
Secure Software Development

Marcus Bendtsen
Institutionen för Datavetenskap (IDA)

Avdelningen för Databas- och Informationsteknik (ADIT)

Agenda

•  Securing the software development life cycle

•  Example of a formal secure development method

•  Secure architectural, design and implementation patterns

2

Introduction

We do not simply write code, and then as an
afterthought test and patch it to ensure that it
fulfills a functional requirement:

If we want a piece of code that sums integers, then we
state this before we start coding and specifically write
the code to sum integers. We do not randomly write
code and then try and patch the code to sum integers.

3

Introduction

•  For non-functional requirements such as quality and security,
the same logic applies. We do not patch a piece of code to ensure
it fulfills a non-functional requirement.

•  As with functional requirements, non-functional requirements are
met not only by stating the requirements but other activities are
required.

•  As we shall see, security considerations must permeate all
phases of the software development life cycle.

4

Software Development Life Cycle

5

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Software Development Life Cycle

6

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Software Development Life Cycle

7

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Security Requirements

•  Requirements are gathered during the initial phase of the
software development life cycle.

•  This is an opportunity to not only gather functional
requirements, but also security requirements.

•  Several methods exists for gathering security requirements.

•  We will look at misuse cases, which can be seen as a
method in itself, but also takes part in more elaborate methods
(such as SQUARE).

8

Use cases and Misuse cases

•  A use case illustrates required usage of a system – i.e.
expected functionality.

•  However it is equally important to illustrate how one should not
be able to use the system.

•  Misuse cases are used to identify threats and required
countermeasures.

9

Misuse case legend

10

Outside�attackerInsiderAuthorized�user
Use�case Vulnerability Threat

<<extend>>
<<include>>

<<exploit>> <<threaten>>
<<mitigate>>

Fig. 2. Extended misuse case legend

3.1 Examples of use of the extended notation

Emergency access control in healthcare systems Figure 3 depicts an ex-
ample misuse case model using the extended notation proposed in this paper.
The model illustrates use and misuse of the access control mechanism in an
Electronic Patient Record (EPR) system. As explained in the introduction, such
healthcare systems often have emergency access control mechanisms designed to
be able to override the standard access control mechanisms in situations where
access to information is of vital importance but there is no time to register the
patient in the system and link him/her to a specific ward - which is necessary for
the standard access control to function properly. In these situations healthcare
personnel are authorized, by their organization and the law, to use the emer-
gency access control mechanism to gain access to information that they have a
legitimate need and right to view. However, for such an emergency mechanism
to be useful, it has to be available at all times. This effectively leads to a back-
door into the system that may be misused by insiders to snoop around when
they should not. Most system users will not attempt misusing this mechanism
although it is possible. But, it is important to be able to consider the possibility
and map out potential consequences and apply proper countermeasures if the
consequences are grave. And that is the reason why this addition to the misuse
case notation is important. You cannot get a complete overview of potential
risks and threats towards a system if you do not consider the complete picture.
By identifying emergency access as a vulnerability we are also able to consider
proper countermeasuers to apply in order to minimize the risk for misuse - in
this case auditing (enables traceability and detection of misuse) and awareness
training (e.g. making sure that system users are aware of the consequences of
misuse - and what is considered misuse).

Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

Misuse case example

•  Electronic Patient Record (ERP)
•  Under normal circumstances patients should be registered in the

system and linked to a specific ward – only personnel with access
to the patients at this ward can then read the patients records.

•  During emergencies the organization and the law allows the use of
an emergency access control function – which gives immediate
access to any records needed.

•  For such an emergency control to be useful, it must be available at
all time. This effectively creates a backdoor in the system that
insiders can use to snoop around.

•  By identifying emergency access as a vulnerability we can also
consider proper countermeasures – auditing (enables traceability
and detection) and awareness training (making sure that users
are aware of consequences of misuse).

11

Electronic Patient Record

12

Read�EPRAuthorized�user

Insider

Access�Control�(AC)

Normal AC Emergency AC
<<extend>> <<extend>>

<<include>>

Unauthorized�read�EPR

Emergency�read�EPR <<include>> <<exploit>>

Auditing <<mitigate>>
Awareness�training <<mitigate>>

Fig. 3. Extended misuse case example: access control

User input in web-enabled systems In an IT-system all input, from users
or other systems, should be handled with caution. Figure 4 illustrates a generic
login procedure for a web application - the user has to enter a username and
password to log in. Identified attacks include (but are definitely not limited to):

– Injection - for instance sql-injections to tamper with database content or
override password check.

– Overflow - entering unexpected or large quantities of data in the input fields
to observe system reaction or possibly take control over the system.

Input validation is identified as a countermeasure that helps mitigate these
threats. This model illustrates how the extended notation helps highlight vulner-
abilites that may be exploited. An insider is not inlcuded because these attacks
are typically performed by outside attackers. Highlighting vulnearbilities in this
way may be particularly helpful in a risk analysis process, where the customers
are involved. By visualizing vulnerabilities, attacks and what may happen it will
hopefully be easier to get acceptance and resources to apply security measures.

An insider on the system development team This example illustrates
how the extended notation may be used not only on a system level, but also on
a business- or organizational level. An insider may exist inside a development

Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

User input in web-based systems

13 Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

Authorized�user

Enter�username

Enter�password

Injection�attack

Overflow�attack

Input�validation

<<exploit>>

<<exploit>>

<<exploit>>

<<exploit>>

<<mitigate>>

<<mitigate>>
Attacker

Use�system
<<threaten>>

<<threaten>>

Fig. 4. Extended misuse case example: user input

team or an organization. For example a disgruntled employee working on a de-
velopment project may inject code into a system that opens up a backdoor that
attackers may exploit like Figure 5 illustrates.

Insider

System�developer Implement�system

Inject�backdoor

Inject�bug

Code�audit

Security�testing<<mitigate>>

<<mitigate>>

<<mitigate>>
<<mitigate>>

Fig. 5. Extended misuse case example: insider in development team

3.2 A step-by-step approach: how to apply the extended notation

In [15] Sindre and Opdahl propose guidelines, a set of steps, to perform when
using misuse cases to elicit threats and countermeasures. The approach described

An insider on the system development team

14 Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

Authorized�user

Enter�username

Enter�password

Injection�attack

Overflow�attack

Input�validation

<<exploit>>

<<exploit>>

<<exploit>>

<<exploit>>

<<mitigate>>

<<mitigate>>
Attacker

Use�system
<<threaten>>

<<threaten>>

Fig. 4. Extended misuse case example: user input

team or an organization. For example a disgruntled employee working on a de-
velopment project may inject code into a system that opens up a backdoor that
attackers may exploit like Figure 5 illustrates.

Insider

System�developer Implement�system

Inject�backdoor

Inject�bug

Code�audit

Security�testing<<mitigate>>

<<mitigate>>

<<mitigate>>
<<mitigate>>

Fig. 5. Extended misuse case example: insider in development team

3.2 A step-by-step approach: how to apply the extended notation

In [15] Sindre and Opdahl propose guidelines, a set of steps, to perform when
using misuse cases to elicit threats and countermeasures. The approach described

Requirements

•  Misuse cases is one method of gathering requirements.

•  Other more complex methods exists that range up to full-fledge
risk analysis methods.

•  However Misuse cases are good due to their simplicity, and this
increases the probability that they will be used.

•  When requirements have been gathered they are moved on to
the design and architecture phase.

