
Vulnerabilities in C/C++ programs – Part I
TDDC90 – Software Security

Ulf Kargén

Department of Computer and Information Science (IDA)

Division for Database and Information Techniques (ADIT)

Vulnerabilities in C-based languages

 Programs compile directly to machine code

 Explicit control of memory given to programmers

 Optimized for speed – not reliability

 Subtle mistakes can have devastating security implications!

 Understanding of low-level details necessary to take full advantage of language,

and to avoid introducing vulnerabilities

 Easy to make mistakes when coming from e.g. Java!

2

Outline of lectures

First lecture

 Introduction and motivation

 Assembly language primer

 Vulnerabilities and exploits

Second lecture

 More vulnerabilities and exploits

 Writing secure code

 Mitigations

 “Modern” exploit techniques

3

Introduction and motivation

Why look at vulnerabilities in C/C++ code?

C and C++ are old languages with known security problems

 Why not just implement everything in Java / C# / Python and be done with it?

 Some code need to run “close to the metal” (OS kernels, device drivers)

 Performance reasons:

 Web browsers, games, etc.

 Low-powered devices (little RAM, slow CPU): Phones, Tablets, TVs, etc.

 Ultra low-powered devices (“Internet of things”)

 “Green computing”

5

Why look at vulnerabilities in C/C++ code?

6

Why study attack techniques?

 “Know thy enemy”

 How could you possibly protect from attacks if you don’t know what

techniques attackers use?

 Important to be able to tell if a bug has security implications

 Scheduling/prioritizing patches

 Decide what to publish on e.g. public bug trackers

7

Assembly language primer

Linux memory layout and x86 basics

Memory layout of x86 Linux
(What you will use in the Pong lab)

 All processes see 4GB of private continuous virtual

memory. (Mapped by OS to RAM)

 The stack is located at high memory addresses and

grows downwards in memory

 Used for storing local variables of unction calls,

function call parameters, return addresses, etc.

 Main executable (Text), and its Data and BSS segment, is

located in low memory

 The heap is located above the Text, Data, and BSS

segment. Grows upwards in memory.

 Used for dynamically allocated memory (malloc, new)

 Note: x86 is a little-endian architecture: First byte of e.g. a

4-byte word is the least significant byte.

9

Kernel memory

Stack

Text (program code)

Data
(Initialized global variables)

BSS
(Un-initialized global variables)

Heap

Shared library

Shared library

Low memory

0x00000000

High memory

0xFFFFFFFF

Registers on the x86

10

Additional registers

• ESI and EDI

• CS, SS, DS, ES, FS, GS

• EFLAGS

• …

EAX AL AH AX

EBP
Base (frame) pointer

EBX BL BH BX

ECX CL CH CX

EDX DL DH DX

ESP
Stack pointer

EIP
Instruction pointer

 Four general-purpose 4-byte registers

(EAX - EDX)

 Partial registers

• 2 least significant bytes of full register

(nX)

• Bytes 1 and 2 of nX called respectively

nL and nH (Low and High)

Special registers

• ESP – points to topmost element of stack

• EBP – points to current frame (on the

stack), which contains local variables of

one function call. Local variables accessed

relative to EBP.

• EIP – points to the currently executing

instruction

Assembly language mnemonics

Intel style

• opcode destination, source

• mov [esp+4], eax

AT&T (gcc, gdb) style

• opcode source, destination

• movl %eax, 4(%esp)

 mov dst, src Copy the data in src to dst

add/sub dst, src Add/subtract the data in src to the data in dst

and/xor dst, src Bitwise AND/XOR the data in src with the data in dst

push target Push target onto the stack, decrementing ESP

pop target Pop target from the stack, incrementing ESP

lea dst, src Load the address of src into dst

call address Push address of the next instruction onto stack and set EIP to address

ret Pop EIP from the stack

leave Exit a high-level function (copy EPB to ESP, pop EBP from stack)

jcc address Jump to address if condition code cc (e.g. e, ne, ge) is set

jmp address Jump to address

int value Call interrupt of value (0x80 will perform a Linux system call)

Semantics of some important x86 instructions

 push <op>

Equivalent to:

esp = esp – 4

[esp] = <op>

 pop <op>

Equivalent to:

<op> = [esp]

esp = esp + 4

 call <function address>

Instruction for performing a function call.

Pushes return address to stack and

jumps to start of called function.

Equivalent to:

push <address of next instruction>

eip = <function address>

 ret

Used to return from function. Pops return

address from stack and jumps back to

the calling function.

