
Vulnerabilities in C/C++ programs – Part II
TDDC90 – Software Security

Ulf Kargén

Department of Computer and Information Science (IDA)

Division for Database and Information Techniques (ADIT)

Integer overflows and sign errors

Adding, subtracting, or multiplying an integer with a too large value can cause it

to wrap-around

 Can be used to circumvent input validation to e.g. cause buffer overflows

2

void print_user(char* username) {

 char buffer[1024];

 char* prefix = “User: “;

 const unsigned int prefix_len = 6;

 unsigned int len = strlen(username);

 // Space required for prefix, username and

 // string terminator.

 unsigned int size = prefix_len + len + 1;

 if(size > 1024)

 exit_with_error(); // Error, too long string

 strcpy(buffer, prefix); // Copy prefix

 strcat(buffer, username); // Concatenate username

 printf(“%s”, buffer);

}

What happens if the user supplies

an extremely long ‘username’

here?

 If username is longer than

UINT_MAX - 7, an integer

overflow will occur.

 The length check will succeed,

but more than 4GB copied into

buffer…

Integer overflows and sign errors

A similar class of vulnerabilities are sign errors – mixing signed and unsigned

data types in an unsafe way

3

// Reads ‘size’ bytes from file ‘f’ into buffer ‘out’

void

read_from_file(void* out, FILE* f, unsigned int size);

...

int read_entry(FILE* input)

{

 char buffer[1024];

 int len;

 // Read four-byte length field from file into ‘len’

 read_from_file(&len, input, 4);

 if(len > 1024)

 return ERR_CODE; // Error, too long string

 // Read ‘len’ bytes from file into buffer

 read_from_file(buffer, input, len);

 ...

The problem here is that signed

and unsigned data types are

mixed.

 What happens if the length

field in the file is a negative

number, e.g. -1?

 The length check will succeed,

as -1 < 1024

 In the call to ‘read_from_file’,

the ‘len’ variable will be

interpreted as an unsigned

data type

 The 32-bit representation of -1

is 0xFFFFFFFF ≈ 4 billion,

way more than the buffer size!

Integer overflows and sign errors
Can be extremely subtle!

5

 The value returned by the ‘sizeof’ operator is always of an unsigned type (size_t)

 According to the C standard, if two values of different data types are compared,

and one of the types can represent larger numbers than the other, the value of the

smaller type is implicitly cast to the larger.

 The above comparison becomes if((size_t)len > sizeof(buffer))

 … but don’t rely on these sort of things to avoid vulnerabilities :-)

if(len > 1024)

 return ERR_CODE; // Error, too long string

if(len > sizeof(buffer))

 return ERR_CODE; // Error, too long string

If the length check from previous example is changed from this…

… to this, the code is no longer vulnerable. Why?

Avoiding integer errors

 Again: Perform input validation!

 Catch e.g. negative lengths of strings, etc.

 Avoid mixing signed and unsigned data types, as well as types of different

sizes. Heed compiler warnings!

 Understand sizes and conversion rules for data types!

 Use the type ‘size_t’ for variables representing lengths of things. ‘size_t’ is

always an unsigned data type (cannot be negative).

 Check for wraparounds :

6

size_t A = ...

size_t B = ...

if(A > SIZE_MAX - B)

 error(); // Overflow

size_t sum = A + B;

...

Format string bugs

 Takes a format string with placeholders for variable output

fields, and a number of arguments corresponding to

placeholders in string.

 Vulnerability stems from lazy programmers writing

printf(string_from_user) instead of
printf(“%s”, string_from_user)

 This works fine, as long as the user-controlled string

doesn’t contain format specifiers!

 printf simply assumes that arguments corresponding to all

format specifiers exist on the stack – will output whatever is

on the stack if that is not the case!

 Supply e.g. a string “%X%X%X%X” to output four 32-bit

words from callers stack frame in hexadecimal notation –

trivial information disclosure.

 Also possible to read memory at arbitrary address with

some trickery.
7

Caller’s stack frame

Pointer to format string

Return address

Saved EBP

123

Pointer to “Hello!”

