
Introduction
TDDC90 – Software Security

Ulf Kargén

Department of Computer and Information Science (IDA)

Division for Database and Information Techniques (ADIT)

Agenda

• Why study software security?

• Organization of the course

• Course contents

• Prerequisites

• Lectures overview

• Labs

• Reading material

2

Course leader

Nahid Shahmehri

Course assistant

Ulf Kargén

Case study 1

SQL Slammer

January 2003

The problem

• Stack-based buffer overflow in MS SQL server 2000

• One UDP packet of 376 bytes let attacker run arbitrary code with privileges

• Avg. 4000 scan attempts per second; 90% of vulnerable hosts infected in 10 minutes

• Initial byte 0x04 causes SQL server to generate long registry key

• By supplying a carefully crafted attack packet, an adversary could take over the

SQL server process

The damage

• About 75000 machines

• Bank of America: ATMs unavailable

• Continental Airlines: delayed and canceled flights

• City of Seattle: 911 emergency network down

• Similar worms (2003)

• CSX railways: traffic disruptions for one week

• Canadian Airlines: canceled flights

• Businesses, government shut down

• Approximate damages: Way more than $1 billion

Case study 2

Stuxnet

June 2010

The advent of ”cyber warfare”?

• Presumably designed to physically destroy centrifuges in an Iranian

nuclear enrichment facility.

• Used four (4) previously unknown vulnerabilities (zero-days) in

Windows to silently infect machines

• Spread using (among others) infected USB sticks to reach systems not

connected to the internet.

• When target system was reached

• Reprogrammed industrial controllers to spin centrifuges out of control

• Intercepted communication with control-room to tell operators everything

was OK

• Generally believed to have been developed by US and Israeli

intelligence agencies

Software security today

• 10-15 years ago: Most attacks still carried out “for fun”

• Today: Attacks almost exclusively motivated by political or

economical gains (organized crime, espionage, hacktivism)

• Notable recent attacks/vulnerabilites:

• HackingTeam 0-days

• Several previously unknown vulnerabilities (Adobe Flash, Internet

Explorer, Windows) complete with exploit code leaked.

• Stagefright

• Vulnerability in Android allows attacks by sending a malicious MMS

• DoS vulnerability in BIND9 DNS server software

• Runs on about 75% of the world’s DNS severs…

Common types of defects

• Buffer overflows

• Race conditions

• Encoding bugs

• Double free

• Integer overflows

• Memory leaks

• Format string bugs

• Cross-site scripting

• …

• There are lots of different kinds of defects!

• And those are only the kinds we know of…

How common are vulnerabilities

0

2000

4000

6000

8000

10000

12000
1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

NVD OSVDB CERT/CC

Software development today

• Developers are concerned with functionality, not with security

• Security is often an afterthought and an add-on feature

• Developers often don’t know a lot about security

• Security principles are often not followed

• Customers don’t require security

• Customers are often not aware of risks and threats

• Security costs a lot but provides no direct benefits

• Software is big and complex

What can we do?

Secure software development

• Create security awareness

• Software development with security in mind

• Articulated security requirements

• Security in the specification, architecture and design

• Secure coding guidelines and patterns

• Independent review and evaluation

TDDC90 topics at a glance

• Create security awareness

• Software development with security in mind

 Common vulnerabilities in programs written in C/C++,

attack methods and mitigations

 Web security: Common vulnerabilities and attacks

• Articulated security requirements

• Security in the specification, architecture and design

• Secure coding guidelines and patterns

 Secure software development processes

 Security requirements

 Security modelling

• Independent review and evaluation

 Code reviews

 Static analysis

 Software accreditation

 Security testing

Organization of the course

Organization

• 10 lectures

• One industry guest lecture

• 3 mandatory labs

• Pong – the insecure ping

• Static analysis

• Web security

• Examination:

• Written exam (3 hp)

• Labs (3 hp)

Prerequisites

• Required:

• Basic computer security course

• Programming experience

• Course in software engineering

• Recommended:

• Operating systems and assembly programming basics

• Some prior experience with C-programming

• Basic course in logic

• Basic web programming
(HTML, JavaScript, some server-side language)

Lectures

• Secure software development (1 lecture)
Given by Marcus Bendtsen

• Secure software development processes

• Secure design patterns

• Modeling and risk analysis

• Vulnerabilities and exploits (2 lectures)
Given by Ulf Kargén

• Common vulnerabilities in C/C++ programs

• Known attack techniques

• OS and compiler mitigations

Lectures (continued)

• Code reviews (1 lecture)
Given by Kristian Sandahl

• Software inspections and other techniques

• Static analysis (2 lectures)
Given by Ahmed Rezine

• Introduction to static analysis

• Abstract interpretation

• Symbolic execution

Lectures (continued)

• Web security (1 lecture)
Given by Marcus Bendtsen

• Common vulnerabilities in web applications

• Attack techniques and protections

• Industry guest lecture
Given by Susanne Frank, Combitech

• Software security accreditation

Lectures (continued)

• Security testing and course wrap-up (1 lecture)
Given by Ulf Kargén

• Fuzzing, concolic testing

• Course wrap-up

Labs

• Pong – the insecure ping

• Perform a code review to find vulnerabilities

• Exploit a buffer overflow to gain root

• Fix all vulnerabilities

• Static

• Study common static analysis techniques described in the lectures

• Websec

• Deliberately vulnerable web app

• Study common weaknesses and understand attack techniques

Labs

• Two groups for each lab

• Different assistants for each lab – see lab page on course web

• Webreg signup deadline 11 November

• Unregistered students not allowed to sign up!

• Students are required to work in pairs

• If you sign up alone, we may randomly group you with another

student.

• Hard deadline for handing in solutions is December 16th

• Complete all labs at least one week before this to allow time for

corrections and re-submission

• Hand in solutions continuously during the study period – don’t

save everything for the last week!

• Start with labs as early as possible, especially Pong!

Reading material

• No course book (no one book covers all topics in the course)

• Mandatory reading:

• Papers/articles, web resources, and lecture slides

• Lectures don’t cover all articles, and vice versa

• Also a list of extra reading for interested students

• Not needed for exam

Questions?

