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Outline 

 Why static analysis? 

 What is it? Underlying technology 

 An example 

 Some tools (Coverity, KlocWork, PolySpace, …) 

 Some case studies from Ericsson 

 Conclusions 
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Method used 

Tool comparision based on 

 White papers 

 Research reports from research groups behind tools 

 Interviews with Ericsson staff 

 Interviews with technical staff from tool vendors 
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What is SA and 

what can it be used for? 
 Definition: 

– Analysis that does not actually run the code 

 

 Our interest is: 
– Finding defects (preventing run-time errors) 

– Finding security vulnerabilities 

 

 Other uses 
– Code optimization (e.g. removing run-time checks in safe 

languages)  

– Metrics 

– Impact analysis 
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Pros and cons of static analysis 

 Pros 
– No test case design needed 

– No test-oracle needed 

– May detect hard-to-find bugs 

– Analyzed program need not be complete 

– Stub writing easier 

 

 Cons 
– Potentially large number of ”false positives” 

– Does not relate to functional requirements 

– Takes programming competence to understand reports 
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Comparison to other techniques 

 Compared to Testing 
– No test case design needed 

– No test-oracle needed 

– Can find defects that no amount of testing can do 

 Compared to Formal proofs (e.g. model checking) 
– More lightweight 

– SA is much easier to use 

– SA does not need formal requirements 
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Software defects and errors 

 Software defect: an anomaly in code that might 

manifest itself as an error at run-time 

 Types of defects found by static analysis 
– Abrupt termination (e.g. division by zero) 

– Undefined behavior (e.g. array index out of bounds) 

– Performance degradation (e.g. memory leaks, dead code) 

– Security vulnerabilities (e.g. buffer overruns, tainted data) 

 Defects not (easily) found with static analysis 
– Functional incorrectness 

– Infinite loops/non-termination 

– Errors in the environment 
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Examples of checkers (C-code) 

 Null pointer dereference 

 Uninitialized data 

 Buffer/array overruns 

 Dead code/unused data 

 Bad return values 

 Return pointers to local data 

 Arithmetic operations with undefined result 

 Arithmetic over-/underflow 

 Parallel execution bugs 

 (Non-termination) 
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Security vulnerabilities 

 Unsafe system calls 

 Weak encryption 

 Access problems 

 Unsafe string operations 

 Buffer overruns 

 Race conditions (Time-of-check, time-of-use) 

 Command injections 

 Tainted (untrusted) data 
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Buffer overflow 

Char dst[256]; 

Char* s = read_string(); 

Strcpy(dst, s); 
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Imprecision of analyses 

 Defects checked for by static analysis are undecidable 

 Analyses are necessarily imprecise 

 As a consequence 
– Code complained upon may be correct (false positives) 

– Code not complained upon may be defective (false 
negatives)  

 Classic approaches to static analysis (sound analyses) 
report all defects checked for (no false negatives), but 
sometimes produce large amounts of false positives; 

 Most industrial systems try to eliminate false positives 
but introduce false negatives as a consequence 
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Imprecision vs analysis time 

Precision depends heavily on analysis time 

 Flow sensitive analysis 
– Takes program control flow into account 

 Context sensitive analysis 
– Takes values of global variables and actual parameters of 

procedure calls into account 

 Path sensitive analysis 
– Takes only valid execution paths into account 

 Value analysis 
– Value ranges 

– Value dependencies 
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Example 

fact(int n) { 

1)  int f = 1; 

2)  while( n > 0 ) { 

3)   f = f * n; 

4)   n = n – 1; 

  } 

5)  return f; 

} 

1: f = 1 

2: n > 0 

3: f = f * n 

4: n = n - 1 

5: return f 

n 

y 

Control Flow Graph (CFG) 
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Program states (configurations) 

 A program state is a mapping (function) from program 

variables to values. For example 

 

1 = { n  1, f  0 } 

2 = { n  3, f  0 } 

3 = { n  5, f  0 } 

 

 



Top right       

corner  for        

field

customer or 

partner logotypes.     

See Best practice 

for example.

 

Slide title  

40 pt 

 

Slide subtitle  

24 pt 

 

 

Text 

24 pt 

5 

20 pt 

2013-11-25 15 

Semantic equations 

 We associate a set xi of states with node i of the CFG 

(the set of states that can be observed upon reaching 

the node) 

 

x1 = {{ n  1, f  0 }, { n  3, f  0 }}  % Example 

x2 = {  | ’x1 & (n)=’(n) & (f)=1 }  

   {  | ’x4 & (n)=’(n)-1 & (f)= ’(f) } 

x3 = {  | x2 & (n) > 0 } 

x4 = {  | ’x3 & (n)=’(n) & (f)= ’(f)* ’(n) } 

x5 = {  | x2 & (n)  0 } 
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Example run 

