
2013-11-07

Linköpings universitet 1

1

Secure Software Development

Anna Vapen, IDA/ADIT

TDDC90 Software Security

2013-11-08

2

Agenda

 Software security terminology

 Software development + security

 Development processes

 Security activities from the processes

 Detailed examples of activities: risk analysis, security requirements

 Main goal of today: See how security is applied in software

development in different ways.

2013-11-07

Linköpings universitet 2

3

But I want to do technical work…?

 Today: broad overview of secure software development

 Current practices in industry (and academia)

 Development process == how people build software together

 Who needs to know this?

 Developers, project leaders, auditors, testers… you!

 When: Seeking financing for security projects, working with

!security people, working with others in general

4

Software Security Terminology
Simple real-life example

System Owner

Asset

Threat agent (burglar)

Threat (burglar breaking in)

Vulnerability (open window)

Countermeasure and/or

mitigation (alarm)

Attack (the break-in)

Risk = likelihood * impact

2013-11-07

Linköpings universitet 3

5

Software Security Terminology

Threat agents

Threats

Vulnerabilities

Risk

Assets

Owners

Countermeasures

value

wish to minimize

wish to abuse and/or may damage

impose

may posses

leading to

that

exploit
give

rise to that

increase

to

to

may be aware or

may be

reduced by

to reduce

6

What is software engineering?

 Software development: General, broad term for writing code

 Software engineering: The art of developing software

 With some sort of structured method (development process)

 In teams in large companies, open source projects, the lab series in

this course… and all other places.

 Here we mainly discuss software engineering

2013-11-07

Linköpings universitet 4

7

The Software Lifecycle
The life of a piece of software – not just built and released!

 Requirements: What to build, how should it work

 Architecture and design: Overall structure

 Implementation: Let’s build it!

 Test: Does it work?

 Release: Distribute it, sell it, show it to the lab assistant.

 Now what? Continuous support until end-of-life.

8

The Software Lifecycle (contd.)

 The steps in the lifecycle (write requirements, design the

software etc.) become phases in a software development

process.

 Software development processes: many different approaches

 Examples: SCRUM, waterfall model etc.

 Below: very simplified toy-example of a SW dev. process

 Different phases in different order, depending on the process

Requirements

phase
Design

phase

Architecture

phase
Implementation

phase

Test

phase

2013-11-07

Linköpings universitet 5

9

Artifacts in the Software Lifecycle

Requirements

and use cases
Design Architecture Code Test plans

Test results

Field

feedback

Requirements phase Design phase Architecture phase Implementation phase Test phase

 Artifact: a thing, e.g. a test plan, a design document, some code

 Activity: something you do, e.g. write code, preform testing

 Below: example of artifacts in a software development process

10

Security Artifacts in the Software Lifecycle

Requirements

and use cases
Design Architecture Test plans Code

Test results

Field

feedback

Requirements phase Design phase Architecture phase Implementation phase Test phase

Misuse cases

Security

requirements

Risk analysis

and risk

management

External

review

Risk-based

security tests

Static

analysis

Risk analysis

and risk

management

Penetration

testing

Security

breaks

The security artifacts are often called touchpoints!

2013-11-07

Linköpings universitet 6

11

Software Development Processes

12

Process to Produce Secure Software

 Full lifecycle

 Precise

 Measurable – possible to test how well it works

 Tailored – fit for the purpose/organization/process

 Use current practices

 Supported with: training programs, tools, testing…

2013-11-07

Linköpings universitet 7

13

Examples of Software Development Processes

Three common types of software development processes:

 Incremental development processes

 Requirements-driven development processes

 Agile development processes

Note: We are talking about software development in general now!

Not about secure development (yet!)

14

Software Development Processes
Incremental development processes

Example: Waterfall model

 Requirements

(… other phases …)

Implementation

Test

Problems?

Go back and start over!

2013-11-07

Linköpings universitet 8

15

Software Development Processes
Requirements-driven processes

Example: CLEANROOM

The requirements are

the most important part!

They drive what you build.

