

Introduction

TDDC90 – Software Security

Ulf Kargén

Department of Computer and Information Science (IDA)

Division for Database and Information Techniques (ADIT)

Agenda

- Why study software security?
- Organization of the course
 - Course contents
 - Prerequisites
 - Lectures overview
 - Labs
 - Reading material

Course leader Nahid Shahmehri

Course assistant Ulf Kargén

Case study 1

SQL Slammer

January 2003

The problem

- Stack-based buffer overflow in MS SQL server 2000.
 - One UDP packet of 376 bytes let attacker run arbitrary code with privileges
 - Avg. 4000 scan attempts per second; 90% of vulnerable hosts infected in 10 minutes
 - Initial byte 0x04 causes SQL server to generate long registry key
- By supplying a carefully crafted attack packet, an adversary could take over the SQL server process

The damage

- About 75000 machines
 - Bank of America: ATMs unavailable
 - Continental Airlines: delayed and canceled flights
 - City of Seattle: 911 emergency network down
- Similar worms (2003)
 - CSX railways: traffic disruptions for one week
 - Canadian Airlines: canceled flights
 - Businesses, government shut down
- Approximate damages: Way more than \$1 billion

Case study 2

Stuxnet

June 2010

The advent of "cyber warfare"?

- Presumably designed to physically destroy centrifuges in an Iranian nuclear enrichment facility.
- Used four (4) previously unknown vulnerabilities (zero-days) in Windows to silently infect machines
 - Spread using (among others) infected USB sticks to reach systems not connected to the internet.
- When target system was reached
 - Reprogrammed industrial controllers to spin centrifuges out of control
 - Intercepted communication with control-room to tell operators everything was OK
- Generally believed to have been developed by US and Israeli intelligence agencies

Software security today

- 10-15 years ago: Most attacks still carried out "for fun"
- Today: Attacks almost exclusively motivated by political or economical gains (organized crime, espionage, hacktivism)
- Notable recent attacks/vulnerabilites:
 - HackingTeam 0-days
 - Several previously unknown vulnerabilities (Adobe Flash, Internet Explorer, Windows) complete with exploit code leaked.
 - Stagefright
 - Vulnerability in Android allows attacks by sending a malicious MMS
 - DoS vulnerability in BIND9 DNS server software
 - Runs on about 75% of the world's DNS severs...

Common types of defects

- Buffer overflows
- Race conditions
- Encoding bugs
- Double free
- Integer overflows
- Memory leaks
- Format string bugs
- Cross-site scripting
- •

- There are lots of different kinds of defects!
- And those are only the kinds we know of...

How common are vulnerabilities

Software development today

- Developers are concerned with functionality, not with security
 - Security is often an afterthought and an add-on feature
 - Developers often don't know a lot about security
 - Security principles are often not followed
- Customers don't require security
 - Customers are often not aware of risks and threats
 - Security costs a lot but provides no direct benefits
- Software is big and complex

What can we do?

Secure software development

- Create security awareness
- Software development with security in mind
- Articulated security requirements
- Security in the specification, architecture and design
- Secure coding guidelines and patterns
- Independent review and evaluation

TDDC90 topics at a glance

- Create security awareness
- Software development with security in mind
 - Common vulnerabilities in programs written in C/C++, attack methods and mitigations
 - ✓ Web security: Common vulnerabilities and attacks
- Articulated security requirements
- Security in the specification, architecture and design
- Secure coding guidelines and patterns
 - ✓ Secure software development processes
 - Security requirements
 - Security modelling
- Independent review and evaluation
 - ✓ Code reviews
 - Static analysis
 - ✓ Software accreditation
 - Security testing

Organization of the course

Organization

- 10 lectures
 - One industry guest lecture
- 3 mandatory labs
 - Pong the insecure ping
 - Static analysis
 - Web security
- Examination:
 - Written exam (3 hp)
 - Labs (3 hp)

Prerequisites

Required:

- Basic computer security course
- Programming experience
- Course in software engineering

Recommended:

- Operating systems and assembly programming basics
- Some prior experience with C-programming
- Basic course in logic
- Basic web programming (HTML, JavaScript, some server-side language)

Lectures

- Secure software development (1 lecture)
 Given by Marcus Bendtsen
 - Secure software development processes
 - Secure design patterns
 - Modeling and risk analysis

- Vulnerabilities and exploits (2 lectures)
 Given by Ulf Kargén
 - Common vulnerabilities in C/C++ programs
 - Known attack techniques
 - OS and compiler mitigations

Lectures (continued)

- Code reviews (1 lecture)
 Given by Kristian Sandahl
 - Software inspections and other techniques

- Static analysis (2 lectures)
 Given by Ahmed Rezine
 - Introduction to static analysis
 - Abstract interpretation
 - Symbolic execution

Lectures (continued)

- Web security (1 lecture)
 Given by Marcus Bendtsen
 - Common vulnerabilities in web applications
 - Attack techniques and protections

- Industry guest lecture
 Given by Susanne Frank, Combitech
 - Software security accreditation

Lectures (continued)

- Security testing and course wrap-up (1 lecture)
 Given by Ulf Kargén
 - Fuzzing, concolic testing
 - Course wrap-up

Labs

- Pong the insecure ping
 - Perform a code review to find vulnerabilities
 - Exploit a buffer overflow to gain root
 - Fix all vulnerabilities
- Static
 - Study common static analysis techniques described in the lectures
- Websec
 - Deliberately vulnerable web app
 - Study common weaknesses and understand attack techniques

Labs

- Two groups for each lab
 - Different assistants for each lab see lab page on course web
- Webreg signup deadline 11 November
 - Unregistered students not allowed to sign up!
- Students are required to work in pairs
 - If you sign up alone, we may randomly group you with another student.
- Hard deadline for handing in solutions is December 16th
 - Complete all labs at least one week before this to allow time for corrections and re-submission
 - Hand in solutions continuously during the study period don't save everything for the last week!
 - Start with labs <u>as early as possible</u>, especially Pong!

Reading material

- No course book (no one book covers all topics in the course)
- Mandatory reading:
 - Papers/articles, web resources, and lecture slides
 - Lectures don't cover all articles, and vice versa
- Also a list of extra reading for interested students
 - Not needed for exam