Equivalent to:

pop eip

Access

memory

pointed to

by esp

Function calls on x86 (stdcall)

1. Caller pushes arguments from right to left onto stack

2. Caller issues a ‘call’ instruction – pushes return address and jumps to function start.

3. Function prologue executes

a. Pushes old value of EBP to stack, updates EBP to point to saved EBP on stack

b. Subtracts ESP to allocate space for local variables

4. Function executes

5. Function epilogue executes

a. Puts return value (if any) into EAX register

b. “Deallocates” local variables on stack by increasing ESP

c. Pops saved EBP into EBP

d. Issues a ‘ret’ instruction – pops return address of stack and jumps to that address

6. Caller removes arguments from stack

13

Function calls on x86 (stdcall)
Example

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Caller’s stack frame

 ESP

EBP

Function calls on x86 (stdcall)
Example

Caller’s stack frame

ESP

EBP

input (argument to foo)

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

ESP

EBP

input (argument to foo)

Return address

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

ESP, EBP

input (argument to foo)

Return address

Saved EBP

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

ESP

EBP

input (argument to foo)

Return address

len

buffer

Saved EBP

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

ESP

EBP

input (argument to foo)

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A NUL

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

Return address

Saved EBP ESP, EBP

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

Return address

EBP

ESP

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

EBP

ESP

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

EBP

ESP

.

.

 foo(user_data);

.

.

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

}

Vulnerabilities and exploits

Vulnerabilities and exploits

 Vulnerabilities

 Flaws that makes it possible for a program to fail to meet its security

requirements

 What is an exploit?

 A verb: Exploiting a vulnerability means to take advantage of a vulnerability to

compromise security.

 A noun: An exploit is a procedure or piece of code that performs the above.

 The purpose of an exploit

 Arbitrary code execution – Completely take over program execution to do

anything the attacker wishes.

 Information disclosure – Leak sensitive information, e.g. Heartbleed

 Denial of Service – Disrupt functionality of a service, e.g. crash a web server

 Privilege escalation – Gain higher privileges than what is allowed according

to system policy. May be combined with arbitrary code execution exploits to

completely compromise system.

 Example: Program running as SUID root in Unix, or with

Administrator/SYSTEM privileges in Windows.

25

Vulnerabilities and exploits

 Local and remote exploits

 Local exploit – Physical access to system, or valid remote login

credentials, required for exploit.

 Remote exploit – “Anyone” on e.g. the internet can perform exploit.

Examples: Web server exploitable by external requests.

 Severity of a vulnerability depends on what kind of exploits it

enables

 Remote exploit leading to arbitrary code execution – Really, really bad!

 Local DoS exploit – Not as bad?

 Local code execution exploit without privilege escalation – Meaningless!

26

The “Hello World” exploit
Simple buffer overflow on the stack

Let’s return to our function ‘foo’ from before

 What happens if ‘input’ is longer than 15 bytes?

 Buffer overflows, overwriting return address if

string is long enough.

 Program later crashes when trying to return

to address 0x41414141 (“AAAA”)

 Results in DoS. How to achieve arbitrary

code execution?

27

void foo(char* input)

{

 unsigned int len;

 char buffer[16];

...

 strcpy(buffer, input);

...

Caller’s stack frame

ESP

EBP

input (argument to foo)

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A NUL

A A A A

A A A A

A A A A

A A A A

A A A A

The “Hello World” exploit
Arbitrary code execution

Idea: Include executable machine code in input string, and

set the overwritten return pointer to point to that code.

 Such code is often referred to as “shellcode” –

traditionally often used to open a command shell with

elevated privileges.

 Payload consists of shellocode + padding (some A:s) +

new “return” address

 Note 1: Due to x86 being little-endian, each byte of the

address (here BFFFCD03 in hex) need to be given in

reverse order when crafting the string (i.e.

“\x03\xCD\xFF\xBF”)

 Note 2: Payload must usually not contain any bytes with the

value zero. Recall that zero (NUL) terminates the string.

 Note 3: This payload may not work for ‘foo’ since buffer is

only 16 bytes. Also possible to e.g. put shellcode before

return address on stack, in the caller’s stack frame.

 Problem: The above approach requires that we can

precisely predict absolute address of shellcode on stack.

 Typically not possible in practice!

 28

Return address

len

buffer

Saved EBP

Shellcode

A A A A

A A A A

\x03 \xCD \xFF \xBF

A A

The “Hello World” exploit
Making the exploit reliable: Solution 1 – The NOP sled

To avoid having to know the exact shellcode address, we

can use a NOP sled

 Precede the shellcode with a sequence of NOP

instructions.