16

Software Development Processes
Agile Processes

 Examples:

 SCRUM

 Extreme programming (XP)

 Feature driven development (FDD)

FDD Lifecycle

2013-11-07

Linköpings universitet 9

17

Security and Software Development

Processes

Three types of approaches to security in software development:

 Process-specific solutions

 A development process specifically designed to include security

from the beginning.

 Designed from scratch of a “secure” version of an existing process.

 Security plug-ins

 A small process of it’s own, to be added to an existing development

process.

 Ad-hoc application of best practices

 Adding security practices the way we feel like... Where it fits!

18

Ex: (In)secure Software Development

Bad Software Inc. wants to improve their development process.

 Current process:

 How to secure it? Can we help them out?

Make big plans Write bad code Patch software

This example is (hopefully) unrealistic!

2013-11-07

Linköpings universitet 10

19

Ex: (In)secure Software Development (2)

Bad Software Inc. wants to improve their development process.

 Let’s try: Process-specific solution for secure SW

development

 Throw away the old development process

 Pick a development process with security included

Make big plans Write bad

code

Patch software Write great

code

20

Ex: (In)secure Software Development (3)

Bad Software Inc. wants to improve their development process.

 Let’s try: Security plug-in

 Keep the old development process

 Add a small development process (security only)

 Make big plans Write bad code Patch software

Apply security testing

2013-11-07

Linköpings universitet 11

21

Ex: (In)secure Software Development (4)

Bad Software Inc. wants to improve their development process.

 Let’s try: Add-hoc application of best practices

 Keep the old development process

 Add security touch-points to your liking

 Make big plans Write bad code Patch software

Nice looking misuse-cases Some random testing

22

Secure Software Development

And now for some real examples on how this should be done!

 SDL

 TSP and TSP-Secure

 CLASP

 S3P

2013-11-07

Linköpings universitet 12

23

Example: SDL

Type: Process specific solution

 Development of software that needs to withstand attacks:

 Threat modeling

 Static analysis

 Code reviews and security testing

 Final security review (by another team)

24

SDL

2013-11-07

Linköpings universitet 13

25

Example: Team Software Process (TSP)

Type: Application of best practices

 High-level guidance for development team

 Manage and remove defects

 Measurements and quality management

 Monitor the process

 Use predictive measures for remaining defects

Note: TSP does not include security, but… TSP-Secure does!

26

Example: TSP-Secure

 TSP-Secure: augment TSP with security practices

 Additional training in security issues

 Security oriented design

 Security conscious implementation

 Difficulties:

 Training

 Disciplined methods

2013-11-07

Linköpings universitet 14

27

Example: CLASP

Type: Security plug-in

 CLASP (Comprehensive Lightweight Application Security

Process)

 Activities for development team members

 Plug-in for Rational Unified Process (RUP)

28

Example: Sustainable Software Security

Process S3P

 Type: Security plug-in

2013-11-07

Linköpings universitet 15

29

S3P

This will be covered more in detail at the modeling lecture.

30

Security Requirements

2013-11-07

Linköpings universitet 16

31

Security artifacts in the Software Lifecycle

Requirements

and use cases
Design Architecture Test plans Code

Test results

Field

feedback

Requirements phase Design phase Architecture phase Implementation phase Test phase

Misuse cases

Security

requirements

Risk analysis

and risk

management

External

review

Risk-based

security tests

Static

analysis

Risk analysis

and risk

management

Penetration

testing

Security

breaks

32

Security Requirements

 Early in development (not after deployment)

 Methodologies for security requirement engineering

 SQUARE

 Common Criteria (CC)

 …and more.

2013-11-07

Linköpings universitet 17

33

Security Requirements (contd.)

 Functional and non-functional requirements

 What the system must do (testable)

 How the system must do it

34

Security Requirements (contd.)