Stack frame of printf

printf(“An integer: %d, a string: %s”, 123, “Hello!”);

// Output: An integer: 123, a string: Hello!

The printf-family of functions are used in C to format output.

Format string bugs

 printf also has little known (and used) format specifier %n that is used to store the

number of written characters so far into a variable

 Can be used by attacker to write arbitrary data to arbitrary address in memory!

 Idea (to write arbitrary 32-bit value):

 Supply the address to write to in the format string itself

 Use a (large) number of format specifiers to advance printf’s internal argument pointer to

the format string in the caller’s stack frame (to get to the write address)

 Control value written by controlling length of string

 Repeat four times, writing one byte at a time

 Details not important here – available in extra reading material for interested

students.

8

printf(“A string: %s%n”, “Hello World!”, &x);

// Output: A string: Hello World!

// x == 22 after execution

Avoiding format string bugs

 Use printf(“%s”, str) instead of printf(str)

 Unless, perhaps, str is a (hardcoded) constant string

 Format string bugs can fairly easily be spotted with static analysis (use of

non-constant string as first argument)

 Modern compilers usually warn about (some) insecure use of printf-family

of functions.

9

Non-memory-corruption vulnerabilities

So far, we have looked at bugs allowing attackers to overwrite control-data

for arbitrary code execution or DoS

 Many dangerous types of bugs are not the result of buffer overflows or

other memory corruption errors:

 Race conditions

 Out-of-bounds reads of data

10

Race conditions

A shared resource is changed between check and use

 Example: File system race conditions

 What if file changes between access-check and open?

 Attacker can e.g. replace real file with symbolic link with same name to

sensitive file (e.g. /etc/passwd on Unix)

11

check_validity_of_user_data()

[…]

use_user_data()

if (access(filename, W_OK) == 0) {

 if ((fd = open(filename, O_WRONLY)) == NULL) {

 perror(filename);

 return -1;

 }

 /* Write to the file */

}

Avoiding race conditions

 Very broad class of vulnerabilities

 Race conditions on file system

 Race conditions on memory access between threads

 etc.

 See literature on course web page for recommendations on avoiding file

race conditions in Unix

12

Out-of-bounds reads
Case study: Heartbleed

Out-of-bounds read from heap-allocated memory in OpenSSL allows

attackers to read out certificates, private keys, sensitive documents, etc…

 Due to incorrect implementation of heartbeat extension of TLS

 One of the parties in a connection can send a payload with arbitrary

data to the other party, which echoes it back unchanged to confirm that

it is up and running.

 Problem: Length of payload that is echoed back is not checked. Can

read past actual payload into adjacent memory!

13

Out-of-bounds reads
Case study: Heartbleed

14

int

dtls1_process_heartbeat(SSL *s)

 {

 unsigned char *p = &s->s3->rrec.data[0], *pl;

 unsigned short hbtype;

 unsigned int payload;

 unsigned int padding = 16; /* Use minimum padding */

 ...

 /* Read type and payload length first */

 hbtype = *p++;

 n2s(p, payload);

 pl = p;

 ...

‘p’ points to data in

SSL record

Copy length of

payload into

‘payload’

Record consists of:

Heartbeat type (1 byte)

Payload length (2 bytes)

Payload data (up to 65536 bytes)

‘pl’ points to

payload data

Out-of-bounds reads
Case study: Heartbleed

15

...

unsigned char *buffer, *bp;

int r;

/* Allocate memory for the response, size is 1 byte

 * message type, plus 2 bytes payload length, plus

 * payload, plus padding

 */

buffer = OPENSSL_malloc(1 + 2 + payload + padding);

bp = buffer;

...

/* Enter response type, length and copy payload */

*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

Allocate heap

memory for reply

Copy ‘payload’

bytes into buffer for

reply message

Problem: The length of ‘payload’ is never checked!

Sender can claim a payload length longer than the

actual received SSL record.

 Up to 64 kB of adjacent heap memory can be

leaked to attacker.

 Has been shown to allow reading out private keys

from servers!

