Static Analysis: Symbolic Execution and Inductive

Verification Methods
TDDC90: Software Security

Ahmed Rezine

IDA, Link&pings Universitet

Hosttermin 2014

Static Program Analysis and Approximations

We want to answer whether the program is safe or not (i.e., has
some erroneous reachable configurations or not):

Reachable
Configurations

Reachable
Configurations

Safe Program Unsafe Program

Outline

Overview

Static Program Analysis and Approximations

» Finding all configurations or behaviours (and hence errors) of
arbitrary computer programs can be easily reduced to the
halting problem of a Turing machine.

» This problem is proven to be undecidable, i.e., there is no
algorithm that is guaranteed to terminate and to give an exact
answer to the problem.

» An algorithm is sound in the case where each time it reports
the program is safe wrt. some errors, then the original
program is indeed safe wrt. those errors

» An algorithm is complete in the case where each time it is
given a program that is safe wrt. some errors, then it does
report it to be safe wrt. those errors

Static Program Analysis and Approximations

> The idea is then to come up with efficient approximations and

algorithms to give correct answers in as many cases as possible.

Reachable Approximation

Configurations

Reachable
Approximation Configurations

Over-approximation Under-approximation

Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce
different types of analysis:
» Previous lecture:
» syntactic analysis: scalable but neither sound nor complete
» abstract interpretation sound but not complete
» This lecture:
» symbolic executions: complete but not sound
» inductive methods: may require heavy human interaction in
proving the program correct

Static Program Analysis and Approximations

» A sound analysis cannot give false negatives

> A complete analysis cannot give false positives

Reachable

Configurations Approximation

Reachable

Approximation Configurations

False Positive False Negative

First, What Are SMT Solvers?

» Stands for Satisfiability Modulo Theory

» Intuitively, these are constraint solvers that extend SAT solvers
to richer theories

» Many solvers exist (Face's, CVC, STP, OpenSMT), you will
use Z3 http://z3.codeplex.com in the lab.

» SAT solvers find a satisfying assignment to a formula where all
variables are booleans or establishes its unsatisfiability

» SMT solvers find satisfying assignments to first order formulas
where some variables may range over other values than just
booleans

» For instance, formulas can involve Linear real arithmetic, Linear
integer arithmetic, uninterpreted functions, bit-vectors, etc.

» Eg., f(x)! =zAf(2y) =zAx—y =y is unsat while
f(x)!'=zAf(2y)=zAx+y=yis sat.

» Many applications in verification, testing, planning, theorem
proving, etc.

http://z3.codeplex.com

Outline

Symbolic Execution

Symbol

v

vV V. v v Vv

ic Testing

Main idea by JC. King in “Symbolic Execution and Program
Testing” in the 70s

Use symbolic values instead of concrete ones

Along the path, maintain a Patch Constraint (PC) and a
symbolic state (o)

PC collects constraints on variables' values along a path,
o associates variables to symbolic expressions,

We get concrete values if PC is satisfiable

The program can be run on these values

Negate a condition in the path constraint to get another path

Testing

Most common form of software validation
Explores only one possible execution at a time
For each new value, run a new test.

On a 32 bit machine, if (i==2014) bug() would require 232
different values to make sure there is no bug.

vV v v Vv

» The idea in symbolic testing is to associate symbolic values
to the variables

Symbolic Execution: a simple example

© 0 N O s W N

[i e =
A W N R O

» Can we get to the ERROR? explore using SSA forms.

» Useful to check array out of bounds, assertion violations, etc.

foo(int x,y,z){ PCi = true

X =y - z; PC = PGy X X0,y — Y0,Z — 20
if (x==2z){ PC3 =PCG Ax1=y0— 20 X X1,y = Y0,Z — 20
z =z - 3; PCi=PCG3AXx1 =2 X X1,y = Y0,Z— 20
if (4xz < x + y){ PCs = PCyNz1 =20—3 X X1,y & Y0,Z— 21
if(25 > x + y) { PCG=PCGAdxz1<x1+Y X X1,y Y0,z 21

}

else{

ERROR; PCi1o = PCs A 25 < x1 + o X X1L,Y P Y0,Z = 21

¥

}
}

PC=(x1=yo—20Ax1=20Nz1 =20 —3AN4%xz1 <x1+y0A25<x1+y0)
Check satisfiability with an SMT solver (e.g.,
http://rise4fun.com/Z3)

http://rise4fun.com/Z3

Symbolic execution today

> Leverages on the impressive advancements for SMT solvers
» Modern symbolic execution frameworks are not purely
symbolic, and not necessarily static:
» They can follow a concrete execution while collecting
constraints along the way, or
» They can treat some of the variables concretely, and some
other symbolically