15

Software Development Life Cycle

16

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Risk analysis

•  Risk analysis is used at the architecture & design phase and
at the verification phase (to some degree also at requirements stage)

•  Helps to find and quantify risks and then allows us to change
our architecture and design.

•  We will look briefly at CORAS (more in Info-Sec course) and in more
detail about Attack Trees (overlap with Info-Sec course).

17

CORAS (overview)

18

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007 103

the picture we see that speech and other data from the
examination of a patient is streamed over a dedicated
network, while access to the patient’s health record
(stored in a database at the regional hospital) is given
through an encrypted channel over the Internet. Next in
line after the IT manager is the medical doctor from the
PHCC. She talks about her personal experiences from
using the system.

After the presentations, a discussion on the scope and
focus of the analysis follows. The representative of the
ministry emphasises that they are particularly worried
about the confidentiality and integrity of the health
records and other medical data, first and foremost for the
sake of the patients’ health, but also because of the
public’s trust in the national healthcare system. For the
medical doctor the most important thing is the patient’s
health and well-being, and hence the availability and
integrity of the telemedicine system. The IT manager
explains that they have already made a security analysis
of the health record database and the encrypted access,
so she is confident that this part of the system is secure
and reliable. After some discussion the representative of
the ministry decides that the focus will be on
confidentiality and integrity of medical data, and the
availability of the service, but that the access to the
health record database is outside the scope of analysis.

As the last point on the agenda, the participants set
up a plan for the rest of the analysis with dates and
indications of who should be present.

Step 1 — summary
Tasks:

x the security analysis method is introduced,

x the client presents the goals and the target of the
analysis,

x the focus and scope of the analysis is set,

x the meetings and workshops are planned.

People that should participate:

x analysis leader (required),

x analysis secretary (required),

x representatives of the client:

— decision makers (required),

— technical expertise (optional),

— users (optional).

Modelling guideline:

x system description:

— at this stage of the analysis it can be useful to
describe the target with informal models like drawings,
pictures or sketches on a blackboard,

— the presentation can later be supplemented with
more formal modelling techniques such as UML or
data-flow diagrams.

3. Step 2 — high-level analysis
The second step is called the high-level analysis, and as the
name indicates this involves conducting an initial analysis of
the target. This step also typically involves a meeting
between the analysts and the representatives of the client.
The main purpose is to identify assets and get an overview of
the main risks. Finding the assets that need protection is
initiated in step 2 and completed in step 3. The remaining
four steps of the analysis will be directed towards these
assets. The outcome of the high-level analysis helps the
analysts to identify the aspects of the target having the most
urgent need for in-depth analysis, and hence makes it easier
to define the exact scope and focus of the full analysis.

The second meeting starts with the security analysis
leader presenting the analysts’ understanding of the
target to be analysed. The information presented by the
client at the previous meeting, as well as documentation
received in the mean time, has been formalised in UML
diagrams [1] . The UML class diagram (Fig 3) shows the
relevant concepts and how they relate, while the UML
collaboration diagram (Fig 4) illustrates the physical
organisation of the target. Furthermore, the medical
doctor’s description of use has been captured as a UML
activity diagram (Fig 5). During this presentation the
participants representing the client make corrections and
eliminate errors, so that the result is a target description
all parties can agree upon. In the class and collaboration
diagrams the security analysis leader has also indicated
what areas are understood to be the focus of the analysis.

After agreeing on a target description, the analysis
moves on to asset identification. An asset is something in
or related to the target to which the client assigns great
value. Based on the discussion at the introductory
meeting, the analysis leader has prepared an initial
‘CORAS asset diagram’ (Fig 6) to help with specifying the
scope of the analysis. The asset diagram shows the
National Ministry of Health as the client (i.e. the

Fig 2 Picture of the target.

Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

Step 1 – Experts and clients decide upon
which system is to be analyzed and what
parts of the system that should be focused
upon.

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007104

stakeholder that is initiating and paying for the analysis),
and its four assets: ‘Health records’, ‘Provision of
telecardiology service’, ‘Patient’s health’ and ‘Public’s
trust in system’. Because trust and health are difficult to
measure, especially in a technical setting like this, the
analysis leader makes a distinction between direct and
indirect assets. He explains direct assets as assets that
may be harmed directly by an unwanted incident, while
the indirect assets are only harmed if one of the direct
assets is harmed first. In the asset diagram the direct
assets are placed within the target of analysis region and
the indirect are placed outside.

The arrows show dependencies between the assets,
such that, for example harm to ‘Health records’ may
cause harm to ‘Public’s trust in system’. The dashed lines

in Fig 6 symbolise the client’s, or other interested
parties’, relation to the assets.

 After agreeing on the assets, the analysts conduct a
high-level analysis together with the analysis par-
ticipants. The short brainstorming should identify the
most important threats and vulnerabilities, but without
going into great detail. In this case the client is concerned
about hackers, eavesdroppers, system failure and
whether the security mechanisms are sufficient.

These threats and vulnerabilities do not necessarily
involve major risks, but give the analysis leader valuable
input on where to start the analysis. The analysis
secretary documents the results by filling in the high-
level risk table shown in Table 1 .

Fig 3 Class diagram showing a conceptual view of the target.

Fig 4 Collaboration diagram illustrating the physical communication lines.

firewall

GP

terminal

cardiologist

terminal

dedicated

connection

GP cardiologist

medical

equipment

Internet

database

terminal focus

:GP

terminal

:cardiologist

terminal

:firewall:firewall :database

:medical

equipment

hardware communication

focus

Step 2 – The system to be analyzed is
formalized, assets are identified, high-level
risk analysis (mainly by client).

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007 105

Step 2 — summary
Tasks:

x the target as understood by the analysts is presented,

x the assets are identified,

x a high-level analysis is conducted.

People that should be present:

x security analysis leader (required),

x security analysis secretary (required),

x representatives of the client:

— decision makers (required),

— technical expertise (required),

— users (optional).

Modelling guidelines:

x asset diagrams:

— draw a region that logically or physically represents
the target of analysis,

— place the direct assets within the region,

— place the indirect assets outside the region (indirect
assets are a harmed as a consequence of a direct asset
being harmed first),

— indicate with arrows which assets may affect other
assets,

— assets may be ranked according to their importance,

— if the analysis has more than one client, the clients
should be associated with their assets,

x target descriptions:

— use a formal or standardised notation such as UML
[1], but ensure that the notation is explained thorough-
ly so that the participants understand it,

— create models of both the static and the dynamic
features of the target (static may be hardware
configurations, network design, etc, while dynamic may
be work processes, information flow, etc),

— for the static parts of the description UML class
diagrams and UML collaboration diagrams (or similar
notations) are recommended,

— for the dynamic parts we recommend UML activity
diagrams and UML sequence diagrams (or similar
notations).

log on

acknowledge
connection

open health
record

review
examination

log on

retrieve health
record

connect medical
equipment

update health
record

close
connection

establish
connection

examine
patient

log out log out

GP cardiologist

Fig 5 Activity diagram describing the parallel processes of the GP
and the cardiologist.

patient’s
health

health
records

provision of
telecardiology

service

public trust
in system

Ministry
of Health

(client)

telecardiology
service

Fig 6 Asset diagram.

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007 105

Step 2 — summary
Tasks:

x the target as understood by the analysts is presented,

x the assets are identified,

x a high-level analysis is conducted.

People that should be present:

x security analysis leader (required),

x security analysis secretary (required),

x representatives of the client:

— decision makers (required),

— technical expertise (required),

— users (optional).

