test

cases, and state whether the test cases would be complete or require additional code

after they have been generated. (4p)

public static l ong fibonacci(i nt n) {
 if (n <= 1) return n;

 else return fibonacci(n-1) + fibonacci(n-2);

 }

7. Integration testing (6p)

a. Name the types of additional scaffolding code that may be needed for

integration testing.

b. Give an advantage of path based testing over bottom up or top down

integration testing.

c. What is the role of regression testing?

8. Exploratory testing (4p)

a. Define character and session for exploratory testing.

b. List two advantages and one disadvantage of exploratory testing.

9. System-level testing (4p)

a. Describe how transition based testing works and provide an example of a

domain suited to such testing. (2p)

b. Describe MM-path testing (1p)

c. What is alpha and beta acceptance testing? (1p)

10. Model based testing 6p

a. Give two examples of correctness properties that can be verified by model-based

checking. 1p

b. Name two limitations of model-based testing 2p

c. Describe three activities in the model-based testing process. 3p

	Important information: how your answers are assessed

