Introduction
TDDC90 – Software Security

Ulf Kargén
Department of Computer and Information Science (IDA)
Division for Database and Information Techniques (ADIT)
Agenda

- Why study software security?
- Organization of the course
 - Course contents
 - Prerequisites
 - Lectures overview
 - Labs
 - Reading material

Course leader
Nahid Shahmehri

Course assistant
Ulf Kargén
Case study 1

SQL Slammer

January 2003
The problem

- Stack-based buffer overflow in MS SQL server 2000
 - One UDP packet of 376 bytes let attacker run arbitrary code with privileges
 - Avg. 4000 scan attempts per second; 90% of vulnerable hosts infected in 10 minutes
 - Initial byte 0x04 causes SQL server to generate long registry key

- By supplying a carefully crafted attack packet, an adversary could take over the SQL server process
The damage

- About 75000 machines
 - Bank of America: ATMs unavailable
 - Continental Airlines: delayed and canceled flights
 - City of Seattle: 911 emergency network down

- Similar worms (2003)
 - CSX railways: traffic disruptions for one week
 - Canadian Airlines: canceled flights
 - Businesses, government shut down

- Approximate damages: Way more than $1 billion
Case study 2

Stuxnet
June 2010
The advent of "cyber warfare"?

• Presumably designed to **physically** destroy centrifuges in an Iranian nuclear enrichment facility.

• Used four (4) previously unknown vulnerabilities (zero-days) in Windows to silently infect machines
 • Spread using (among others) infected USB sticks to reach systems not connected to the internet.

• When target system was reached
 • Reprogrammed industrial controllers to spin centrifuges out of control
 • Intercepted communication with control-room to tell operators everything was OK

• Generally believed to have been developed by US and Israeli intelligence agencies
Software security today

• 10-15 years ago: Most attacks still carried out “for fun”
• Today: Attacks almost exclusively motivated by political or economical gains (organized crime, espionage, hacktivism)

• Notable recent attacks/vulnerabilities:
 • HackingTeam 0-days
 • Several previously unknown vulnerabilities (Adobe Flash, Internet Explorer, Windows) complete with exploit code leaked.
 • Stagefright
 • Vulnerability in Android allows attacks by sending a malicious MMS
 • DoS vulnerability in BIND9 DNS server software
 • Runs on about 75% of the world’s DNS severs…
Common types of defects

- Buffer overflows
- Race conditions
- Encoding bugs
- Double free
- Integer overflows
- Memory leaks
- Format string bugs
- Cross-site scripting
- …

- There are lots of different kinds of defects!
- And those are only the kinds we know of…
How common are vulnerabilities
Software development today

• Developers are concerned with functionality, not with security
 • Security is often an afterthought and an add-on feature
 • Developers often don’t know a lot about security
 • Security principles are often not followed

• Customers don’t require security
 • Customers are often not aware of risks and threats
 • Security costs a lot but provides no direct benefits

• Software is **big and complex**
What can we do?
Secure software development

• Create **security awareness**

• Software development with **security in mind**

• Articulated **security requirements**

• Security in the **specification, architecture and design**

• Secure coding **guidelines and patterns**

• Independent **review and evaluation**
TDDC90 topics at a glance

• Create **security awareness**
• Software development with **security in mind**
 - Common vulnerabilities in programs written in C/C++, attack methods and mitigations
 - Web security: Common vulnerabilities and attacks

• Articulated **security requirements**
• Security in the **specification, architecture and design**
• Secure coding **guidelines and patterns**
 - Secure software development processes
 - Security requirements
 - Security modelling

• Independent **review and evaluation**
 - Code reviews
 - Static analysis
 - Software accreditation
 - Security testing
Organization of the course
Organization

- 10 lectures
 - One industry guest lecture
- 3 mandatory labs
 - Pong – the insecure ping
 - Static analysis
 - Web security
- Examination:
 - Written exam (3 hp)
 - Labs (3 hp)
Prerequisites

• Required:
 • Basic computer security course
 • Programming experience
 • Course in software engineering

• Recommended:
 • Operating systems and assembly programming basics
 • Some prior experience with C-programming
 • Basic course in logic
 • Basic web programming
 (HTML, JavaScript, some server-side language)
Lectures

• Secure software development (1 lecture)
 Given by Marcus Bendtsen
 • Secure software development processes
 • Secure design patterns
 • Modeling and risk analysis

• Vulnerabilities and exploits (2 lectures)
 Given by Ulf Kargén
 • Common vulnerabilities in C/C++ programs
 • Known attack techniques
 • OS and compiler mitigations
Lectures (continued)

• Code reviews (1 lecture)
 Given by Kristian Sandahl
 • Software inspections and other techniques

• Static analysis (2 lectures)
 Given by Ahmed Rezine
 • Introduction to static analysis
 • Abstract interpretation
 • Symbolic execution
Lectures (continued)

• Web security (1 lecture)
 Given by Marcus Bendtsen
 • Common vulnerabilities in web applications
 • Attack techniques and protections

• Industry guest lecture
 Given by Susanne Frank, Combitech
 • Software security accreditation
Lectures (continued)

• Security testing and course wrap-up (1 lecture)
 Given by Ulf Kargén
 • Fuzzing, concolic testing
 • Course wrap-up
Labs

- **Pong – the insecure ping**
 - Perform a code review to find vulnerabilities
 - Exploit a buffer overflow to gain root
 - Fix all vulnerabilities

- **Static**
 - Study common static analysis techniques described in the lectures

- **Websec**
 - Deliberately vulnerable web app
 - Study common weaknesses and understand attack techniques
Labs

- Two groups for each lab
 - Different assistants for each lab – see lab page on course web

- Webreg signup deadline **11 November**
 - Unregistered students not allowed to sign up!

- Students are required to work in pairs
 - If you sign up alone, we may randomly group you with another student.

- **Hard** deadline for handing in solutions is **December 16th**
 - Complete all labs at least one week before this to allow time for corrections and re-submission
 - Hand in solutions continuously during the study period – don’t save everything for the last week!
 - Start with labs as early as possible, especially Pong!
Reading material

• No course book (no one book covers all topics in the course)
• Mandatory reading:
 • Papers/articles, web resources, and lecture slides
 • Lectures don’t cover all articles, and vice versa
• Also a list of extra reading for interested students
 • Not needed for exam
Questions?