Modelling guidelines:

x asset diagrams:

— draw a region that logically or physically represents
the target of analysis,

— place the direct assets within the region,

— place the indirect assets outside the region (indirect
assets are a harmed as a consequence of a direct asset
being harmed first),

— indicate with arrows which assets may affect other
assets,

— assets may be ranked according to their importance,

— if the analysis has more than one client, the clients
should be associated with their assets,

x target descriptions:

— use a formal or standardised notation such as UML
[1], but ensure that the notation is explained thorough-
ly so that the participants understand it,

— create models of both the static and the dynamic
features of the target (static may be hardware
configurations, network design, etc, while dynamic may
be work processes, information flow, etc),

— for the static parts of the description UML class
diagrams and UML collaboration diagrams (or similar
notations) are recommended,

— for the dynamic parts we recommend UML activity
diagrams and UML sequence diagrams (or similar
notations).

log on

acknowledge
connection

open health
record

review
examination

log on

retrieve health
record

connect medical
equipment

update health
record

close
connection

establish
connection

examine
patient

log out log out

GP cardiologist

Fig 5 Activity diagram describing the parallel processes of the GP
and the cardiologist.

patient’s
health

health
records

provision of
telecardiology

service

public trust
in system

Ministry
of Health

(client)

telecardiology
service

Fig 6 Asset diagram.

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007106

4. Step 3 — approval
The last of the preparatory steps is the approval step. The

approval is often conducted as a separate meeting, but may

also take place via e-mail. The main goal is to finalise the

documentation and characterisation of target and assets,

and get this formally approved by the client. At the end of

this meeting there should be a document (possibly with a list

of required changes) to which all parties agree and commit.

The approval also involves defining consequence scales (for

each asset) and a likelihood scale. Multiple consequence

scales are used when it is difficult or inappropriate to

measure damage to all assets according to the same scale,

e.g. it is easier to measure ‘income’ in monetary values than

‘company brand’.

There should only be one likelihood scale appropriate for

the analysis scope, e.g. based on a time-interval (years,

weeks, hours, etc) or probabilities. The last activity of the

approval is to decide upon the risk evaluation criteria. The

criteria states which level of risk the client accepts for each

of the assets.

The security analysis leader has updated the

presentation from the last meeting based on comments

from the other participants, and the target and asset

descriptions are now approved. Based on the discussions

in the first two meetings and issues identified in the high-

level analysis, it is decided to narrow the scope of the

analysis, and agree upon the following target definition.

The target of analysis will be the availability of the

telecardiology service, and confidentiality and

integrity of health records and medical data in

relation to use of the service and related equipment.

The indirect asset ‘Public’s trust in system’ is to be

kept outside the scope.

A risk is the potential for an unwanted incident to

have an impact upon objectives (assets) [4], or in other

words to reduce the value of at least one of the identified

assets. Often the client accepts some risks that are not

judged to be critical rather than eliminating or reducing

them. This may be because of shortage of resources to

implement changes, conflicting concerns, or the

treatment costs will be greater than the benefits. As a

first step towards distinguishing risks that can be

accepted from those that cannot, the representatives

from the client are asked to rank the assets according to

their importance (1 = very important, 5 = minor impor-

tance) and fill in the asset table (Table 2). Then the final

treatment step can address the risks for the most

important asset first.

Having finished the asset table, they go on to define

the likelihood scale (a general description of frequency or

probability [4]) of which incidents occur, and the impact

or consequence they have on the assets. The analysts

initiate the discussion by suggesting a scale of likelihood

based on the following rule of thumb — the lower

incident likelihood ‘rare’ is set to be a maximum of one

occurrence during the target’s lifetime; the remaining

Table 1 High-level risk table.

Who/what causes it? How? What is the incident? What does it harm? What makes it possible?

Hacker Breaks into the system and steals health records Insufficient security

Employee Sloppiness compromises confidentiality of health

records

Insufficient training

Eavesdropper Eavesdropping on dedicated connection Insufficient protection of connection

System failure System goes down during examination Unstable connection/immature technology

Employee Sloppiness compromises integrity of health record Prose-based health records (i.e. natural language)

Network failure Transmission problems compromise integrity of

medical data

Unstable connection/immature technology

Employee Health records leak out by accident —

compromises their confidentiality and damages

the trust in the system

Possibility of irregular handling of health records

threat

(accidental)

threat

(deliberate)

threat

(non-human)

threat

scenario

asset

unwanted

incident

vulnerability

Table 2 Asset table.

Asset Importance Type

Health records 2 Direct asset

Provision of

telecardiology service

3 Direct asset

Public’s trust in system (Scoped out) Indirect asset

Patient’s health 1 Indirect asset

CORAS (overview)

19

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007 107

intervals have an increasing number of expected events

until the maximum possible number of incidents per year

is reached. Because assets of different types are involved,

they make separate consequence scales for each of the

direct assets. Table 3 shows the consequence scale

defined for the asset ‘Health records’ in terms of number

of health records affected. If feasible, the consequence

description for an asset may include more than one

measure, e.g. ‘major’ could be the number of disclosed

health records, or the number of deleted records, etc.

Table 4 gives the likelihood scale defined for the target as
such. By using the same scale for all scenarios and

incidents, it is possible to extract combined likelihood

values as shown later in the risk estimation step.

Table 3 Consequence scale for ‘health records’.

Table 4 Likelihood scale.

Finally, the representatives of the client need to

define the risk evaluation criteria, the criteria which

assert whether a risk to an asset is acceptable or whether

it is necessary to evaluate possible treatments for it. They
define these criteria by means of a risk evaluation matrix

for each asset. The security analysis leader draws the

matrix for the asset ‘Health records’ on a blackboard. It

has likelihood and consequence values as its axes so that

a risk with a specific likelihood and consequence will

belong to the intersecting cell. Based on a discussion in

the group, the security analysis leader marks the cells in

the matrix as ‘acceptable’ or ‘must be evaluated’. The

resulting risk evaluation matrix is shown in Table 5, and

the participants decide to let this matrix cover the other

assets as well.

After completing this task for all assets the analysts

and the participants have the framework and vocabulary

they need to start identifying threats (a potential cause

of an unwanted incident [5]), vulnerabilities (weaknesses

which can be exploited by one or more threats [5]),

unwanted incidents and risks, and can move on to the

next step.

Step 3 — summary
Tasks:

x the client approves target descriptions and asset

descriptions,

x the assets should be ranked according to importance,

x consequence scales must be set for each asset within

the scope of the analysis,

x a likelihood scale must be defined,

x the client must decide risk evaluation criteria for each

asset within the scope of the analysis.

Participants:

x the same as in the previous meeting, but, since this step

sets the boundaries for the further analysis, it is

important that the relevant decision-makers are

present.

5. Step 4 — risk identification
To identify risks CORAS makes use of a technique called

structured brainstorming. Structured brainstorming may be

understood as a structured ‘walk-through’ of the target of

analysis and is carried out as a workshop. The main idea of

structured brainstorming is that since the analysis par-

ticipants represent different competences, backgrounds and

interests, they will view the target from different perspec-

tives and consequently identify more, and possibly other,

risks than individuals or a more homogeneous group would

have managed.

The findings from the brainstorming are documented

with the CORAS security risk modelling language. We will

now exemplify how we model risks with the CORAS

language, using the symbols presented in Fig 7.

