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Integer overflows and sign errors 

Adding, subtracting, or multiplying an integer with a too large value can cause it 

to wrap-around 

 Can be used to circumvent input validation to e.g. cause buffer overflows 
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void print_user(char* username) { 

   char buffer[1024]; 

   char* prefix = “User: “; 

   const unsigned int prefix_len = 6; 

 

   unsigned int len = strlen(username); 

 

   // Space required for prefix, username and 

   // string terminator. 

   unsigned int size = prefix_len + len + 1; 

   if(size > 1024) 

       exit_with_error();  // Error, too long string 

 

   strcpy(buffer, prefix);   // Copy prefix 

   strcat(buffer, username); // Concatenate username 

 

   printf(“%s”, buffer); 

} 

What happens if the user supplies 

an extremely long ‘username’ 

here? 

 If username is longer than 

UINT_MAX - 7, an integer 

overflow will occur. 

 The length check will succeed, 

but more than 4GB copied into 

buffer… 

 



Integer overflows and sign errors 

A similar class of vulnerabilities are sign errors – mixing signed and unsigned 

data types in an unsafe way 
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// Reads ‘size’ bytes from file ‘f’ into buffer ‘out’ 

void  

read_from_file(void* out, FILE* f, unsigned int size); 

... 

 

int read_entry(FILE* input)  

{ 

   char buffer[1024]; 

   int len; 

 

   // Read four-byte length field from file into ‘len’ 

   read_from_file(&len, input, 4); 

 

   if(len > 1024) 

       return ERR_CODE; // Error, too long string 

 

   // Read ‘len’ bytes from file into buffer 

   read_from_file(buffer, input, len); 

   ... 

The problem here is that signed 

and unsigned data types are 

mixed. 

 What happens if the length 

field in the file is a negative 

number, e.g. -1? 

 The length check will succeed, 

as -1 < 1024 

 In the call to ‘read_from_file’, 

the ‘len’ variable will be 

interpreted as an unsigned 

data type 

 The 32-bit representation of -1 

is 0xFFFFFFFF ≈ 4 billion, 

way more than the buffer size! 

 



Integer overflows and sign errors 
Can be extremely subtle! 
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 The value returned by the ‘sizeof’ operator is always of an unsigned type (size_t) 

 According to the C standard, if two values of different data types are compared, 

and one of the types can represent larger numbers than the other, the value of the 

smaller type is implicitly cast to the larger.  

 The above comparison becomes if((size_t)len > sizeof(buffer)) 

 … but don’t rely on these sort of things to avoid vulnerabilities :-) 

 

 

 

 

if(len > 1024) 

   return ERR_CODE; // Error, too long string 

if(len > sizeof(buffer)) 

   return ERR_CODE; // Error, too long string 

If the length check from previous example is changed from this…  

… to this, the code is no longer vulnerable. Why? 



Avoiding integer errors 
 

 Again: Perform input validation! 

 Catch e.g. negative lengths of strings, etc. 

 Avoid mixing signed and unsigned data types, as well as types of different 

sizes. Heed compiler warnings! 

 Understand sizes and conversion rules for data types! 

 Use the type ‘size_t’ for variables representing lengths of things. ‘size_t’ is 

always an unsigned data type (cannot be negative). 

 Check for wraparounds : 
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size_t A = ... 

size_t B = ... 

if(A > SIZE_MAX - B) 

   error(); // Overflow 

size_t sum = A + B; 

... 



Format string bugs 

 Takes a format string with placeholders for variable output 

fields, and a number of arguments corresponding to 

placeholders in string. 

 

 

 Vulnerability stems from lazy programmers writing 

printf(string_from_user) instead of  
printf(“%s”, string_from_user) 

 This works fine, as long as the user-controlled string 

doesn’t contain format specifiers! 

 printf simply assumes that arguments corresponding to all 

format specifiers exist on the stack – will output whatever is 

on the stack if that is not the case! 

 Supply e.g. a string “%X%X%X%X” to output four 32-bit 

words from callers stack frame in hexadecimal notation – 

trivial information disclosure. 

 Also possible to read memory at arbitrary address with 

some trickery. 
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Caller’s stack frame 

 

Pointer to format string 

Return address 

Saved EBP 

123 

Pointer to “Hello!” 

Stack frame of printf 

 

printf(“An integer: %d, a string: %s”, 123, “Hello!”); 

// Output: An integer: 123, a string: Hello! 