Writing secure code

Secure coding practices and principles

 Principles to adhere to

 Best practices

 Secure coding standards

 Patterns of code to use or to avoid

 Secure architectural and design patterns

 Covered in lecture on Secure software development

 Library functions to use or to avoid

17

CERT top 10 Secure Coding Practices

1. Validate input

2. Heed compiler warnings

3. Architect and design for security policies

4. Keep it simple

5. Default deny

6. Adhere to the principle of least privilege

7. Sanitize data sent to other systems

8. Practice defense in depth

9. Use effective quality assurance techniques

10.Adopt a secure coding standard

18

CERT C Secure Coding Standard (excerpt)

Recommendations

 INT01-C: Use rsize_t or size_t for integer values representing size of an object

 MSC15-C: Do not depend on undefined behavior

 SRC06-C: Do not assume that strtok() leaves the parse string unchanged

 FIO07-C: Prefer fseek() to rewind()

 MEM01-C: Store a new value in pointers immediately after free()

Rules

 INT32-C: Ensure that operations on signed integers to not result in overflow

 MSC33-C: Do not pass invalid data to the asctime() function

 STR33-C: Size wide character strings correctly

 FIO31-C: Do not open a file that is already open

 MEM32-C: Detect and handle memory allocation errors

19

SDL Banned Function Calls
CharToOem, CharToOemA, CharToOemBuffA, CharToOemBuffW, CharToOemW,

IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr,

IsBadStringPtr, IsBadWritePtr, Makepath, OemToChar, OemToCharA,

OemToCharW, StrCat, StrCatA, StrCatBuff, StrCatBuffA, StrCatBuffW,

StrCatChainW, StrCatN, StrCatNA, StrCatNW, StrCatW, StrCpy, StrCpyA,

StrCpyN, StrCpyNA, StrCpyNW, StrCpyW, StrLen, StrNCat, StrNCatA,

StrNCatW, StrNCpy, StrNCpyA, StrNCpyW, _alloca, _fstrncat, _fstrncpy,

_getts, _gettws, _i64toa, _i64tow, _itoa, _itow, _makepath, _mbccat,

_mbccpy, _mbscat, _mbscpy, _mbslen, _mbsnbcat, _mbsnbcpy, _mbsncat,

_mbsncpy, _mbstok, _mbstrlen, _snprintf, _sntprintf, _sntscanf,

_snwprintf, _splitpath, _stprintf, _stscanf, _tccat, _tccpy, _tcscat,

_tcscpy, _tcsncat, _tcsncpy, _tcstok, _tmakepath, _tscanf, _tsplitpath,

_ui64toa, _ui64tot, _ui64tow, _ultoa, _ultot, _ultow, _vsnprintf,

_vsntprintf, _vsnwprintf, _vstprintf, _wmakepath, _wsplitpath, alloca,

gets, lstrcat, lstrcatA, lstrcatW, lstrcatn, lstrcatnA, lstrcatnW,

lstrcpy, lstrcpyA, lstrcpyW, lstrcpyn, lstrcpynA, lstrcpynW, lstrlen,

lstrncat, nsprintf, scanf, snscanf, snwscanf, sprintf, sprintfA,

sprintfW, sscanf, strcat, strcatA, strcatW, strcpy, strcpyA, strcpyW,

strcpynA, strlen, strncat, strncpy, strtok, swprintf, swscanf, vsprintf,

vswprintf, wcscat, wcscpy, wcslen, wcsncat, wcsncpy, wcstok, wnsprintf,

wnsprintfA, wnsprintfW, wscanf, wsprintf, wsprintfA, wsprintfW,

wvnsprintf, wvnsprintfA, wvnsprintfW, wvsprintf, wvsprintfA, wvsprintfW

20

Mitigations

OS and compiler exploit protections

Exploit mitigations

Mitigations are technical measures meant to make attacks harder

 Raises cost (time required, expertise) for attackers

 But doesn’t necessarily make all attacks impossible

Implemented in either operating system or compiler

 Stack cookies (Compiler based)

 DEP (OS based)

 ASLR (OS based)

22

Stack cookies

 Implemented in compiler, must be applied during compilation

 A stack cookie or canary is inserted in stack frame before the return pointer

 Cookie is checked prior to executing ‘ret’ instruction. If it has changed, program is

terminated with an error message.