Initially x1 = x2 = x3 = x4 = x5 =  
 

 x1 = {{n=1,f=0},{n=3,f=0}} given 

 x2 = {{n=1,f=1},{n=3,f=1}} f=1 

 x3 = {{n=1,f=1},{n=3,f=1}} n>0 

 x4 = {{n=1,f=1},{n=3,f=3}} f=f*n 

 x2 = {{n=0,f=1},{n=1,f=1},{n=2,f=3},{n=3,f=1}} f=1>2&4, n=n-1>1&3 

 x3 = {{n=1,f=1},{n=2,f=3},{n=3,f=1}} n>0 

 x4 = {{n=1,f=1},{n=2,f=6},{n=3,f=3}} f=f*n 

 x2 = {{n=0,f=1},{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}} 

 x3 = {{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}} n>0 

 x4 = {{n=1,f=1},{n=1,f=6},{n=2,f=6},{n=3,f=3}} f=f*n 

 x2 = {{n=0,f=1},{n=0,f=6},{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}} 

 x3 = {{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}} n>0 

 x5 = {{n=0,f=1},{n=0,f=6}} n<=0 
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Abstract descriptions of data 

? = the set of all integers 

- = the set of all negative integers 

+ = the set of all positive integers 

0 = the set { 0 } 

 = the empty set (=unreachable) 

+ 0 - 

 

? 
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Abstract operations 

 

? 

+ 

0 

- 

? 

? 

? 

0 

? 

+ 

? 

+ 

0 

- 

0 

0 

0 

0 

0 

- 

? 

- 

0 

+ 

Any integer 

> 0 

= 0 

< 0 

Abstract multiplication 
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Abstract operations 

? 

+ 

0 

- 

? 

? 

? 

? 

? 

+ 

? 

? 

- 

- 

0 

? 

+ 

0 

- 

- 

? 

+ 

+ 

? 

Any integer 

> 0 

= 0 

< 0 

Abstract subtraction 
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Abstract semantic equations 

 x1 = { n = +,f = ? } 

x2 = { n = lub*(x1(n), (x4(n)     +)), f = lub*(+, x4(f)) } 

x3 = { n = +, f = x2(f) } 

x4 = { n = x3(n), f = x3(f)  x3(n)} 

x5 = { n = ?, f = x2(f) } 

 

(*) lub(A,B) is the smallest description that contain both 

A and B (kind of set union) 



Top right       

corner  for        

field

customer or 

partner logotypes.     

See Best practice 

for example.

 

Slide title  

40 pt 

 

Slide subtitle  

24 pt 

 

 

Text 

24 pt 

5 

20 pt 

2013-11-25 21 

Example abstract run 

Initially x1 = x2 = x3 = x4 = x5 = { n= , f=  } 

 

 x1 = { n=(+),f= ? } given 

 x2 = { n=(+),f=(+) }  

 x3 = { n=(+),f=(+) } 

 x4 = { n=(+),f=(+) } 

 x2 = { n= ?,f=(+) } 

 x3 = { n=(+),f=(+) } 

 x5 = { n= (+),f=(+) } 
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SA techniques 

1. Pattern matching 

2. Control flow analysis 

3. Data flow analysis 

4. Value analysis 
1. Intervals 

2. Aliasing analysis 

3. Variable dependencies 

5. Abstract interpretation 
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Examples of dataflow analysis 

 Reaching definitions (which definitions reach a point) 

 Liveness (variables that are read before definition) 

 Definite assignment (variable is always assigned 

before read) 

 Available expressions (already computed expressions) 

 Constant propagation (replace variable with value) 
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Aliasing 

 x = 5 

 y = 10 

    = x 

 

 x [ i ] = 5 

 x [ j ] = 10 

          = x[i] 
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Tool comparison 

Tool Coverity Klocwork Polyspace Flexelint 

Language C/C++/Java C/C++/Java C/C++/ADA C/C++ 

Program size MLOC MLOC 60KLOC MLOC 

Soundness Unsound Unsound Sound Unsound 

False positives few few many many 

Analysis def,sec def,sec,met def def 

incrementality yes no no no 
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Coverity Prevent 

 Company founded in 2002 

 Originates from Dawson Engeler’s research at 
Stanford 

 Well documented through research papers 

 Commonly viewed as market leading product 

 Good results from Homeland Security’s audit project 

 Coverity Extend allows user-defined checks (Metal 
language) 

 Good explanations of faults 

 Good support for libraries 

 Incremental 
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Klocwork K7 

 Company founded by development group at Nortel 

2001 

 Similar to Coverity (in checkers provided) 

 Besides finding defects: refactoring, code metrics, 

architecture analysis 

 Easy to get started and use 

 Good explanations of faults 

 Good support for foreign libraries 
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Polyspace Verifier/Desktop 

 French company co-founded by students of Patrick 

Cousot 1999. Aquired by Mathworks 2007. 