The printf-family of functions are used in C to format output. 



Format string bugs 

 printf also has little known (and used) format specifier %n that is used to store the 

number of written characters so far into a variable 

 

 

 

 Can be used by attacker to write arbitrary data to arbitrary address in memory! 

 Idea (to write arbitrary 32-bit value):  

 Supply the address to write to in the format string itself 

 Use a (large) number of format specifiers to advance printf’s internal argument pointer to 

the format string in the caller’s stack frame (to get to the write address) 

 Control value written by controlling length of string 

 Repeat four times, writing one byte at a time 

 

 Details not important here – available in extra reading material for interested 

students. 
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printf(“A string: %s%n”, “Hello World!”, &x); 

// Output: A string: Hello World! 

// x == 22 after execution 



Avoiding format string bugs 
 

 Use printf(“%s”, str) instead of printf(str)  

 Unless, perhaps, str is a (hardcoded) constant string 

 Format string bugs can fairly easily be spotted with static analysis (use of 

non-constant string as first argument) 

 Modern compilers usually warn about (some) insecure use of printf-family 

of functions. 
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Non-memory-corruption vulnerabilities 

So far, we have looked at bugs allowing attackers to overwrite control-data 

for arbitrary code execution or DoS 

 Many dangerous types of bugs are not the result of buffer overflows or 

other memory corruption errors: 

 Race conditions 

 Out-of-bounds reads of data 
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Race conditions 

A shared resource is changed between check and use 

 

 

 

 Example: File system race conditions 

 

 

 

 

 

 

 What if file changes between access-check and open? 

 Attacker can e.g. replace real file with symbolic link with same name to 

sensitive file (e.g. /etc/passwd on Unix) 
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check_validity_of_user_data() 

[…] 

use_user_data() 

if (access(filename, W_OK) == 0) { 

   if ((fd = open(filename, O_WRONLY)) == NULL) { 

       perror(filename); 

       return -1; 

   } 

 

   /* Write to the file */ 

} 



Avoiding race conditions 
 

 Very broad class of vulnerabilities 

 Race conditions on file system 

 Race conditions on memory access between threads 

 etc. 

 See literature on course web page for recommendations on avoiding file 

race conditions in Unix 
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Out-of-bounds reads 
Case study: Heartbleed 

Out-of-bounds read from heap-allocated memory in OpenSSL allows 

attackers to read out certificates, private keys, sensitive documents, etc… 

 Due to incorrect implementation of heartbeat extension of TLS 

 One of the parties in a connection can send a payload with arbitrary 

data to the other party, which echoes it back unchanged to confirm that 

it is up and running. 

 Problem: Length of payload that is echoed back is not checked. Can 

read past actual payload into adjacent memory! 
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Out-of-bounds reads 
Case study: Heartbleed 
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int             

dtls1_process_heartbeat(SSL *s) 

    {           

    unsigned char *p = &s->s3->rrec.data[0], *pl; 

    unsigned short hbtype; 

    unsigned int payload; 

    unsigned int padding = 16; /* Use minimum padding */ 

    ... 

    /* Read type and payload length first */ 

    hbtype = *p++; 

    n2s(p, payload); 

    pl = p; 

    ... 

‘p’ points to data in 

SSL record 

Copy length of 

payload into 

‘payload’ 

Record consists of: 

Heartbeat type (1 byte) 

Payload length (2 bytes) 

Payload data (up to 65536 bytes) 

‘pl’ points to 

payload data 



Out-of-bounds reads 
Case study: Heartbleed 
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... 

unsigned char *buffer, *bp; 

int r; 

 

/* Allocate memory for the response, size is 1 byte 

 * message type, plus 2 bytes payload length, plus 

 * payload, plus padding 

 */ 

buffer = OPENSSL_malloc(1 + 2 + payload + padding); 

bp = buffer; 

... 

/* Enter response type, length and copy payload */ 

*bp++ = TLS1_HB_RESPONSE; 

s2n(payload, bp); 

memcpy(bp, pl, payload); 

 

Allocate heap 

memory for reply 

Copy ‘payload’ 

bytes into buffer for 

reply message  

Problem: The length of ‘payload’ is never checked! 

Sender can claim a payload length longer than the 

actual received  SSL record. 

 Up to 64 kB of adjacent heap memory can be 

leaked to attacker. 

 Has been shown to allow reading out private keys 

from servers! 