Examples of fields in which we may need security requirements:

 Identification and authentication

 Authorization

 Immunity

 Integrity

 Intrusion detection

 Non-repudiation

 Privacy

 Physical protection

2013-11-07

Linköpings universitet 18

35

Security Requirement Method: CC

 Common Criteria

 Security functional requirements

 Security assurance requirements

 Evaluation and certification

36

Security Requirement Method: SQUARE

 Nine steps

 Agree on definitions

 Identify safety and security goals

 Select elicitation techniques

 Develop artifacts to support elicitation techniques

 Elicit safety and security requirements

 Categorize requirements

 Perform risk assessment

 Prioritize requirements

 Requirements inspection

2013-11-07

Linköpings universitet 19

37

Risk Management and Risk Analysis

38

Security artifacts in the Software Lifecycle

Requirements

and use cases
Design Architecture Test plans Code

Test results

Field

feedback

Requirements phase Design phase Architecture phase Implementation phase Test phase

Misuse cases

Security

requirements

Risk analysis

and risk

management

External

review

Risk-based

security tests

Static

analysis

Risk analysis

and risk

management

Penetration

testing

Security

breaks

2013-11-07

Linköpings universitet 20

39

Risk Management vs. Risk Analysis

 Key concepts: Threat – vulnerability – damage

 Risk = likelihood * impact

 Risk analysis: Identifying risks

 Risk management: Dealing with risks found during risk

analysis

 Risk analysis is part of the overall risk management work!

40

Security Risk Analysis
Doing risk analysis with security in mind

 Think as an attacker: Learn about the target

 Teamwork: Discuss security issues

 Rank risks: High likelihood and high impact = high risk!

 Step 1: Determine probability of compromise (attack success)

 Step 2: Perform impact analysis (level of damage)

 Mitigation strategy: How to mitigate risks?

 Report: What did we find?

2013-11-07

Linköpings universitet 21

41

Risk Management Steps

 Identify assets

 Identify vulnerabilities in the asset and in the systems directly

interacting with asset

 For every asset and associated vulnerabilities:

 Estimate the consequence of loosing the asset (the cost of

replacing or restoring an asset)

 Estimate the expected rate of occurrence of the vulnerability

 Defend against risks:

 Reduce the value of asset to attackers (e.g. encrypt data)

 Mitigate vulnerabilities

 Prevent attacks

42

Example: Annual Loss Expectancy (ALE)

DoS attack on the mail server of Company A

 Estimated likelihood of the DoS attack: ~0.5 incident per year

 Estimated loss: 950 ($/incident) x 0.5 (incident/year) = 475

($/year)

Item Description Estimated Cost

Recovery: External consultant, 4 hours * $150 $600

Lost productivity: 5 employees * 2 hours * $34 $340

Long distance phone calls $10

Total cost of the attack: $950

ALE is an activity that could be part of risk management!

2013-11-07

Linköpings universitet 22

43

Methodologies for Handling Risks
Risk analysis and/or risk management

Standard-based

 OCTAVE (Operationally Critical

Threat, Asset, and Vulnerability

Evaluation) from SEI

 COBIT (Control Objectives for

Information and Related

Technology) from ISACA

(Information Systems Audit and

Control Association)

Commercial

 STRIDE (Spoofing, Tampering,

Repudiation, Information

disclosure, Denial of service,

Elevation of privilege)

 RMF (Risk management

Framework)

44

Risk Management Framework (RMF)

 Continuous software risk management process

 A full lifecycle activity

 Manages software-induced business risks

 Software security risks

 Risks introduced by insufficient processes

 Risks introduced by people

2013-11-07

Linköpings universitet 23

45

RMF (contd.)

Understand

the business

context

Identify and link

business context

and technical risks

+ artifact analysis

Synthesize

and

rank the

risks

Define the

risk

management

strategy

Carry out fixes and validate

1 2 3 4

5

Risk analysis: steps 1, 2, and 3

Implementation and operation: steps 4 and 5

46

Architectural Risk Management

 RMF: specific risk management method

 Architectural risk management: wider approach

 A risk management process to:

 Identify flaws in a software architecture

 Determine risks to business information assets that results from

those flaws

2013-11-07

Linköpings universitet 24

47

Architectural Risk Analysis
Part of architectural risk management

Asset identification

Architectural risk analysis

Risk analysis

Implementation

and operation

Vulnerability Threat

Risk mitigation

Risk management and measurement

48

Architectural Risk Management
Step by step: Asset identification

 Identify assets to be protected e.g.