 Claims to intercept 100% of the runtime errors checked 

for in C/C++/ADA programs. 

 Customers in airline industry and the European space 

program (embedded software). 

 Very thorough – especially on arithmatic 

 Can be slow and produces many false positives 

 Documentation hard to read 

 Restricted support for security vulnerabilities and 

management of dynamic memory 
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Largest SA project? 

Audit of open source projects 
 Grant by Homeland Security in 2006 

 Coverity, Klocwork and others 

 More than 290 open source software projects 

analysed: Apache, FreeBSD, GTK, Linux, Mozilla, 

MySQL, PostgreSQL, and many more. 

 +7000 defects fixed during first 18 months (50 000 up 

to now) 

 See http://scan.coverity.com/ 
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Other SA tools 

 Grammatech - Code sonar. Similar to Coverity and 
Klocwork. Co-founders Tom Reps and Tim Teitelbaum. 

 Parasoft C++test – performs some static analysis 
(checks 700 coding standard rules). 

 Purify focuses on memory-leaks, not defects in 
general. It is a dynamic tool – requires test cases. 

 PREfast and PREfix – Microsoft proprietory. 

 Astree – academic tool by Patric Cousot. Very 
thorough, works on C without recursion and dynamic 
memory. 
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Splint 

 Open source 

 C language 

 Based on Lint 

 Modified for security 

 Annotations added 

 Style warnings 
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Telecom system 

Available   99.999% 
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Ericsson experiences 1 – 

Coverity - Flexelint 
 Mature product that had been in use for several years 

and well tested 

 FlexeLint 1 200 000 errors and warnings, could be 

reduced to 1 000 with a great deal of filtering work 

 Coverity found 40 defects 

 Had expected Coverity to find more defects and more 

serious ones 

 Even if many of the defects found were not bugs that 

could cause a crash they were certainly things that 

should be corrected 
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Ericsson experiences 2 - Coverity 

 1,2 MLoC is analyzed in 3 hours 

 Easy to install and use and no modifications to existing 
development environment needed 

 Part of code was previously analyzed with Flexelint 

 1464 defects found 

 55% no real errors but bad style 

 2% false positives 

 38% bugs – 1% severe 

 considerable number of severe defects were found 
although code is in PRA quality. 
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Ericsson experiences 3 – Coverity 

and Klocwork (43KLoC) 

Klocwork 

False 

positives 

Found by both 

tools Coverity 

False 

positives 

Known memory 

leaks 0 0 0 0 0 

Null-pointer defects 15 2 2 4 0 

Found memory 

leaks 12 8 1 7 0 

Unutilized variables  0 0 0 2 0 

Freeing Non-Heap 

Memory 3 0 0 0 0 

Buffer overruns 2 0 0 3 1 

Total 32 10 3 16 1 
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Ericsson experiences 4 – Java. 

Coverity, Klocwork and CodePro 
 A Java product with known faults was analyzed. 

 Beta version of Coverity was used. 

 Large difference in warnings: 
– Coverity 92, Klocwork 658, CodePro 8000. 

 Coverity found many more faults and had far less false 
positives than Klocwork. 

 Users seem to prefer Klocwork anyway (with filtering: 
only 19 warnings in the topmost 4 severity levels). 

 CodePro is designed for interactive use. 

 Interactivity of CodePro is appreciated, but possibility to 
save discovered defects is required. 
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Ericsson experiences summary 

 Easy to get going and use - no big changes in processes needed. 

 The tools discover many bugs that would not be found otherwise. 

 Analysis time is acceptable and comparable to build time. 

 Some users had expected the tools to find more defects and defects that 
were more severe 

 Some users were surprised to find that several bugs were found in 
applications that had been in use for a long time. 

 Many of the defects found would not cause a crash but after a small 
modification a serious crash could happen. 

 Tools often discover different defects and often do not find known ones. 

 Handling of third party libraries can make a big difference. 

 Tools should be used throughout development 

 Flexelint can be successful if applied from project start 

 Coverity and Klocwork similar – but also very different results in some 
cases 
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Conclusions 

 Good and useful tools 

 Find bugs with little effort 

 Some tools are mature 
– Can handle very large applications 

– Surprisingly few false positives 

– Easy to use 

 Unclear how many defects that are not discovered 
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Litterature 

 Mandatory 
– Emanuelsson, Nilsson: A Comparative Study pf Industrial 

static analysis tools 

– Example in Lecture 

– Livshitz, Lam: Finding Security Vulnerabilities in Java 

Applications with SA 

 Non-mandatory 
– Balakrishnan,... WYSINWYX: What you see is not what you 

execute 

– Bessey, ...: A few billion lines of code later 