Consequence value Description
Catastrophic 1000+ health records (HRs) are affected

Major 100-1000 HRs are affected

Moderate 10-100 HRs are affected

Minor 1-10 HRs are affected

Insignificant No HR is affected

Likelihood
value Description3

Certain Five times or more per year (50-*: 10y = 5-*: 1y)

Likely Two to five times per year (21-49: 10y = 2,1-4,9: 1y)

Possible Once a year (6-20: 10y = 0,6-2: 1y)

Unlikely Less than once per year (2-5: 10y = 0,2-0,5: 1y)

Rare Less than once per ten years (0-1:10y = 0-0,1:1y)

Table 5 Risk evaluation matrix.

Consequence
Insignificant Minor Moderate Major Catastrophic

Fr
eq

ue
nc

y

Rare Acceptable Acceptable Acceptable Acceptable Must be evaluated

Unlikely Acceptable Acceptable Acceptable Must be evaluated Must be evaluated

Possible Acceptable Acceptable Must be evaluated Must be evaluated Must be evaluated

Likely Acceptable Must be evaluated Must be evaluated Must be evaluated Must be evaluated

Certain Must be evaluated Must be evaluated Must be evaluated Must be evaluated Must be evaluated

3 50-*:10y is short for 50 or more incidents per 10 years, equivalent to 5 or
more incidents per year.

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007 107

intervals have an increasing number of expected events

until the maximum possible number of incidents per year

is reached. Because assets of different types are involved,

they make separate consequence scales for each of the

direct assets. Table 3 shows the consequence scale

defined for the asset ‘Health records’ in terms of number

of health records affected. If feasible, the consequence

description for an asset may include more than one

measure, e.g. ‘major’ could be the number of disclosed

health records, or the number of deleted records, etc.

Table 4 gives the likelihood scale defined for the target as
such. By using the same scale for all scenarios and

incidents, it is possible to extract combined likelihood

values as shown later in the risk estimation step.

Table 3 Consequence scale for ‘health records’.

Table 4 Likelihood scale.

Finally, the representatives of the client need to

define the risk evaluation criteria, the criteria which

assert whether a risk to an asset is acceptable or whether

it is necessary to evaluate possible treatments for it. They
define these criteria by means of a risk evaluation matrix

for each asset. The security analysis leader draws the

matrix for the asset ‘Health records’ on a blackboard. It

has likelihood and consequence values as its axes so that

a risk with a specific likelihood and consequence will

belong to the intersecting cell. Based on a discussion in

the group, the security analysis leader marks the cells in

the matrix as ‘acceptable’ or ‘must be evaluated’. The

resulting risk evaluation matrix is shown in Table 5, and

the participants decide to let this matrix cover the other

assets as well.

After completing this task for all assets the analysts

and the participants have the framework and vocabulary

they need to start identifying threats (a potential cause

of an unwanted incident [5]), vulnerabilities (weaknesses

which can be exploited by one or more threats [5]),

unwanted incidents and risks, and can move on to the

next step.

Step 3 — summary
Tasks:

x the client approves target descriptions and asset

descriptions,

x the assets should be ranked according to importance,

x consequence scales must be set for each asset within

the scope of the analysis,

x a likelihood scale must be defined,

x the client must decide risk evaluation criteria for each

asset within the scope of the analysis.

Participants:

x the same as in the previous meeting, but, since this step

sets the boundaries for the further analysis, it is

important that the relevant decision-makers are

present.

5. Step 4 — risk identification
To identify risks CORAS makes use of a technique called

structured brainstorming. Structured brainstorming may be

understood as a structured ‘walk-through’ of the target of

analysis and is carried out as a workshop. The main idea of

structured brainstorming is that since the analysis par-

ticipants represent different competences, backgrounds and

interests, they will view the target from different perspec-

tives and consequently identify more, and possibly other,

risks than individuals or a more homogeneous group would

have managed.

The findings from the brainstorming are documented

with the CORAS security risk modelling language. We will

now exemplify how we model risks with the CORAS

language, using the symbols presented in Fig 7.

Consequence value Description
Catastrophic 1000+ health records (HRs) are affected

Major 100-1000 HRs are affected

Moderate 10-100 HRs are affected

Minor 1-10 HRs are affected

Insignificant No HR is affected

Likelihood
value Description3

Certain Five times or more per year (50-*: 10y = 5-*: 1y)

Likely Two to five times per year (21-49: 10y = 2,1-4,9: 1y)

Possible Once a year (6-20: 10y = 0,6-2: 1y)

Unlikely Less than once per year (2-5: 10y = 0,2-0,5: 1y)

Rare Less than once per ten years (0-1:10y = 0-0,1:1y)

Table 5 Risk evaluation matrix.

Consequence
Insignificant Minor Moderate Major Catastrophic

Fr
eq

ue
nc

y

Rare Acceptable Acceptable Acceptable Acceptable Must be evaluated

Unlikely Acceptable Acceptable Acceptable Must be evaluated Must be evaluated

Possible Acceptable Acceptable Must be evaluated Must be evaluated Must be evaluated

Likely Acceptable Must be evaluated Must be evaluated Must be evaluated Must be evaluated

Certain Must be evaluated Must be evaluated Must be evaluated Must be evaluated Must be evaluated

3 50-*:10y is short for 50 or more incidents per 10 years, equivalent to 5 or
more incidents per year.

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007106

4. Step 3 — approval
The last of the preparatory steps is the approval step. The

approval is often conducted as a separate meeting, but may

also take place via e-mail. The main goal is to finalise the

documentation and characterisation of target and assets,

and get this formally approved by the client. At the end of

this meeting there should be a document (possibly with a list

of required changes) to which all parties agree and commit.

The approval also involves defining consequence scales (for

each asset) and a likelihood scale. Multiple consequence

scales are used when it is difficult or inappropriate to

measure damage to all assets according to the same scale,

e.g. it is easier to measure ‘income’ in monetary values than

‘company brand’.

There should only be one likelihood scale appropriate for

the analysis scope, e.g. based on a time-interval (years,

weeks, hours, etc) or probabilities. The last activity of the

approval is to decide upon the risk evaluation criteria. The

criteria states which level of risk the client accepts for each

of the assets.

The security analysis leader has updated the

presentation from the last meeting based on comments

from the other participants, and the target and asset

descriptions are now approved. Based on the discussions

in the first two meetings and issues identified in the high-

level analysis, it is decided to narrow the scope of the

analysis, and agree upon the following target definition.

The target of analysis will be the availability of the

telecardiology service, and confidentiality and

integrity of health records and medical data in

relation to use of the service and related equipment.

The indirect asset ‘Public’s trust in system’ is to be

kept outside the scope.

A risk is the potential for an unwanted incident to

have an impact upon objectives (assets) [4], or in other

words to reduce the value of at least one of the identified

assets. Often the client accepts some risks that are not

judged to be critical rather than eliminating or reducing

them. This may be because of shortage of resources to

implement changes, conflicting concerns, or the

treatment costs will be greater than the benefits. As a

first step towards distinguishing risks that can be

accepted from those that cannot, the representatives

from the client are asked to rank the assets according to

their importance (1 = very important, 5 = minor impor-

tance) and fill in the asset table (Table 2). Then the final

treatment step can address the risks for the most

important asset first.

Having finished the asset table, they go on to define

the likelihood scale (a general description of frequency or

probability [4]) of which incidents occur, and the impact

or consequence they have on the assets. The analysts

initiate the discussion by suggesting a scale of likelihood

based on the following rule of thumb — the lower

incident likelihood ‘rare’ is set to be a maximum of one

occurrence during the target’s lifetime; the remaining

Table 1 High-level risk table.

Who/what causes it? How? What is the incident? What does it harm? What makes it possible?