 Impossible for attacker to overwrite return pointer with a buffer overflow without

altering cookie.

 Typical implementation works approximately like this:

 Cookie placed before saved EBP – prevents overwrite of both return address and

saved EBP

 Cookie stored in global variable that is randomly generated at program startup

 Static cookies won’t work, can just be replicated by attacker!

 A call to a function that checks cookie integrity is inserted before ‘ret’ instruction.

Terminates program if cookie doesn’t match original.

 Typically also reorders local variables in stack frame so that buffers (arrays) are

located first – prevents overwrites of e.g. function pointers in local variables.

23

Stack cookies
Example

24

void foo(char* input)

{

 // Push global cookie to stack

 unsigned int len;

 char buffer[16];

 len = strlen(input);

 strcpy(buffer, input);

 printf(“%s: %d\n”, buffer, len);

 // Check that cookie match global

 // cookie. Terminate otherwise.

}

Caller’s stack frame

input (argument to foo)

Return address

len

buffer

Saved EBP

Stack cookie

Note:
Reordered

Defeating stack cookies

 Only mitigates stack-based buffer overflows

 Applying stack cookies comes at a cost – for small functions that are called

frequently, cost of cookie check can be significant

 Not applied to all functions – various heuristics to determine where to

use stack cookies

 Only used in functions with buffers of certain types and sizes – some

attacks may still be possible

 On Windows, the Structured Exception Handler (SEH) record on the stack

can be overwritten to take control before the return and cookie check

25

Data Execution Prevention

Use hardware-enforced nonexecutable data pages to prevent shellcode

from running

Implemented in many different operating systems under different names

 OpenBSD: W^X (Write xor Execute)

 Windows: Data Execution Prevention (DEP)

 Linux: Variants of the PaX MPROTECT patch for Linux kernel

26

Data Execution Prevention

Recall: Virtual memory divided into pages (typically 4 kB on x86)

 Pages can be marked as Readable, Writable, and Executable

 Write to non-Writable page results in program termination

(Segmentation fault)

 Older CPUs (prior to ~2005) didn’t have hardware support to enforce the

Executable permission

 Possible to execute code from pages marked as non-Executable

 Modern CPUs have this – the NX-bit (for No eXecute)

 Setting all pages for stack, heap, etc. as non-Executable prevents

shellcode from executing.

 Effectively mitigates all code execution exploits from previous slides.

27

Defeating DEP
The return-to-libc attack

Instead of injecting executable code, re-use existing function within program

 Overflow stack buffer to set up stack to look like a function call is about

to be made

 Overwrite return pointer to “return” into start of desired function

 No code on the stack is executed – DEP won’t help

 Functions within the standard C library (libc) are popular targets, since

libc is present in address space of (almost) every program. Hence the

name.

 E.g. the ‘system’ library function is popular – executes an arbitrary

shell command with privileges of calling program

28

return-to-libc example

Recall the stdcall calling convention:

 Caller pushes arguments from right to left to stack.

 The ‘call’ instruction pushes return address to stack

and jumps to first instruction of called function

 To “call” function bar(int arg1, int arg2) using

return-to-libc:

 Overwrite return pointer with address to first

instruction of ‘bar’

 Put a dummy value above return pointer. This is

where ‘bar’ expects the caller’s ‘call’ instruction to

have put the return address.

 Put the arguments to ‘bar’ in correct order on the

stack.

 At ‘ret’ instruction, ‘bar’ will be “called”, and ESP

will point at the dummy “return address”, just like in

a real call.

29

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

Dummy

\x80 \x9D \x59 \xB7

arg1

arg2

; Start of ‘bar’

push ebp

mov ebp, esp

...

return-to-libc limitations

 Limited to using existing functions within program address space

 Calling functions which takes pointers (e.g. strings) as arguments

is tricky.