Writing secure code 



Secure coding practices and principles 

 Principles to adhere to 

 Best practices 

 Secure coding standards 

 

 Patterns of code to use or to avoid 

 Secure architectural and design patterns 

 Covered in lecture on Secure software development  

 

 Library functions to use or to avoid 
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CERT top 10 Secure Coding Practices 

1. Validate input 

2. Heed compiler warnings 

3. Architect and design for security policies 

4. Keep it simple 

5. Default deny 

6. Adhere to the principle of least privilege 

7. Sanitize data sent to other systems 

8. Practice defense in depth 

9. Use effective quality assurance techniques 

10.Adopt a secure coding standard 
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CERT C Secure Coding Standard (excerpt) 

Recommendations 

 INT01-C: Use rsize_t or size_t for integer values representing size of an object 

 MSC15-C: Do not depend on undefined behavior 

 SRC06-C: Do not assume that strtok() leaves the parse string unchanged 

 FIO07-C: Prefer fseek() to rewind() 

 MEM01-C: Store a new value in pointers immediately after free() 

 

Rules 

 INT32-C: Ensure that operations on signed integers to not result in overflow 

 MSC33-C: Do not pass invalid data to the asctime() function 

 STR33-C: Size wide character strings correctly 

 FIO31-C: Do not open a file that is already open 

 MEM32-C: Detect and handle memory allocation errors 
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SDL Banned Function Calls 
CharToOem, CharToOemA, CharToOemBuffA, CharToOemBuffW, CharToOemW, 

IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, 

IsBadStringPtr, IsBadWritePtr, Makepath, OemToChar, OemToCharA, 

OemToCharW, StrCat, StrCatA, StrCatBuff, StrCatBuffA, StrCatBuffW, 

StrCatChainW, StrCatN, StrCatNA, StrCatNW, StrCatW, StrCpy, StrCpyA, 

StrCpyN, StrCpyNA, StrCpyNW, StrCpyW, StrLen, StrNCat, StrNCatA, 

StrNCatW, StrNCpy, StrNCpyA, StrNCpyW, _alloca, _fstrncat, _fstrncpy, 

_getts, _gettws, _i64toa, _i64tow, _itoa, _itow, _makepath, _mbccat, 

_mbccpy, _mbscat, _mbscpy, _mbslen, _mbsnbcat, _mbsnbcpy, _mbsncat, 

_mbsncpy, _mbstok, _mbstrlen, _snprintf, _sntprintf, _sntscanf, 

_snwprintf, _splitpath, _stprintf, _stscanf, _tccat, _tccpy, _tcscat, 

_tcscpy, _tcsncat, _tcsncpy, _tcstok, _tmakepath, _tscanf, _tsplitpath, 

_ui64toa, _ui64tot, _ui64tow, _ultoa, _ultot, _ultow, _vsnprintf, 

_vsntprintf, _vsnwprintf, _vstprintf, _wmakepath, _wsplitpath, alloca, 

gets, lstrcat, lstrcatA, lstrcatW, lstrcatn, lstrcatnA, lstrcatnW, 

lstrcpy, lstrcpyA, lstrcpyW, lstrcpyn, lstrcpynA, lstrcpynW, lstrlen, 

lstrncat, nsprintf, scanf, snscanf, snwscanf, sprintf, sprintfA, 

sprintfW, sscanf, strcat, strcatA, strcatW, strcpy, strcpyA, strcpyW, 

strcpynA, strlen, strncat, strncpy, strtok, swprintf, swscanf, vsprintf, 

vswprintf, wcscat, wcscpy, wcslen, wcsncat, wcsncpy, wcstok, wnsprintf, 

wnsprintfA, wnsprintfW, wscanf, wsprintf, wsprintfA, wsprintfW, 

wvnsprintf, wvnsprintfA, wvnsprintfW, wvsprintf, wvsprintfA, wvsprintfW 
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Mitigations 

OS and compiler exploit protections 



Exploit mitigations 

Mitigations are technical measures meant to make attacks harder 

 Raises cost (time required, expertise) for attackers 

 But doesn’t necessarily make all attacks impossible 

 

Implemented in either operating system or compiler 

 Stack cookies (Compiler based) 

 DEP (OS based) 

 ASLR (OS based) 
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Stack cookies 

 Implemented in compiler, must be applied during compilation 

 A stack cookie or canary is inserted in stack frame before the return pointer 

 Cookie is checked prior to executing ‘ret’ instruction. If it has changed, program is 

terminated with an error message. 