databases, credentials, audit records,

financial information…

 Gain initial information about assets

 Ex: Properties to be maintained on the

asset (confidentiality, integrity, availability)

 Business impact if the property is not

maintained

 Identify software modules that

manipulate the assets

Asset identification

Architectural risk analysis

Vulnerability Threat

Risk mitigation

Risk management and measurement

2013-11-07

Linköpings universitet 25

49

Architectural Risk Analysis
Step by step: Actual ARM

 Application characterization

 Architectural vulnerability assessment

 Known vulnerability analysis

 Ambiguity analysis

 Underlying platform vulnerability analysis

Asset identification

Vulnerability Threat

Risk mitigation

Risk management and measurement

Architectural risk analysis

Define scope of

architecture

Define system

boundaries

Review

artifacts

50

Architectural Risk Analysis
Step by step: Threat analysis

 Assume given access and skill level for the attacker

 Map vulnerabilities to threats to understand how system may be

exploited

Threat source Motivation Threat Actions

Malware writer Economic profit Write and release

malicious software

[Who?] [Why?] [What?]

… … …

Threat source == threat agent

2013-11-07

Linköpings universitet 26

51

Architectural Risk Analysis
Step by step: Risk likelihood determination

 Likelihood: qualitative estimation of how likely a successful

attack will be, based on analysis and past experience

 Not for new types of attacks

Motivation and capability

of the attacker

Factors for likelihood

and estimation Directness and impact of

vulnerabilities

Effectiveness of current

controls

52

Architectural Risk Analysis
Step by step: Risk calculation

 Impact

Likelihood

High Medium Low

High High High Medium

Medium High Medium Low

Low Medium Low Low

2013-11-07

Linköpings universitet 27

53

Architectural Risk Management
Step by step: Mitigation, management and measurement

 Risk mitigation

 Reduce likelihood

 Reduce impact

 Risk management and

measurement

 Not all risks can be mitigated

 Accepting the risk

 Outsourcing risk via insurance

 Partial mitigation

 Monitoring risk exposure over time

Asset identification

Vulnerability Threat

Risk mitigation

Risk management and measurement

Architectural risk analysis

54

Capability Models

2013-11-07

Linköpings universitet 28

55

Capability Maturity Model (CMM)

 Born from military research in the 80’s to avoid:

 Project failure

 Over budget

 Finished to late

 Objective evaluation of software development processes

 Variations: SW-CMM, CMMI, iCMM, SSE-CMM

56

Capability Maturity Model (CMM)

 Helps organizations to improve their capability to perform a

particular process

 Also used to evaluate organizations:

 Process capability  measures performance

 Process maturity  measures how defined, managed, measured,

and controlled a process is

2013-11-07

Linköpings universitet 29

57

Capability Maturity Model (CMM)

 Five levels of software process maturity, based on an

organization's support for certain process areas (PAs).

 Level 1: Initial

 Level 2: Repeatable

 Level 3: Defined

 Level 4: Managed

 Level 5: Optimized

58

Capability Maturity Model (CMM)

 Key process areas:

 Requirement activities and artifacts

 Documentation & specifications

 Audits & inspections

 Documented processes and procedures

 Not in CMM:

 The software itself

 Technical artifacts (use cases, design models, code…)

2013-11-07

Linköpings universitet 30

59

Other CMM Models: CMMI

 CMM Integration (CMMI) integrates various CMMs

 CMMs from different fields  Set of integrated models

60

Other CMM Models: SSE-CMM

 System Security Engineering Maturity Model (SSE-CMM)

 Scope:

 Security engineering practices

 Throughout development and support

 Process areas (PAs)

 Engineering

 Project

 Organizational

2013-11-07

Linköpings universitet 31

61

Summary

 Terminology

 Software engineering and security

 Development processes for adding security

 SDL, TSP and TSP-Secure, CLASP, S3P

 Security requirements

 SQUARE, CC

 Risk analysis and risk managements

 Overview, Architectural risk management, RMF

 Capability maturity models

 CMM and its variations

62

What’s next?

 Introduction – why software security?

 Secure software development

 Vulnerabilities, exploits and testing

 Software inspections

 Static analysis

 Security modeling

 Guest lecture from industry