Hacker Breaks into the system and steals health records Insufficient security

Employee Sloppiness compromises confidentiality of health

records

Insufficient training

Eavesdropper Eavesdropping on dedicated connection Insufficient protection of connection

System failure System goes down during examination Unstable connection/immature technology

Employee Sloppiness compromises integrity of health record Prose-based health records (i.e. natural language)

Network failure Transmission problems compromise integrity of

medical data

Unstable connection/immature technology

Employee Health records leak out by accident —

compromises their confidentiality and damages

the trust in the system

Possibility of irregular handling of health records

threat

(accidental)

threat

(deliberate)

threat

(non-human)

threat

scenario

asset

unwanted

incident

vulnerability

Table 2 Asset table.

Asset Importance Type

Health records 2 Direct asset

Provision of

telecardiology service

3 Direct asset

Public’s trust in system (Scoped out) Indirect asset

Patient’s health 1 Indirect asset

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007 107

intervals have an increasing number of expected events

until the maximum possible number of incidents per year

is reached. Because assets of different types are involved,

they make separate consequence scales for each of the

direct assets. Table 3 shows the consequence scale

defined for the asset ‘Health records’ in terms of number

of health records affected. If feasible, the consequence

description for an asset may include more than one

measure, e.g. ‘major’ could be the number of disclosed

health records, or the number of deleted records, etc.

Table 4 gives the likelihood scale defined for the target as
such. By using the same scale for all scenarios and

incidents, it is possible to extract combined likelihood

values as shown later in the risk estimation step.

Table 3 Consequence scale for ‘health records’.

Table 4 Likelihood scale.

Finally, the representatives of the client need to

define the risk evaluation criteria, the criteria which

assert whether a risk to an asset is acceptable or whether

it is necessary to evaluate possible treatments for it. They
define these criteria by means of a risk evaluation matrix

for each asset. The security analysis leader draws the

matrix for the asset ‘Health records’ on a blackboard. It

has likelihood and consequence values as its axes so that

a risk with a specific likelihood and consequence will

belong to the intersecting cell. Based on a discussion in

the group, the security analysis leader marks the cells in

the matrix as ‘acceptable’ or ‘must be evaluated’. The

resulting risk evaluation matrix is shown in Table 5, and

the participants decide to let this matrix cover the other

assets as well.

After completing this task for all assets the analysts

and the participants have the framework and vocabulary

they need to start identifying threats (a potential cause

of an unwanted incident [5]), vulnerabilities (weaknesses

which can be exploited by one or more threats [5]),

unwanted incidents and risks, and can move on to the

next step.

Step 3 — summary
Tasks:

x the client approves target descriptions and asset

descriptions,

x the assets should be ranked according to importance,

x consequence scales must be set for each asset within

the scope of the analysis,

x a likelihood scale must be defined,

x the client must decide risk evaluation criteria for each

asset within the scope of the analysis.

Participants:

x the same as in the previous meeting, but, since this step

sets the boundaries for the further analysis, it is

important that the relevant decision-makers are

present.

5. Step 4 — risk identification
To identify risks CORAS makes use of a technique called

structured brainstorming. Structured brainstorming may be

understood as a structured ‘walk-through’ of the target of

analysis and is carried out as a workshop. The main idea of

structured brainstorming is that since the analysis par-

ticipants represent different competences, backgrounds and

interests, they will view the target from different perspec-

tives and consequently identify more, and possibly other,

risks than individuals or a more homogeneous group would

have managed.

The findings from the brainstorming are documented

with the CORAS security risk modelling language. We will

now exemplify how we model risks with the CORAS

language, using the symbols presented in Fig 7.

Consequence value Description
Catastrophic 1000+ health records (HRs) are affected

Major 100-1000 HRs are affected

Moderate 10-100 HRs are affected

Minor 1-10 HRs are affected

Insignificant No HR is affected

Likelihood
value Description3

Certain Five times or more per year (50-*: 10y = 5-*: 1y)

Likely Two to five times per year (21-49: 10y = 2,1-4,9: 1y)

Possible Once a year (6-20: 10y = 0,6-2: 1y)

Unlikely Less than once per year (2-5: 10y = 0,2-0,5: 1y)

Rare Less than once per ten years (0-1:10y = 0-0,1:1y)

Table 5 Risk evaluation matrix.

Consequence
Insignificant Minor Moderate Major Catastrophic

Fr
eq

ue
nc

y

Rare Acceptable Acceptable Acceptable Acceptable Must be evaluated

Unlikely Acceptable Acceptable Acceptable Must be evaluated Must be evaluated

Possible Acceptable Acceptable Must be evaluated Must be evaluated Must be evaluated

Likely Acceptable Must be evaluated Must be evaluated Must be evaluated Must be evaluated

Certain Must be evaluated Must be evaluated Must be evaluated Must be evaluated Must be evaluated

3 50-*:10y is short for 50 or more incidents per 10 years, equivalent to 5 or
more incidents per year.

Step 3 – Prioritize assets, create
scales for consequence and
likelihood values, create risk
evaluation matrix.

Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

CORAS (Overview)

20

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007110

people without the required competence become
responsible for critical changes. This may lead to
misconfiguration of the system, which again may slow it
down. A slow system may make it impossible to set a
patient’s diagnosis, and also the ability to provide a
telecardiology service.

Step 4 — summary
Tasks:

x the initial threat diagrams should be completed with
identified threats, vulnerabilities, threat scenarios and
unwanted incidents.

People that should participate:

x security analysis leader (required),

x security analysis secretary (required),

x representatives of the client:

— decision makers (optional — because this workshop
often has a technical focus and the decision makers’
competence is more relevant in the next step),

— technical expertise (required),

— users (required) .

Modelling guideline:

x threat diagrams:

— use the region from the asset diagram and add more
regions if necessary,

— model different kinds of threats in separate
diagrams, e.g. deliberate sabotage in one diagram,
mistakes in an other, environmental in a third, etc (the
ISO/IEC standard [5] contains a useful classification) —
this makes it easier to generalise the risks, e.g. ‘these
risks are caused by deliberate intruders’ or ‘these risks
are caused by human errors’,

— threats are placed to the left in the region, while
threats that can be classified as external (hackers,
intruders, etc) are placed outside the region,

— assets are listed to the right, outside the region,

— unwanted incidents are placed within the region in
relation to the assets on which they have an impact,

— assets that are not harmed by any incidents are
removed from the diagram,

— add threat scenarios between the threats and the
unwanted incidents in the same order as they occur in
real time (i.e. in a logical sequence),

Fig 11 Final threat diagram — accidental actions.

insufficient
training

prose-based
health records

insufficient
access control

possibility of
irregular handling
of health records

lack of
competence

no input
validation

health
records

provision of
telecardiology

service

patient’s
health

health records
sent to

unauthorised
people

health record
copies stored on
local computer

wrong input in
health record

misconfiguration
of system

GP

IT
personnel

compromises
integrity of

health records

compromises
confidentiality

of health records

slow system

patient is
given wrong

diagnosis

unable to set
diagnosis due
to slow system

telecardiology
service

Step 4 – Create threat
diagrams through structured
brainstorming (workshop).

Step 5 – Estimate risks
(consequence and likelihood)

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007 111

— insert the vulnerabilities before the threat scenario
or unwanted incident to which they lead, e.g. a
vulnerability called ‘poor back-up solution’ is typically
placed before the threat scenario ‘the back-up solution
fails to run the application database correctly’.