 A NOP instruction (hex \x90) does nothing, except

of advancing the instruction counter one byte.

 Point the return address somewhere in the middle of

the NOP sled

 Gives some “wiggle room” – As long as the return

address points somewhere into the NOP sled,

execution will follow the NOPs into the shellcode.

 Drawbacks:

 Requires larger buffers

 Still need to know approximate address of NOP

sled

29

Return address

Saved EBP

Shellcode

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A

NOP NOP NOP NOP

NOP NOP NOP NOP

NOP NOP NOP NOP

The “Hello World” exploit
Making the exploit reliable: Solution 2 – Register trampolines

A more robust solution than the NOP sled is to use

register trampolines (a.k.a. register springs)

 Find a register REG that right before the

function returns points to data that you control.

 Given that function behavior is deterministic, REG

will always point to the same location relative to

the return address on stack.

 Make sure your shellcode starts at just the

location pointed to by REG

 Find an instruction in an executable image

(main executable or shared library) that

performs an indirect jump to address in REG

 Overwrite return address with the address to

the jump instruction.

 When function “returns”, it will jump to the

instruction, which in turn will jump to the

shellcode.

 Obviously not always possible to find suitable

REG and jump instruction.

30

Return address

Saved EBP

Shellcode

A A A A

A A A A

\xD1 \x8C \x04 \08

A A

EAX

…

mov eax, [ecx+8]

jmp eax

…

A A A A

A A A A

Stack-buffer overflow variations

The function may alter parts of the overwritten stack area prior to returning –

Special “tricks” often needed in practice

 Insert code that jumps past altered parts of stack to shellcode

 Put shellcode in environment variables

 Put shellcode in other buffers (e.g. on heap)

 …

If return address cannot be overwritten, other targets are also possible

 Overwrite saved EBP – alters stack frame of calling function

 Overwrite function pointers on stack

 Overwrite other sensitive non-control data (i.e. data that is not a pointer to code)

31

Special case: Off-by-one errors

Special case of stack-based overflows where only a single byte can be written

past buffer bounds – Often more subtle than “regular” buffer overflows.

32

char buffer[100];

if(strlen(input) > 100)

{

 printf(“String too long!”);

 exit(1);

}

strcpy(buffer, input);

Is this safe?

 No! ‘strlen’ does not include the space

needed for the NULL-terminator.

 Sending a 100-character string results in a

NULL-byte being written past end of buffer.

 Could e.g. overwrite least significant byte of

EBP to alter context of calling function – can

lead to arbitrary code execution!

char buffer[100];

if(strlen(input) >= 100)

{

 printf(“String too long!”);

 exit(1);

}

strcpy(buffer, input);

Example:

Should be:

Examples of stack-based buffer overflows

char mapped_path[MAXPATHLEN];

if(!(mapped_path[0] == '/' && mapped_path[1] == '\0'))

 strcat(mapped_path, "/");

strcat(mapped_path, dir);

int resolve_request_filename(char *filename)

{

 char filename[255];

 ...

 if(!strncmp(ptr, thehost->CGIDIR, strlen(thehost->CGIDIR))) {

 strcpy(filename, thehost->CGIROOT);

 ptr += strlen(thehost->CGIDIR);

 strcat(filename, ptr);

 } else {

 strcpy(filename, thehost->DOCUMENTROOT);

 strcat(filename, ptr);

 ...

Real-life overflow in FTP server

Real-life overflow in web server (the pointer ‘ptr’ points to user-controllable data)

Examples of stack-based buffer overflows
A more subtle example

Off-by-one overflow in the wu-ftpd FTP server

/*

 * Join the two strings together, ensuring that the right thing

 * happens if last component is empty, or the dirname is root.

 */

if (resolved[0] == '/' && resolved[1] == '\0')

 rootd = 1;

else

 rootd = 0;

if (*wbuf) {

 if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {

 errno = ENAMETOOLONG;

 goto err1;

 }

 if (rootd == 0)

 (void) strcat(resolved, "/");

 (void) strcat(resolved, wbuf);

Avoiding buffer overflows
Some best practices

 Perform input validation

 Never trust user-supplied data!