» This allows them to scale, to handle closed code or complex
queries

Function Specifications and Correctness

» Contract between the caller and the implementation. Total
Correctness requires that:
» if the pre-condition (-100 <= x &% x <= 100) holds
» then the implementation terminates,
» after termination, the following post-condition holds
(x>=0 && \result == x || x<0 && \result == -x)

» Partial Correctness does not require termination

return -x;
return x;

}

1 /*@ requires -100 <= x && x <= 100;

2 @ ensures x>=0 && \result == x || x<0 && \result == -x;
3 */

4 int abs(int x){

5 if(x < 0)

6

7

8

Outline

Hoare Triples and Deductive Reasoning

Hoare Triples and Partial Correctness

» a Hoare triple {P} stmt {R} consists in:
» a predicate pre-condition P
» an instruction stmt,
» a predicate post-condition R
» intuitively, {P} stmt {R} holds if whenever P holds and stmt
is executed and terminates (partial correctness), then R
holds after stmt terminates.

> For example:

> {true} x = y {(x ==y)}

» {lx == DR&(y == 2)} x = y {(x == 2)}

> {x>=1)}y =2{(x==0)|l(y <= 10)}

> {(x >=1)} (if(y == 2) then x =0) {(x >=0)}
» {false} x =1 {(x ==2)}

Weakest Precondition Weakest Precondition of assignments

> if {P} stmt {R} and P' = P for any P s.t. {P'} stmt {R}, » wp(x = E,R) = R[x/E], i.e., replace each occurrence of x in

then P is the weakest precondition of R wrt. stmt, written R by E.
wp(stmt, R) > For instance:
> wp(x =x+1,x>=1) = (x >=0). > wp(x = 3,x == 5) = (x == 5)[x/3] = (3 == 5) = false
(x >=5),(x = 6), (x >= 0&&y = 8) are all valid » wp(x = 3,x >=0) = (x >= 0)[x/3] = (3 >=0) = true
preconditions, but they are not weaker than x >= 0. » wp(x =y +5,x>=0)=(x>=0)[x/y +5]=(y+5>=0)
» Intuitively wp(stmt, R) is the weakest predicate P for which > Wp(x =5xy+2%2,x+y>=0)=(x+y>=
{P} stmt {R} holds 0)[x/5xy+2%z]=(6%y+2xz>=0)
Weakest Precondition of sequences Weakest Precondition of conditionals

> Assume a sequence of two instructions stmt; stmt';, for .. .
g » Assume a conditional (if(B) then stmt else stmt'), for

example x = 2% yiy = x+3+y; example (if(x > y) then z = x else z = y)
» the the weakest precondition is given by:

» The weakest precondition is given by:
wp(stmt; stmt’, R) = wp(stmt, wp(stmt', R)), P s Y

wp((if(B) then stmt else stmt'), R)
wp(x =2%y;y =x+3xy,y > 10)

= (B = wp(stmt, R))&&(!B = wp(stmt', R))
wp(x =2 y,wp(y = x+3*y,y > 10))

» For example,

= wp(x=2x*y,(y >10)[y/x +3xy]) wp((if(x > y) then z = x else z = y), z <= 10)
> = wp(x =2xy,x+3xy>10) = (x >y = wp(z=x,z<=10))

= (x+3xy>10)[x/2x*y] &&(x <=y = wp(z = y, z <= 10))

= (2xy+3xy>10) = (x>y=x<=10&&(x <=y =y <=10)

y>2

Hoare Triples for Loops, Partial Correctness

» In order to establish {P} (while(B)do{stmt}) {R}, you will
need to find an invariant /nv such that:
> P=Inv
» {Inv&&B} stmt {Inv}
> (Inv&&!B)=R
» For example {i == j == 0} (while(i < 10)do{i =i+ 1;j =
Jj+1}) {j == 10}, we need to find Inv such that:
> (i==j==0)= Inv
> {Inv&&(i<10)} i=i+1;j=j+1{Inv}
> (Inv&&i >=10)=j == 10

Hoare Triples for Loops, Total Correctness

» {P} (while(B)do{stmt}) {R}
» Partial correctness: if we start from P and
(while(B)do{stmt}) terminates, then R terminates.
» P= Inv
> {Inv&&B?} stmt {Inv}
> (Inv&&!'B)=R
> Total correctness: the loop does terminate: find a variant
function v such that:
> (Inv&&B) = (v > 0)
> {Inv&&B&&v = v} stmt {v < v}

» For example (while(i < 10)do{i =i+ 1;j =j + 1}) can be
shown to terminate with v = (10 — i) and /nv = (i <= 10)

	Overview
	Symbolic Execution
	Hoare Triples and Deductive Reasoning