6. Step 5 — risk estimation
When the threat scenarios, unwanted incidents, threats and
vulnerabilities are properly described in threat diagrams it is
time to estimate likelihood values and consequences. This is
typically done in a separate workshop. The values are used to
compute the risk value which decides whether the risk
should be accepted or evaluated for treatments. The
participants in the workshop provide likelihood estimates for
each threat scenario in the threat diagrams. For scenarios
that are difficult to estimate, the analysis leader gives
suggestions based on historical data like security incident
statistics or personal experience. The likelihood of the threat
scenarios are used to extract a combined likelihood for
unwanted incidents. Consequences are estimated for each
‘unwanted incident — asset’ relation. The consequence
value is taken from the consequence scale of the asset
decided in Step 3. In this workshop it is especially important
to include people with the competence needed to estimate
realistic likelihoods and consequences, meaning that
technical expertise, users and decision makers must be
included.

The analysis leader organises the estimation as a
separate workshop where the input is the threat diagrams
from the previous workshop. In this workshop it is
especially important to include users, technical experts
and decision makers to obtain estimates that are as
correct as possible. The analysis participants decide that
‘most likely’ estimates will provide more realistic risk
values than ‘worst case’ estimates. Firstly, they provide as
many estimates as possible for the threat scenarios which
help estimating the likelihood of the unwanted incidents
(if this cannot be established by other means). Secondly,
the consequences of the unwanted incidents for each
harmed asset are estimated. The estimates are docu-
mented by annotating the diagrams as shown in Fig 12
— further details can be specified in a table.

There are different ways of computing the likelihood
of an incident that may be caused by more than one
threat scenario. If the estimates are suitable for
mathematical calculations a computerised tool may be
used. Since the likelihood scale in our case is in the form
of intervals, the analysis leader decides to use an informal
method that is quite straightforward and transparent.
The threat scenario ‘Health records sent out to
unauthorised people’ and ‘Health record copies stored on
local computer’ can both lead to ‘Compromises
confidentiality of health records’. Table 6 shows how the
combined likelihood is estimated. The technique is
informal, but suitable for the creative structured

Fig 12 Threat diagram with likelihood and consequence estimates.

insufficient
training

prose-based
health records

insufficient
access control

possibility of
irregular handling
of health records

lack of
competence

no input
validation

health
records

provision of
telecardiology

service

patient’s
health

health records sent to
unauthorised

people
[rare]

health record
copies stored on
local computer

[unlikely]

wrong input in
health record

[possible]

misconfiguration
of system
[possible]

GP

IT
personnel

compromises
integrity of

health records
[possible]

compromises
confidentiality

of health records
[rare]

slow system
[possible]

patient is
given wrong

diagnosis
[unlikely]

unable to set
diagnosis due
to slow system

[likely]

telecardiology
service

moderate

moderate

moderate

major

catastrophic

Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

CORAS (Overview)

21

Step 6 – Risk evaluation,
estimates are confirmed or
adjusted.

Step 7 – Risk treatment

Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007112

brainstorming setting. For more precise calculation of
probabilities fault tree analysis (FTA)[6] may be used. It is
of course important that the combined estimates reflect
reality, meaning that the combined estimates should be
presented to the participants for validation.

In this case, the participants reject the suggested
estimate for ‘Compromises confidentiality of health
records’, arguing that the likelihood is less than ‘unlikely’
and adjust it to ‘rare’.

Step 5 — summary
Tasks:

x every threat scenario must be given a likelihood
estimate and unwanted incident likelihoods are based
on these,

x every relation between an unwanted incident and an
asset must be given a consequence estimate.

People that should be present:

x security analysis leader (required),

x security analysis secretary (required),

x representatives of the client:

— decision makers (required),

— technical expertise regarding the target (required),

— users (required).

Modelling guideline:

x risk estimation on threat diagrams:

— add likelihood estimates to the threat scenarios,

— add likelihood estimates to the unwanted incidents,
based on the threat scenarios,

— annotate each unwanted incident-asset relation
with a consequence taken from the respective asset’s
consequence scale.

7. Step 6 — risk evaluation
The risk evaluation consists of two activities. Firstly, the
analysis secretary uses the likelihood and consequence
estimates to compute the risk values and to place the risks in
the risk matrix. Secondly, the resulting risk matrices are
presented to the client for inspection. This presentation may
be given in a separate meeting or included in the treatment
workshop (Step 7).

In our case the risk value is determined by the risk
evaluation matrix. From the four unwanted incidents in
the threat diagram, the analysis secretary extracts five
risks. ‘Compromising the confidentiality of health
records’ (CC1) may affect health records. ‘Compromising
the integrity of health records’ may also harm health
records (CI1), in addition to patient’s health if it
contributes to a faulty diagnosis (PR1). Finally, ‘slow
system’ may slow down an examination (SS2) and harm
the patient’s health (SS1). Only CC1 is within acceptable
risk levels, the rest need further evaluation. Table 7 shows
the risks placed in the risk evaluation matrix.

Table 7 Risk evaluation matrix with risks consequence.

The analysis leader gives the participants an oppor-
tunity to adjust likelihood and consequence estimates,
and risk acceptance levels, to make sure that the results
reflect reality as much as possible.

The participants request an overview of the risks.
They want to know who, or what, is initiating them and
which assets they harm. The analysis secretary models the
risks with their associated risk values in a risk diagram
according to the guidelines (see summary). The final risk
diagram for unwanted incidents accidentally caused by
employees is shown in Fig 13. Since the risk of
compromising the confidentiality of health records is
within the acceptable risk levels it will not be assessed in
the treatment identification.

Step 6 — summary
Tasks:

x likelihood and consequence estimates should be
confirmed or adjusted,

x the final adjustments of the acceptable area in the risk
matrices should be made (if needed),

x an overview of the risk may be given in a risk diagram.

Table 6 Combined likelihood estimates.

Threat scenario Likelihood Unwanted
incident

Combined
likelihood

Health records
sent out to
unauthorised
people

Rare (0-1:10y)

Compromises
confidentiality
of health records

(0-1:10y)+
(2-5:10y)=
(2-6:10y)
Some overlap
between
unlikely and
possible, but it
fits best in the
unlikely interval.

 Health record
copies stored on
local computer

Unlikely
(2-5:10y)

Consequence

Li
ke

lih
oo

d

Insignificant Minor Moderate Major Catastrophic

Rare CC1

Unlikely PR1

Possible CI1, SS2

Likely SS1

Certain

Model-based security analysis in seven steps — a guided tour to the CORAS method

BT Technology Journal • Vol 25 No 1 • January 2007114

x extend the training programme for practitioners by
1-2 days, with a special focus on security aspects,

x revise the list of people that have maintenance
access, and restrict access to only the users that
have competence on critical configuration tasks.

When the final results from the analysis are to be
presented to the client and other interested parties, an
overview of the risks and the proposed treatments is
useful. In our case the treatment overview diagram of Fig
15 is used for this purpose.

Step 7 — summary
Tasks:

x add treatments to threat diagrams,

x estimate the cost/benefit of each treatment and decide
which ones to use,

x show treatments in risk overview diagrams.

People that should be present:

x security analysis leader (required),

x security analysis secretary (required),

x representatives of the client:

— decision makers (required),

— technical expertise (required),

— users (required).