 Accept only “known good” instead of using a blacklist

 Always perform correct bounds-checking before copying data to buffers

 Use safe(r) APIs for string operations

 E.g. strncpy(dst, src, len) instead of strcpy(dst, src)

 Beware: strncpy (and strncat) don’t NULL terminate strings if the length of ‘src‘

is larger than or equal to the maximum allowed (i.e. >= ‘len’)

 The following code leads to information leakage if strlen(str) >= 100 (Stack

content beyond ‘buffer‘ is printed, until a zero-byte is encountered) – Can also

lead to code execution under some conditions.

char buffer[100];

strncpy(buffer, str, sizeof(buffer));

...

printf(“%s”, buffer);

Avoiding buffer overflows
Some best practices

 Make sure to terminate strings when using the strn-functions.

 Use strlcpy, strlcat where available. These guarantee correct string termination.

char buffer[100];

strncpy(buffer, str, sizeof(buffer));

buffer[sizeof(buffer) – 1] = 0;

...

printf(“%s”, buffer);

Heap-based buffer overflows

 Often similar causes as stack-based buffer overflows

 Also often exploitable, but different methods compared to

overflows on the stack (no return pointer to overwrite)

 Overwrite function pointers or C++ VTable entries in other

heap-allocated objects

 Overwrite memory allocator metadata

37

Heap-based buffer overflows
Overwriting C++ VTable pointers

Chunks of memory allocated on the heap are often adjacent to each other –

Overflowing from one chunk into another possible

 Possible to gain control by overflowing a heap-allocated buffer and

overwriting function pointers in adjacent object on heap.

 Use e.g. one of previously discussed methods to “find” shellcode in

memory

 (Semi)predicable location on stack or heap + NOP sled

 Register trampolines

 Shell code in environment variable, etc.

 Use of function pointers from heap-allocated memory is common due to

the way polymorphism is implemented in C++

38

Heap-based buffer overflows
Overwriting C++ VTable pointers

 Objects of classes with virtual functions have

an implicit VTable-pointer data member

 The VTable pointer points to a table of

function pointers for the specific class.

 Calls to virtual functions are made by looking

up corresponding function pointer in VTable

during runtime

 Specific class type of object doesn’t need

be statically known during compilation

 Possible to overwrite VTable pointer to point

to a fake VTable using a buffer overflow

 Not as easy as it may seem!

 Need to overwrite with a pointer to a

pointer to desired address

 May still be possible with various “tricks”

39

class MyClass {

 int var_a;

 int var_b;

 virtual void foo();

 virtual void bar();

};

VTable pointer

var_a

var_b

Pointer to MyClass::foo

Pointer to MyClass::bar

Representation of a

MyClass object in memory

Heap-based buffer overflows
Overwriting memory allocator metadata

 The memory allocator organizes memory into chunks of various sizes. Calling

‘malloc’ (C) or ‘new’ (C++) returns one such chunk.

 Allocator maintains a list of free chunks

 Many implementations store a block of metadata at beginning of chunks (just

before the address returned by malloc/new)

 Contains a back and forward pointer used to implement a linked list of free

chunks.

 When a chunk is unlinked from the free-list, allocator must perform:

chunk->back->forward = chunk->forward
chunk->forward->back = chunk->back

 By overwriting back and forward pointers with carefully chosen values, an

attacker can trick the memory allocator into writing an arbitrary value to an

arbitrary address in memory.

 E.g. various function pointers for dynamic loading, global destructors, etc.

 Modern allocators hardened with various integrity checks to avoid these attacks,

but may still be possible to exploit under certain circumstances.

 Also, programs may use custom memory allocators with less protection

40

Other heap-related vulnerabilities

Use-after-free

 Program use stale pointer to heap-allocated memory that has already been freed.

 May lead to information disclosure…

 Attacker can trick program into printing data in freed memory, after it has been re-

allocated to store sensitive data

 …or arbitrary code execution

 Attacker can have program re-allocate freed memory to store attacker-supplied data.

 If program later use a function pointer or C++ VTable entry in freed object, execution

can be redirected by attacker.

Double-free

 Program calls ‘free’ or ‘delete’ on pointer to already freed memory

 Can corrupt memory manager metadata to allow arbitrary code execution

Attacks often requires attacker to set up heap to look in a specific way for exploit to succeed

 “Heap feng shui”

41

Avoiding use-after-free and double-free bugs

 Set pointers to NULL directly after calling free/delete on them to avoid

trivial errors.

 In practice, bugs are often caused by pointer aliasing – several pointers

pointing to the same memory

 Avoid passing around pointers to heap-allocated data between

different modules.

 Using the C++ “Resource Allocation Is Initialization” (RAII) pattern

often avoids passing around heap-allocated data between classes

 Use “smart pointers” with reference counting where applicable, (e.g.

with respect to performance)

42