 Cannot perform calls where one argument is required to have the

value zero (Why?)

30

Address Space Layout Randomization (ASLR)

Observation: Most exploit methods rely on predicting

the address of some piece of code or control data.

 Idea: Randomize position of heap, stack, main

executable, shared libraries, etc. to prevent attacks.

 New positions each time program is started

 Very effective at mitigating many kinds of attacks.

 Brute forcing still possible on 32-bit machines,

where the memory space available for

randomization is small. (Works mostly for local

exploits.)

 Methods that do not rely on predicting addresses

are still effective

 The relative position of data within the same

segment is unaffected by ASLR

 Still possible to e.g. overwrite sensitive non-

control data on stack or heap

31

Kernel memory

Stack

Text

Data

BSS

Heap

Shared library

Shared library

Random

Random

Random

Random

”Modern” exploit methods

A brief overview

Heap Spraying

Defeats: ASLR

 Applicable in certain scenarios where user controllable input can exert

large control over heap allocations

 Make the program allocate large numbers of large memory blocks, filling

most of the heap.

 Each block consists of a large NOP sled followed by shellcode.

 When hijacking control flow of program, e.g. through a stack based-buffer

overflow, jump to random position in the middle of the heap

 Large probability of hitting one of the NOP sleds.

 Typically requires a scriptable environment. Popular when e.g. attacking

web browsers

 Create large arrays with e.g. JavaScript, and fill them with NOPs +

shellcode.

33

Return Oriented Programming (ROP)

Defeats: DEP

 The “standard” method used today by attackers to bypass DEP

 Generalization of return-to-libc

 First proposed by Hovav Shacham in 2007

 Showed that a Turing complete “language” could be created by re-

using code of an executable.

 Allows arbitrary code execution without injecting any code – completely

circumvents DEP!

 Idea: Identify code snippets of the form
[do something useful]
ret

in existing code (main executable or libraries).

 Such snippets are referred to as gadgets

34

Return Oriented Programming (ROP)

 Put addresses of gadgets on the stack, the

first one overwriting the return pointer.

 This “chain” of addresses is often referred

to as a ROP chain.

 When the executing function returns, it will pop

the gadget address, jump to the gadget,

execute the useful instruction(s), and then

“return” to the next gadget, and so on.

 Shacham showed that even complex program

constructs, such as loops, can be constructed

in this way.

35

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

\x96 \x8F \xC0 \xB5

...

...

xor, eax, eax

ret

...

\xF0 \x01 \xA0 \x08

pop ecx

pop edx

ret

...

Return Oriented Programming (ROP)

ROP attacks rely on being able to predict the addresses of gadgets, and are

thus mitigated by ASLR – given that the positions of all executable memory

regions are randomized.

 Often not the case in practice

 On Linux, the executable file itself is usually not randomized, while

shared libraries are.

 On Windows prior to Windows 8, the default is that all executables need

to “opt in” with a special flag set at compile time to be randomized.

 Many legacy libraries are still not compiled with this flag, and are

potential targets for a ROP attack.

36

Effectiveness of mitigations

 No mitigation is a silver bullet

 Some attack methods are thwarted, but often still possible to craft exploits

 However, standard techniques often don’t work “out of the box”

 Often need to combine many different attack techniques, several

different vulnerabilities, and program or OS-specific “tricks”

 Example:

1. Take advantage of a flaw in particular ASLR implementation, or find target-

specific non-randomized executable memory regions to create ROP chain.

2. Set of gadgets typically limited in practice, create small ROP payload that

disables DEP, and jumps to traditional shellcode.

3. Possibly utilize heap spraying or information leakage bugs to locate shellcode in

memory

37

Effectiveness of mitigations

 Bottom line: Crafting exploits still possible, but requires considerable

expertise and time.

 People rarely write exploits “for fun” anymore

 Instead:

 Professional penetration testers

 Organized crime

 Intelligence agencies

 A previously unknown vulnerability (“zero-day”) in popular software with

reliable exploit can be worth several $100 000…

38