Modelling guidelines:

x treatment diagrams:

— use the threat diagrams as a basis and annotate all
arrows from unwanted incidents to assets with risk
icons, showing only the unacceptable risks,

Fig 14 Treatment diagram.

insufficient
training

prose-based
health records

insufficient
access control

lack of
competence

no input
validation

health
records

provision of
telecardiology

service

patient’s
health

extend training
programme
(1 - 2 days)

health record
copies stored on
local computer

wrong input in
health record

misconfiguration
of system

GP

IT
personnel

compromises
integrity of

health records

slow system

patient is
given wrong

diagnosis

unable to set
diagnosis due
to slow system

telecardiology
service

SS1

SS2

PR1

CI1

revise access
lists

Attack trees

Represent attacks against the system in a tree structure, with the
goal as the root node and different ways of achieving that goal as
leaf nodes.

22

Attack Trees

23

Open Safe

Pick lock Learn combo Cut open Install
improperly

Find written
combo

Get combo
from target

Threaten Blackmail Eavesdrop Bribe

Listen to
conversation

Get target to
state combo

Attack Trees

24

Open Safe

Pick lock Learn combo Cut open Install
improperly

Find written
combo

Get combo
from target

Threaten Blackmail Eavesdrop Bribe

Listen to
conversation

Get target to
state combo

and

Attack Trees

25

Open Safe

Pick lock Learn combo Cut open Install
improperly

Find written
combo

Get combo
from target

Threaten Blackmail Eavesdrop Bribe

Listen to
conversation

Get target to
state combo

and

P I

I P I I

P I

P I I P

P

Attack Trees

26

Open Safe

Pick lock Learn combo Cut open Install
improperly

Find written
combo

Get combo
from target

Threaten Blackmail Eavesdrop Bribe

Listen to
conversation

Get target to
state combo

and

P I

I P I I

P I

P I I P

P

$20 $40

$60 $20 $100 $60

$75 $20

$20 $30 $10 $100

$10

Attack Trees

•  We can annotate the attack tree with many different kind of
Boolean and continuous values:
•  “Legal” versus “Illegal”

•  “Requires special equipment” versus “No special equipment”

•  Probability of success, likelihood of attack, etc.

•  Once we have annotated the tree we can query it:
•  Which attacks cost less than $10?

•  Legal attacks that cost more than $50?

•  Would it be worth paying a person $80 so they are less susceptible
to bribes? (In reality you need to also consider the probability of success)

27

Attack Trees

•  First you identify possible attack goals.
•  Each goal forms a separate tree.

•  Add all attacks you can think of to the tree.
•  Expand the attacks as if they were goals downwards in the tree.

•  Let somebody else look at your tree, get comments from
experts, iterate and re-iterate.

•  Keep your trees updated and use them to make security
decisions throughout the software life cycle.

28

Software Development Life Cycle

29

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Software Development Life Cycle

30

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Software Development Life Cycle

31

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Software development process

•  The software development life cycle that we have shown here
is generic, and can be modified to fit into any development
process
•  Iterative (SCRUM, Kanban, etc)

•  Waterfall

•  So adopting a secure software development process entails
adding the security touchpoints discussed.

•  Examples of formal development processes that include
security touchpoints are: SDL, TSP, CLASP

32

SECURITY DEVELOPMENT
LIFECYCLE (SDL)

33

Security Development Lifecycle (SDL)

If a software development project is determined to be subject to
the security development lifecycle (SDL) then the team must
successfully complete sixteen mandatory security activities to
comply with the Microsoft SDL process.

-Simplified Implementation of the Microsoft SDL

34

SDL - Training

Pre-SDL: Security training
•  All members must receive appropriate training to stay

informed about security basics and recent trends in security
and privacy.

•  Topics include:
•  Secure design (e.g. secure defaults)

•  Threat modeling (e.g. design implications)

•  Secure coding (e.g. buffer overruns, cross-site scripting)

•  Security testing (e.g. difference between security and functional test)

•  Privacy (e.g. types of privacy-sensitive data)

•  This is only the baseline training, specialization and advanced
training may be necessary.

35

SDL – Requirements

Phase 1: Requirements

•  Security and privacy needs to be identified “up front”

•  Requirement analysis at project inception includes specification of
security requirements for the application as it is designed to run in its
planned operational environment.

•  A project team must defined quality gates (e.g. all compiler warnings
must be fixed before committing code), these are defined for each
phase of the development and are negotiated with a security advisor.

•  Bug bars must be defined which can be seen as quality gates for the
entire project, e.g. no known vulnerabilities in the application with a
“critical” or “important” rating at time of release.

36

SDL - Requirements

•  Security risk assessments and Privacy risk assessments:
•  Identify functional aspects of the software that require deep review.

•  Examples of what the assessments must include:
•  Which portions of the project will require security design reviews

before release?

•  Which portions of the project will require penetration testing by a
mutually agreed upon group that is external to the project team?

•  What is the privacy impact rating?
•  P1: High privacy risk, e.g. installs software

•  P2: Moderate privacy risk, e.g. one-time user initiated data-transfer

•  P3: Low privacy risk, e.g. no anonymous or personal data is transferred

37

SDL - Design

Phase 2: Design
•  All design specifications should describe how to securely

implement all functionality provided by a given feature or
function.

•  Attack surface reduction (giving attackers less opportunity to exploit
a potential weak spot).

•  Threat modeling (think risk analysis from a defensive position) of
components or features that have meaningful security risks (can
be defined by the security risk assessment during requirements).

38

SDL - Implementation

Phase 3: Implementation
•  Publish a list of approved tools and their associated security

checks, such as compilers/linker options and warnings.

•  List is to be approved by external security advisor.
•  Teams should analyze all functions and APIs that will be used

in conjunction with a software development project and
prohibit those that are determined to be unsafe.

•  Once a prohibited list is defined, all code should be scanned
for these functions and APIs and modified accordingly.

•  Static analysis of code should be performed.

39

SDL - Verification

Phase 4: Verification
•  Dynamic program analysis, monitor application problems with

with memory corruption, user privilege issues, etc.

•  Fuzz testing, deliberately introduce malformed or random data
to an application during dynamic analysis.

•  Update threat model and attack surface analysis, account for
any design or implementation changes to the system, and
assure that any new threats/attack are reviewed and mitigated.

40

SDL - Release

Phase 5: Release
•  An incident response plan must be in place:

•  A first point of contact in an emergency.

•  On-call contacts with decision-making authority that are available
24-hours a day.

•  Security servicing plans for code inherited from other groups in the
organization.

•  Security servicing plans for third-party code (and if appropriate the
right to make changes).

41

SDL - Release

Final security review: Includes an examination of threat models, tool
output, performance against quality gates and bug bars.

•  Pass FRS – Good to go.

•  Pass FSR with exceptions – Issues that can be fixed in the next release.

•  FSR with escalation – Go back and address whatever SDL requirement that
is not fulfilled or escalate to executive management for decision.

•  Release to manufacturing (RTM) or release to web (RTW) conditional
on FSR. If at least one component has privacy rating P1 then a privacy
advisor must certify that the privacy requirements are satisfied.

•  All specifications, code, binaries, threat models, plans, etc. must be
archived so that service can be done on the product at a later stage.

42

SDL – Optional security activities

•  Security advisors can request that for some critical software
additional activities are completed, e.g.:
•  Manual code review

•  Penetration testing

•  Vulnerability analysis of similar applications

•  SDL is not a “one-size-fits-all” process, teams must implement
SDL in a fashion that is appropriate to time and resources.

•  There exists variants, such as SDL for Agile.

43

SECURE DESIGN PATTERNS

44

Software Development Life Cycle

45

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Secure design patterns

•  Descriptions or templates describing a general solution to a
security problem that can be applied in many different
situations.

