

itle

In CAPITALS

50 pt

ubtitle

32 pt

Static Analysis methods and tools

An industrial study

Adj Prof Pär Emanuelsson – Ericsson and LiU

Prof Ulf Nilsson – LiU

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 2

Outline

 Why static analysis?

 What is it? Underlying technology

 An example

 Some tools (Coverity, KlocWork, PolySpace, …)

 Some case studies from Ericsson

 Conclusions

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 3

Method used

Tool comparision based on

 White papers

 Research reports from research groups behind tools

 Interviews with Ericsson staff

 Interviews with technical staff from tool vendors

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 4

What is SA and

what can it be used for?
 Definition:

– Analysis that does not actually run the code

 Our interest is:
– Finding defects (preventing run-time errors)

– Finding security vulnerabilities

 Other uses
– Code optimization (e.g. removing run-time checks in safe

languages)

– Metrics

– Impact analysis

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 5

Pros and cons of static analysis

 Pros
– No test case design needed

– No test-oracle needed

– May detect hard-to-find bugs

– Analyzed program need not be complete

– Stub writing easier

 Cons
– Potentially large number of ”false positives”

– Does not relate to functional requirements

– Takes programming competence to understand reports

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 6

Comparison to other techniques

 Compared to Testing
– No test case design needed

– No test-oracle needed

– Can find defects that no amount of testing can do

 Compared to Formal proofs (e.g. model checking)
– More lightweight

– SA is much easier to use

– SA does not need formal requirements

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 7

Software defects and errors

 Software defect: an anomaly in code that might

manifest itself as an error at run-time

 Types of defects found by static analysis
– Abrupt termination (e.g. division by zero)

– Undefined behavior (e.g. array index out of bounds)

– Performance degradation (e.g. memory leaks, dead code)

– Security vulnerabilities (e.g. buffer overruns, tainted data)

 Defects not (easily) found with static analysis
– Functional incorrectness

– Infinite loops/non-termination

– Errors in the environment

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 8

Examples of checkers (C-code)

 Null pointer dereference

 Uninitialized data

 Buffer/array overruns

 Dead code/unused data

 Bad return values

 Return pointers to local data

 Arithmetic operations with undefined result

 Arithmetic over-/underflow

 Parallel execution bugs

 (Non-termination)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 9

Security vulnerabilities

 Unsafe system calls

 Weak encryption

 Access problems

 Unsafe string operations

 Buffer overruns

 Race conditions (Time-of-check, time-of-use)

 Command injections

 Tainted (untrusted) data

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 10

Buffer overflow

Char dst[256];

Char* s = read_string();

Strcpy(dst, s);

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 11

Imprecision of analyses

 Defects checked for by static analysis are undecidable

 Analyses are necessarily imprecise

 As a consequence
– Code complained upon may be correct (false positives)

– Code not complained upon may be defective (false
negatives)

 Classic approaches to static analysis (sound analyses)
report all defects checked for (no false negatives), but
sometimes produce large amounts of false positives;

 Most industrial systems try to eliminate false positives
but introduce false negatives as a consequence

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 12

Imprecision vs analysis time

Precision depends heavily on analysis time

 Flow sensitive analysis
– Takes program control flow into account

 Context sensitive analysis
– Takes values of global variables and actual parameters of

procedure calls into account

 Path sensitive analysis
– Takes only valid execution paths into account

 Value analysis
– Value ranges

– Value dependencies

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 13

Example

fact(int n) {

1) int f = 1;

2) while(n > 0) {

3) f = f * n;

4) n = n – 1;

 }

5) return f;

}

1: f = 1

2: n > 0

3: f = f * n

4: n = n - 1

5: return f

n

y

Control Flow Graph (CFG)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 14

Program states (configurations)

 A program state is a mapping (function) from program

variables to values. For example

1 = { n  1, f  0 }

2 = { n  3, f  0 }

3 = { n  5, f  0 }

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 15

Semantic equations

 We associate a set xi of states with node i of the CFG

(the set of states that can be observed upon reaching

the node)