 Impossible for attacker to overwrite return pointer with a buffer overflow without 

altering cookie. 

 

 Typical implementation works approximately like this: 

 Cookie placed before saved EBP – prevents overwrite of both return address and 

saved EBP 

 Cookie stored in global variable that is randomly generated at program startup 

 Static cookies won’t work, can just be replicated by attacker! 

 A call to a function that checks cookie integrity is inserted before ‘ret’ instruction. 

Terminates program if cookie doesn’t match original. 

 Typically also reorders local variables in stack frame so that buffers (arrays) are 

located first – prevents overwrites of e.g. function pointers in local variables. 
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Stack cookies 
Example 
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void foo(char* input)  

{ 

   // Push global cookie to stack 

 

   unsigned int len; 

   char buffer[16]; 

 

   len = strlen(input); 

   strcpy(buffer, input); 

    

   printf(“%s: %d\n”, buffer, len); 

 

   // Check that cookie match global 

   // cookie. Terminate otherwise. 

} 

Caller’s stack frame 

 

input (argument to foo) 

Return address 

len 

buffer 

Saved EBP 

Stack cookie 

Note: 
Reordered 



Defeating stack cookies 

 Only mitigates stack-based buffer overflows 

 Applying stack cookies comes at a cost – for small functions that are called 

frequently, cost of cookie check can be significant 

 Not applied to all functions – various heuristics to determine where to 

use stack cookies 

 Only used in functions with buffers of certain types and sizes – some 

attacks may still be possible 

 On Windows, the Structured Exception Handler (SEH) record on the stack 

can be overwritten to take control before the return and cookie check 
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Data Execution Prevention 

Use hardware-enforced nonexecutable data pages to prevent shellcode 

from running 

 

Implemented in many different operating systems under different names 

 OpenBSD: W^X (Write xor Execute) 

 Windows: Data Execution Prevention (DEP) 

 Linux: Variants of the PaX MPROTECT patch for Linux kernel 

 

 

 

26 



Data Execution Prevention 

Recall: Virtual memory divided into pages (typically 4 kB on x86) 

 Pages can be marked as Readable, Writable, and Executable 

 Write to non-Writable page results in program termination 

(Segmentation fault) 

 Older CPUs (prior to ~2005) didn’t have hardware support to enforce the 

Executable permission 

 Possible to execute code from pages marked as non-Executable 

 Modern CPUs have this – the NX-bit (for No eXecute) 

 Setting all pages for stack, heap, etc. as non-Executable prevents 

shellcode from executing. 

 Effectively mitigates all code execution exploits from previous slides. 
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Defeating DEP 
The return-to-libc attack 

Instead of injecting executable code, re-use existing function within program 

 Overflow stack buffer to set up stack to look like a function call is about 

to be made  

 Overwrite return pointer to “return” into start of desired function 

 No code on the stack is executed – DEP won’t help 

 Functions within the standard C library (libc) are popular targets, since 

libc is present in address space of (almost) every program. Hence the 

name. 

 E.g. the ‘system’ library function is popular – executes an arbitrary 

shell command with privileges of calling program 
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return-to-libc example 

Recall the stdcall calling convention: 

 Caller pushes arguments from right to left to stack. 

 The ‘call’ instruction pushes return address to stack 

and jumps to first instruction of called function 

 To “call” function bar(int arg1, int arg2) using 

return-to-libc: 

 Overwrite return pointer with address to first 

instruction of ‘bar’ 

 Put a dummy value above return pointer. This is 

where ‘bar’ expects the caller’s ‘call’ instruction to 

have put the return address. 

 Put the arguments to ‘bar’ in correct order on the 

stack. 

 At ‘ret’ instruction, ‘bar’ will be “called”, and ESP 

will point at the dummy “return address”, just like in 

a real call. 
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Return address 

len 

buffer 

Saved EBP 

A A A A 

A A A A 

A A A A 

A A A A 

A A A A 

A A A A 

Dummy 

\x80 \x9D \x59 \xB7 

arg1 

arg2 

; Start of ‘bar’ 

push ebp 

mov ebp, esp 

... 



return-to-libc limitations 

 Limited to using existing functions within program address space 

 

 Calling functions which takes pointers (e.g. strings) as arguments 

is tricky. 

