
Försättsblad till skriftlig
tentamen vid Linköpings Universitet

Datum för tentamen 2015-06-03
Sal U1,U3,U4,U6

Tid 8-12

Kurskod TDDD04

Provkod TEN1

Kursnamn/benämning Programvarutestning

Institution IDA
Antal uppgifter som
ingår i tentamen

12

Antal sidor på tentamen (inkl.
försättsbladet)

7

Jour/Kursansvarig Ola Leifler
Telefon under skrivtid 070-1739387
Besöker salen ca kl. 10:00
Kursadministratör
(namn + tfnnr + mailadress)

Anna Grabska Eklund

Tillåtna hjälpmedel Dictionary (printed, NOT electronic)

LiTH, Linköpings tekniska högskola
IDA, Institutionen för datavetenskap
Ola Leifler

Written exam

TDDD04 Software Testing

2015-06-03

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ola Leifler, tel. 070-1739387

Instructions and grading

You may answer in Swedish or English.

Your grade will depend on the total points you score on the exam. The maximum
number of points is 86. This is the grading scale:

Grade 3 4 5

Points required 42 55 70

Important information: how your answers are assessed

Many questions indicate how your answers will be assessed. This is to provide some
guidance on how to answer each question. Regardless of this it is important that you
answer each question completely and correctly.

Several questions ask you to define test cases. In some cases you are asked to provide
a minimal set of test cases. This means that you can’t remove a single test case from
the ones you list and still meet the requirements of the question. Points will be
deducted if your set of test cases is not minimal. (Note that “minimal” is not the same
as “smallest number”; even when it would be possible to satisfy requirements with a
single test case, a set of two or three could still be minimal.)

You may find it necessary to make assumptions in order to solve some problems. In
fact, your ability to recognize and adequately handle situations where assumptions are
necessary (e.g. requirements are incomplete or unclear) will be assessed as part of the
exam. If you make assumptions, ensure that you satisfy the following requirements:

 You have documented your assumptions clearly.

 You have explained (briefly) why it was necessary to make the assumption.

Whenever you make an assumption, stay as true to the original problem as possible.

You don’t need to be verbose to get full points. A compact answer that hits all the
important points is just as good – or better – than one that is long and wordy. Compact
answers also happen to be quicker to write (and grade) than long ones.

Please double-check that you answer the entire question. In particular, if you don’t
give a justification or example when asked for one, a significant number of points will
always be deducted.

1. Terminology (4p)

Explain what “white-box testing” is. Explain one test case design methodology that
can be used for white-box testing. (4p)

2. Coverage criteria (8p)

a) Order the following coverage criteria with respect to their requirements on test
cases in ascending order:

1. Path Coverage

2. Statement Coverage

 3. Branch Coverage

(2p)

b) Explain when multiple condition/decision coverage equals statement coverage
(2p)

c) Explain why some coverage criteria cannot be quantified in the same way as e.g.
statement coverage, and give an example to justify. (4p)

3. Test automation (6p)

Explain advantages that a test automation framework such as CPPUNIT/JUnit have
over each of the options below.

Name one advantage and one disadvantage of creating tests for use of a test
automation framework instead of

a) performing exploratory testing (2p)

b) generating test cases through symbolic execution (2p)

c) stepping through a debugger (2p)

4. True/False(6p)

Answer true or false:

a) One goal of software testing is to verify that the system under test (SUT) contains
no errors.

b) MM-Paths can be used for both unit testing and integration testing.

c) A bug is the observable effect of executing a fault.

d) Define-use-kill data-flow patterns may only used for static program analysis.

e) Decision-table testing subsumes Model-based testing.

f) You can automate exploratory testing.

(It’s not worth guessing: you get 1p for correct answer, 0p for no answer, and -1p for
incorrect answer; you can get negative points on this question.)

5. Black-box testing (16p)

You are to test a home alarm system with the following description:

The alarm is set by entering a four-digit code and pressing the “on” button. When
activating the alarm, the code has to be entered in full within five seconds or else the
system is reset. If the correct code is entered, then, after a given time period, the alarm
is activated. Until the alarm is activated, a red LED will flash to indicate that the
alarm is about to be activated.

Use a suitable representation to describe the behaviour of this system so that it can be
tested using a black-box testing technique. Derive a set of test cases based on the
representation, and use a suitable method and metric to determine the character and
minimal number of test cases.

6. Symbolic execution and white-box testing (10p)

Explain how symbolic execution works and how it can be used to generate test cases
in the following example. Also, provide a set of test cases to obtain 100% branch
coverage.

For full points, explain how symbolic execution works in general, how it applies
specifically to test case generation, and whether generated test cases are complete or
need additional information to provide useful information. Also, describe how branch
coverage can be obtained, and provide a clear description of how your test cases
achieve branch coverage.

public static double calculateBill(int usage) {

double bill = 0;

if (usage > 0) {

bill = 40;

}

if (usage > 100) {

if (usage <= 200) {

bill += (usage - 100) * 0.5;

} else {

bill += 50 + (usage - 200) * 0.1;

if (bill >= 100) {

bill *= 0.9;

}

}

}

return bill;

}

7. Model-based testing (6p)

Explain the workflow involved in model-based testing with state chart diagrams
compared to script-based testing. Describe what may and may not be automated with
respect to test design and execution.

8. Integration testing (6p)

a) State one advantage thread-based integration testing has over other methods. (2p)

b) In top-down integration testing, how many drivers are needed at most? (2p)

c) In bottom-up integration testing, how many test sessions are needed at most? (2p)

9. Exploratory testing (6p)

a) Explain the difference between exploratory testing and ad-hoc testing. (2p)

b) How can exploratory testing be justified as a test method? (2p)

c) In terms of exploratory testing, what is a tour? (2p)

10. Modified condition/decision coverage (10p)

Specify a minimal set of test cases for the following function that result in 100%
modified condition/decision coverage.

int rules(int a, int b, int c) {
 if (a < 3 || b > 0) {
 if (b < 1 && c > 2) {
 return b+c;
 }
 return a+c;
 } else if (c > 3 || a > 2) {
 return a-c;
 }
 return a;
}

11. Testing case selection (4p)

Explain how to determine the quality of a test suite, by reasoning about how to
evaluate different kinds of qualities of different kinds of software products. For full
points, you need to reason about how coverage metrics may or may not be used to
determine test suite quality.

12. Test automation: True/False (4p)

Answer the following questions true or false:

a) The most commonly automated steps of a software testing workflow are test
execution and visualization.

b) Continuous Integration reveals more types of errors during integration testing.

c) Continuous Integration reveals errors earlier during integration testing.

d) A failing automated test equals an error in the program under test.

(It’s not worth guessing: you get 1p for correct answer, 0p for no answer, and -1p for
incorrect answer; you can get negative points on this question.)

	1. Terminology (4p)
	2. Coverage criteria (8p)
	3. Test automation (6p)
	4. True/False(6p)
	5. Black-box testing (16p)
	6. Symbolic execution and white-box testing (10p)
	7. Model-based testing (6p)
	8. Integration testing (6p)
	9. Exploratory testing (6p)
	10. Modified condition/decision coverage (10p)
	11. Testing case selection (4p)
	12. Test automation: True/False (4p)