x1 = {{ n  1, f  0 }, { n  3, f  0 }} % Example

x2 = {  | ’x1 & (n)=’(n) & (f)=1 } 

 {  | ’x4 & (n)=’(n)-1 & (f)= ’(f) }

x3 = {  | x2 & (n) > 0 }

x4 = {  | ’x3 & (n)=’(n) & (f)= ’(f)* ’(n) }

x5 = {  | x2 & (n)  0 }

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 16

Example run

Initially x1 = x2 = x3 = x4 = x5 = 

 x1 = {{n=1,f=0},{n=3,f=0}} given

 x2 = {{n=1,f=1},{n=3,f=1}} f=1

 x3 = {{n=1,f=1},{n=3,f=1}} n>0

 x4 = {{n=1,f=1},{n=3,f=3}} f=f*n

 x2 = {{n=0,f=1},{n=1,f=1},{n=2,f=3},{n=3,f=1}} f=1>2&4, n=n-1>1&3

 x3 = {{n=1,f=1},{n=2,f=3},{n=3,f=1}} n>0

 x4 = {{n=1,f=1},{n=2,f=6},{n=3,f=3}} f=f*n

 x2 = {{n=0,f=1},{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}}

 x3 = {{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}} n>0

 x4 = {{n=1,f=1},{n=1,f=6},{n=2,f=6},{n=3,f=3}} f=f*n

 x2 = {{n=0,f=1},{n=0,f=6},{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}}

 x3 = {{n=1,f=1},{n=1,f=6},{n=2,f=3},{n=3,f=1}} n>0

 x5 = {{n=0,f=1},{n=0,f=6}} n<=0

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 17

Abstract descriptions of data

? = the set of all integers

- = the set of all negative integers

+ = the set of all positive integers

0 = the set { 0 }

 = the empty set (=unreachable)

+ 0 -



?

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 18

Abstract operations



?

+

0

-

?

?

?

0

?

+

?

+

0

-

0

0

0

0

0

-

?

-

0

+

Any integer

> 0

= 0

< 0

Abstract multiplication

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 19

Abstract operations

?

+

0

-

?

?

?

?

?

+

?

?

-

-

0

?

+

0

-

-

?

+

+

?

Any integer

> 0

= 0

< 0

Abstract subtraction

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 20

Abstract semantic equations

 x1 = { n = +,f = ? }

x2 = { n = lub*(x1(n), (x4(n) +)), f = lub*(+, x4(f)) }

x3 = { n = +, f = x2(f) }

x4 = { n = x3(n), f = x3(f)  x3(n)}

x5 = { n = ?, f = x2(f) }

(*) lub(A,B) is the smallest description that contain both

A and B (kind of set union)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 21

Example abstract run

Initially x1 = x2 = x3 = x4 = x5 = { n= , f=  }

 x1 = { n=(+),f= ? } given

 x2 = { n=(+),f=(+) }

 x3 = { n=(+),f=(+) }

 x4 = { n=(+),f=(+) }

 x2 = { n= ?,f=(+) }

 x3 = { n=(+),f=(+) }

 x5 = { n= (+),f=(+) }

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 22

SA techniques

1. Pattern matching

2. Control flow analysis

3. Data flow analysis

4. Value analysis
1. Intervals

2. Aliasing analysis

3. Variable dependencies

5. Abstract interpretation

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 23

Examples of dataflow analysis

 Reaching definitions (which definitions reach a point)

 Liveness (variables that are read before definition)

 Definite assignment (variable is always assigned

before read)

 Available expressions (already computed expressions)

 Constant propagation (replace variable with value)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 24

Aliasing

 x = 5

 y = 10

 = x

 x [i] = 5

 x [j] = 10

 = x[i]

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 25

Tool comparison

Tool Coverity Klocwork Polyspace Flexelint

Language C/C++/Java C/C++/Java C/C++/ADA C/C++

Program size MLOC MLOC 60KLOC MLOC

Soundness Unsound Unsound Sound Unsound

False positives few few many many

Analysis def,sec def,sec,met def def

incrementality yes no no no

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 26

Coverity Prevent

 Company founded in 2002

 Originates from Dawson Engeler’s research at
Stanford

 Well documented through research papers

 Commonly viewed as market leading product

 Good results from Homeland Security’s audit project

 Coverity Extend allows user-defined checks (Metal
language)

 Good explanations of faults

 Good support for libraries

 Incremental

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 27

Klocwork K7

 Company founded by development group at Nortel

2001

 Similar to Coverity (in checkers provided)

 Besides finding defects: refactoring, code metrics,

architecture analysis

 Easy to get started and use

 Good explanations of faults

 Good support for foreign libraries

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 28

Polyspace Verifier/Desktop

 French company co-founded by students of Patrick

Cousot 1999. Aquired by Mathworks 2007.