•  The design patterns are meant to eliminate the accidental
insertion of vulnerabilities into code or to mitigate the
consequence of vulnerabilities.

•  Categorized by abstraction: architecture, design or
implementation

46

Categories

•  Architectural-level patterns: Focus on high-level allocation of responsibilities
between different components and define the interaction between those high-
level components.
•  Privilege separation (PrivSep)

•  Design-level patterns: Address problems in the internal design of a single
high-level component.
•  Secure factory

•  Secure chain of responsibility

•  Implementation-level patterns: Low-level security issues, applicable to
specific functions or methods in the system.
•  Secure logger

•  Clear sensitive information

47

Privilege separation (PrivSep)

•  Intent: Reduce the amount of code that runs with special
privilege without affecting or limiting the functionality of the
program.

•  Motivation: In many applications, a small set of simple
operations require elevated privileges, while a much larger set
of complex and security error-prone operations can run in the
context of normal privileged user.

48

Open	 socket	 and	
listen	 for	 connec>ons	

Privilege separation (PrivSep)

49

root Request from unauthorized user

Spawn	 a	 child	 process	
that	 has	 least	
possible	 privilege	

root

Authen>cate	 (complex	
code)	

Unprivileged

Spawn	 a	 child	 with	
the	 privileges	 of	 the	
authorized	 user	

root
Do	 some	 work	 as	 user	

User

Return identity

•  The majority of the code is run
without elevated privileges.

•  If there is a vulnerability and
somebody gets control of the
process, then they are confined
within the same level of
privilege.

•  Extra testing, verification,
reviews etc. can be focused on
the code that runs with elevated
privileges.

50

Authen>cate	 (complex	 code)	

Unprivileged

Do	 some	 work	 as	 user	

User

Open	 socket	 and	 listen	
for	 connec>ons	

root

Spawn	 a	 child	 process	
that	 has	 least	 possible	
privilege	

root

Spawn	 a	 child	 with	 the	
privileges	 of	 the	
authorized	 user	

root

Privilege separation (PrivSep)

Secure Factory

•  Intent: Separate the security dependent logic involved in
creating (or selecting) an object from the basic functionality of
the created (or selected) object.

•  Motivation: An application may make use of an object whose
behavior is dependent on the privileges of the user running the
application.

51

Secure Factory

52

AbstractSecureFactory
+getInstance() : AbstractSecureFactory
+getObject(givenCredentials : SecurityCredentials) : SomeObject

ConcreteteSecureFactory1
+getObject(givenCredentials : SecurityCredentials) : SomeObject

ConcreteteSecureFactory2
+getObject(givenCredentials : SecurityCredentials) : SomeObject

Getting SomeObject is done by making the call:
AbstractSecureFactory.getInstance().getObject(securityCredentials)

The returned object, SomeObject, is an object that operates with the correct privileges.

Secure Factory

•  Inside the factory:

53

1.  Using the current concrete implementation of AbstractSecureFactory

2.  Look at security credentials that were passed in the call

3.  Create an instance of the appropriate concrete version of SomeObject

4.  Further specialise settings in SomeObject

SomeObject

LowPrivilegeSomeObject

MidPrivilegeSomeObject

HighPrivilegeSomeObject

Secure Factory

54

•  The caller and SomeObject does not have to contain logic for checking
privileges. It is always returned by the factory, and the factory picks the
SomeObject with correct behavior.

•  It is easy to change the security credentials by changing which
concrete factory is used. (This is similar to another pattern which we will not
discuss in class).

•  Concrete versions of SomeObject does not have to implement code for
functions that are not callable by the level of privilege to which it is
developed.
•  The LowPrivilegeSomeObject does not need to implement the Write

function.

Secure Chain of Responsibility

•  Intent: Decouple the logic that determines privileges from the
portion of the program that is requesting the functionality.

•  Motivation: Applications sometimes need to allow and disallow
certain functions depending on the role of the user.

55

Secure Chain of Responsibility

56

Manager	
Report	

Generator	

Sale	 Analyst	
Report	

Generator	

Sales	 Intern	
Report	

Generator	

Supply
request
and user
credentials

Handle request Handle request Handle or reject request

Pass request if
credential check
fails

Pass request if
credential check
fails

Secure Chain of Responsibility

•  The selection of functionality is hidden from the caller, it will be
selected based on the user credentials.

•  The caller is not aware of which handler has dealt with the request.

•  Easy to change the behavior of the system (add/remove handlers).
Can even be done dynamically at runtime by changing the links.

57

Manager	
Report	

Generator	

Sale	 Analyst	
Report	

Generator	

Sales	 Intern	
Report	

Generator	

Supply request
and user
credentials

Handle request Handle request Handle or reject request

Pass request if credential
check fails

Pass request if credential
check fails

Secure Logger

•  Intent: Prevent an attacker from gathering potentially useful
information about the system from system logs and to prevent
an attacker from hiding their actions by editing system logs.

•  Motivation: System logs usually contain a great deal of
information about the system itself and its users.

58

Secure Logger

59

Application Secure Logger

Log Reader Log Viewer

Log

Protected data

Unprotected data

Secure Logger

•  Standard mechanisms for reading log files will not work as the
data will be somehow encrypted.

•  The reader is necessary to access log files, and it can require
authentication and authorization.

•  Any adversary that gets a hold of log files can not use their
content.

•  (A possible implementation could use existing disk encryption systems).

60

Application Secure Logger

Log Reader Log Viewer

Log

Protected data

Unprotected data

Clear Sensitive Information

•  Intent: It is possible that sensitive information has been stored
in reusable resources after a user session or application has
run. Sensitive information should be cleared from reusable
resources.

•  Motivation: In many cases the action of returning a reusable
resource to the pool of resources simply marks the resource as
available. The contents of the resource are left intact until the
resource is actually reused. This could potentially lead to
leaking of private information.

(Resources include files, memory allocations, etc.)

61

Clear Sensitive Information

62

Application Pool

Scrub data Release data Return to pool

Get resource

Do not simply release back

Clear Sensitive Information

63

ClientInfo::~ClientInfo() {
 this->ipAddr = 0;

 this->trustLevel = BOGUS;

 this->numFaultyRequests = 0;

}

An example of clearing sensitive information in the destructor of an object. In this
way the information stored in memory is made insensitive before destroying the
object.

Secure Design Patterns

•  Secure design patterns are important for all developers,
regardless of platform or language.

•  Their main purpose is to:
•  Eliminate the accidental insertion of vulnerabilities into code or

to mitigate the consequence of vulnerabilities.

•  Using design patterns you are taking advantage of many years
of learning from mistakes made by others, and you are using
best practices.

•  It also helps when communicating about code with other
developers.

•  There are many more very useful patterns:
•  C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, K. Tagashi.

Secure Design Patterns. Technical Report CMU/SEI-2009-TR-010.

64

Software Development Life Cycle

65

Requirements	

Gather	
requirements	
and	 use	 cases	

Architecture	
and	 Design	

Plan	 how	 the	
system	 shall	
work	 and	 how	
code	 should	 be	

wri;en	

Implementa>on	

Code	 and	
make	 test	
plans	

Verifica>on	

Test	 and	
ensure	 that	
requirements	
and	 design	 are	

fulfilled	

Release	 &	
Maintenance	

Release,	 patch,	
release,	 patch,	

…	

Security requirements
Risk analysis

Risk-based
security tests

Static analysis

Risk analysis and
penetration testing

Misuse cases
CORAS/
Attack Trees

Secure design patterns

SDL

www.liu.se