 

 Cannot perform calls where one argument is required to have the 

value zero (Why?) 
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Address Space Layout Randomization (ASLR) 
 

Observation: Most exploit methods rely on predicting 

the address of some piece of code or control data. 

 Idea: Randomize position of heap, stack, main 

executable, shared libraries, etc. to prevent attacks. 

 New positions each time program is started 

 Very effective at mitigating many kinds of attacks. 

 Brute forcing still possible on 32-bit machines, 

where the memory space available for 

randomization is small. (Works mostly for local 

exploits.) 

 Methods that do not rely on predicting addresses 

are still effective 

 The relative position of data within the same 

segment is unaffected by ASLR 

 Still possible to e.g. overwrite sensitive non-

control data on stack or heap 
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Kernel memory 

Stack 

Text 

Data 

BSS 

Heap 

Shared library 

Shared library 

Random 

Random 

Random 

Random 



”Modern” exploit methods 

A brief overview 



Heap Spraying 

Defeats: ASLR 

 Applicable in certain scenarios where user controllable input can exert 

large control over heap allocations  

 Make the program allocate large numbers of large memory blocks, filling 

most of the heap.  

 Each block consists of a large NOP sled followed by shellcode. 

 When hijacking control flow of program, e.g. through a stack based-buffer 

overflow, jump to random position in the middle of the heap 

 Large probability of hitting one of the NOP sleds. 

 Typically requires a scriptable environment. Popular when e.g. attacking 

web browsers 

 Create large arrays with e.g. JavaScript, and fill them with NOPs + 

shellcode. 
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Return Oriented Programming (ROP) 

Defeats: DEP 

 The “standard” method used today by attackers to bypass DEP 

 

 Generalization of return-to-libc 

 First proposed by Hovav Shacham in 2007 

 Showed that a Turing complete “language” could be created by re-

using code of an executable. 

 Allows arbitrary code execution without injecting any code – completely 

circumvents DEP! 

 Idea: Identify code snippets of the form  
[do something useful] 
ret 

in existing code (main executable or libraries). 

 Such snippets are referred to as gadgets 
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Return Oriented Programming (ROP) 

 Put addresses of gadgets on the stack, the 

first one overwriting the return pointer.  

 This “chain” of addresses is often referred 

to as a ROP chain. 

 When the executing function returns, it will pop 

the gadget address, jump to the gadget, 

execute the useful instruction(s), and then 

“return” to the next gadget, and so on. 

 Shacham showed that even complex program 

constructs, such as loops, can be constructed 

in this way. 

35 

Return address 

len 

buffer 

Saved EBP 

A A A A 

A A A A 

A A A A 

A A A A 

A A A A 

A A A A 

\x96 \x8F \xC0 \xB5 

... 

... 

xor, eax, eax 

ret 

... 

\xF0 \x01 \xA0 \x08 

pop ecx 

pop edx 

ret 

... 



Return Oriented Programming (ROP) 

ROP attacks rely on being able to predict the addresses of gadgets, and are 

thus mitigated by ASLR – given that the positions of all executable memory 

regions are randomized. 

 Often not the case in practice 

 On Linux, the executable file itself is usually not randomized, while 

shared libraries are. 

 On Windows prior to Windows 8, the default is that all executables need 

to “opt in” with a special flag set at compile time to be randomized.  

 Many legacy libraries are still not compiled with this flag, and are 

potential targets for a ROP attack. 

36 



Effectiveness of mitigations 

 No mitigation is a silver bullet 

 Some attack methods are thwarted, but often still possible to craft exploits 

 However, standard techniques often don’t work “out of the box”  

 Often need to combine many different attack techniques, several 

different vulnerabilities, and program or OS-specific “tricks” 

 Example: 

1. Take advantage of a flaw in particular ASLR implementation, or find target-

specific non-randomized executable memory regions to create ROP chain. 

2. Set of gadgets typically limited in practice, create small ROP payload that 

disables DEP, and jumps to traditional shellcode. 

3. Possibly utilize heap spraying or information leakage  bugs to locate shellcode in 

memory 

37 



Effectiveness of mitigations 

 Bottom line: Crafting exploits still possible, but requires considerable 

expertise and time. 

 People rarely write exploits “for fun” anymore 

 Instead: 

 Professional penetration testers 

 Organized crime 

 Intelligence agencies 

 

 A previously unknown vulnerability (“zero-day”) in popular software with 

reliable exploit can be worth several $100 000… 
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