 Claims to intercept 100% of the runtime errors checked

for in C/C++/ADA programs.

 Customers in airline industry and the European space

program (embedded software).

 Very thorough – especially on arithmatic

 Can be slow and produces many false positives

 Documentation hard to read

 Restricted support for security vulnerabilities and

management of dynamic memory

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 29

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 30

Largest SA project?

Audit of open source projects
 Grant by Homeland Security in 2006

 Coverity, Klocwork and others

 More than 290 open source software projects

analysed: Apache, FreeBSD, GTK, Linux, Mozilla,

MySQL, PostgreSQL, and many more.

 +7000 defects fixed during first 18 months (50 000 up

to now)

 See http://scan.coverity.com/

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 31

Other SA tools

 Grammatech - Code sonar. Similar to Coverity and
Klocwork. Co-founders Tom Reps and Tim Teitelbaum.

 Parasoft C++test – performs some static analysis
(checks 700 coding standard rules).

 Purify focuses on memory-leaks, not defects in
general. It is a dynamic tool – requires test cases.

 PREfast and PREfix – Microsoft proprietory.

 Astree – academic tool by Patric Cousot. Very
thorough, works on C without recursion and dynamic
memory.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 32

Splint

 Open source

 C language

 Based on Lint

 Modified for security

 Annotations added

 Style warnings

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 33

Telecom system

Available 99.999%

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 34

Ericsson experiences 1 –

Coverity - Flexelint
 Mature product that had been in use for several years

and well tested

 FlexeLint 1 200 000 errors and warnings, could be

reduced to 1 000 with a great deal of filtering work

 Coverity found 40 defects

 Had expected Coverity to find more defects and more

serious ones

 Even if many of the defects found were not bugs that

could cause a crash they were certainly things that

should be corrected

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 35

Ericsson experiences 2 - Coverity

 1,2 MLoC is analyzed in 3 hours

 Easy to install and use and no modifications to existing
development environment needed

 Part of code was previously analyzed with Flexelint

 1464 defects found

 55% no real errors but bad style

 2% false positives

 38% bugs – 1% severe

 considerable number of severe defects were found
although code is in PRA quality.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 36

Ericsson experiences 3 – Coverity

and Klocwork (43KLoC)

Klocwork

False

positives

Found by both

tools Coverity

False

positives

Known memory

leaks 0 0 0 0 0

Null-pointer defects 15 2 2 4 0

Found memory

leaks 12 8 1 7 0

Unutilized variables 0 0 0 2 0

Freeing Non-Heap

Memory 3 0 0 0 0

Buffer overruns 2 0 0 3 1

Total 32 10 3 16 1

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 37

Ericsson experiences 4 – Java.

Coverity, Klocwork and CodePro
 A Java product with known faults was analyzed.

 Beta version of Coverity was used.

 Large difference in warnings:
– Coverity 92, Klocwork 658, CodePro 8000.

 Coverity found many more faults and had far less false
positives than Klocwork.

 Users seem to prefer Klocwork anyway (with filtering:
only 19 warnings in the topmost 4 severity levels).

 CodePro is designed for interactive use.

 Interactivity of CodePro is appreciated, but possibility to
save discovered defects is required.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 38

Ericsson experiences summary

 Easy to get going and use - no big changes in processes needed.

 The tools discover many bugs that would not be found otherwise.

 Analysis time is acceptable and comparable to build time.

 Some users had expected the tools to find more defects and defects that
were more severe

 Some users were surprised to find that several bugs were found in
applications that had been in use for a long time.

 Many of the defects found would not cause a crash but after a small
modification a serious crash could happen.

 Tools often discover different defects and often do not find known ones.

 Handling of third party libraries can make a big difference.

 Tools should be used throughout development

 Flexelint can be successful if applied from project start

 Coverity and Klocwork similar – but also very different results in some
cases

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 39

Conclusions

 Good and useful tools

 Find bugs with little effort

 Some tools are mature
– Can handle very large applications

– Surprisingly few false positives

– Easy to use

 Unclear how many defects that are not discovered

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2013-11-25 40

Litterature

 Mandatory
– Emanuelsson, Nilsson: A Comparative Study pf Industrial

static analysis tools

– Example in Lecture

– Livshitz, Lam: Finding Security Vulnerabilities in Java

Applications with SA

 Non-mandatory
– Balakrishnan,... WYSINWYX: What you see is not what you

execute

– Bessey, ...: A few billion lines of code later

