
Secure Software Development

Ulf Kargén

Institutionen för Datavetenskap (IDA)

Avdelningen för Databas- och Informationsteknik (ADIT)

Original slides by Marcus Bendtsen

TDDC90 – Software Security

Agenda

• Securing the software development life cycle

• Example of a formal secure development method

• Secure architectural, design and implementation patterns

2

Introduction

We do not simply write code, and then as an

afterthought test and patch it to ensure that it

fulfills a functional requirement:

If we want a piece of code that sums integers, then we

state this before we start coding and specifically write

the code to sum integers. We do not randomly write

code and then try and patch the code to sum integers.

3

Introduction

For non-functional requirements such as quality and security, the

same logic applies: We do not patch a piece of code to ensure it fulfills

a non-functional requirement.

• Non-functional requirements are met not only by stating the

requirements, but activities are required.

• Security considerations must permeate all phases of the

software development life cycle.

4

Software Development Life Cycle

5

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Software Development Life Cycle

6

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Software Development Life Cycle

7

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Security Requirements

• Requirements are gathered during the initial phase of the

software development life cycle.

• This is an opportunity to not only gather requirements on

“business logic”, but also security requirements.

• Several methods exists for gathering security requirements.

• We will look at misuse cases, which can be seen as a

method in itself, but also takes part in more elaborate methods

(such as SQUARE).

8

Use cases and Misuse cases

• A use case illustrates required usage of a system – i.e.

expected functionality.

• However it is equally important to illustrate how one should not

be able to use the system.

• Misuse cases can be used to identify threats, assets, and

required countermeasures.

9

Misuse case legend

10 Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

Misuse case example

• Electronic Patient Record (EPR)

• Under normal circumstances patients should be registered in the

system and linked to a specific ward – only personnel with access

to the patients at this ward can then read the patients records.

• During emergencies the organization and the law allows the use of

an emergency access control function – which gives immediate

access to any records needed.

• For such an emergency control to be useful, it must be available at

all time. This effectively creates a backdoor in the system that

insiders can use to snoop around.

• By identifying emergency access as a vulnerability we can also

consider proper countermeasures – auditing (enables traceability

and detection) and awareness training (making sure that users

are aware of consequences of misuse).

11

Electronic Patient Record

12 Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

User input in web-based systems

13 Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

An insider on the system development team

14 Image from Lillian Røstad – An extended misuse case notation: Including vulnerabilities and the insider threat

Requirements

• Misuse cases is one method of gathering requirements.

• Other more complex methods exists that range up to full-

fledged risk analysis methods.

• Misuse cases are good due to their simplicity, this increases the

probability that they will be used.

• When requirements have been gathered they are transferred to

the design and architecture phase.

15

Software Development Life Cycle

16

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Risk analysis

• Risk analysis is used at the architecture & design phase

and at the verification phase (to some degree also at requirements stage)

• Helps to find and quantify risks and then allows us to change

our architecture and design.

• We will look briefly at CORAS and in more detail about

Attack Trees.

17

CORAS (overview)

18 Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

Step 1 – Experts and clients decide upon

which system is to be analyzed and what

parts of the system that should be focused

upon.

Step 2 – The system to be analyzed is

formalized, assets are identified, high-level

risk analysis.

CORAS (overview)

19

Step 3 – Prioritize assets, create

scales for consequence and

likelihood values, create risk

evaluation matrix.

Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

CORAS (overview)

20

Step 4 – Create threat

diagrams through structured

brainstorming (workshop).

Step 5 – Estimate risks

(consequence and likelihood)

Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

CORAS (overview)

21

Step 6 – Risk evaluation,

estimates are confirmed or

adjusted.

Step 7 – Risk treatment

Images from Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

Attack trees

Represent attacks against the system in a tree structure, with the

goal as the root node and different ways of achieving that goal as

leaf nodes.

22

Attack Trees

23

Open Safe

Pick lock Learn combo Cut open
Install

improperly

Find written

combo

Get combo

from target

Threaten Blackmail Eavesdrop Bribe

Listen to

conversation

Get target to

state combo

Attack Trees

24

Open Safe

Pick lock Learn combo Cut open
Install

improperly

Find written

combo

Get combo

from target

Threaten Blackmail Eavesdrop Bribe

Listen to

conversation

Get target to

state combo

and

Attack Trees

25

Open Safe

Pick lock Learn combo Cut open
Install

improperly

Find written

combo

Get combo

from target

Threaten Blackmail Eavesdrop Bribe

Listen to

conversation

Get target to

state combo

and

P I

I PII

PI

P II P

P

Attack Trees

26

Open Safe

Pick lock Learn combo Cut open
Install

improperly

Find written

combo

Get combo

from target

Threaten Blackmail Eavesdrop Bribe

Listen to

conversation

Get target to

state combo

and

P I

I PII

PI

P II P

P

$20 $40

$60 $20$100$60

$75
$20

$20$30 $10 $100

$10

Attack Trees

• We can annotate the attack tree with many different kind of

Boolean and continuous values:

• “Legal” versus “Illegal”

• “Requires special equipment” versus “No special equipment”

• Probability of success, likelihood of attack, etc.

• Once we have annotated the tree we can query it:

• Which attacks cost less than $10?

• Legal attacks that cost more than $50?

• Would it be worth paying a person $80 so they are less susceptible

to bribes? (In reality you need to also consider the probability of success)

27

Attack Trees

• First you identify possible attack goals.

• Each goal forms a separate tree.

• Add all attacks you can think of to the tree.

• Expand the attacks as if they were goals downwards in the tree.

• Let somebody else look at your tree, get comments from

experts, iterate and re-iterate.

• Keep your trees updated and use them to make security

decisions throughout the software life cycle.

28

Software Development Life Cycle

29

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Software Development Life Cycle

30

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Software Development Life Cycle

31

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Software development process

• The software development life cycle is generic, can be modified

to fit into any development process:

• Iterative (SCRUM, Kanban, etc)

• Waterfall

• Adopting a secure software development process entails

adding the security touchpoints discussed.

• Examples of formal development processes that include

security touchpoints are: SDL, TSP, CLASP.

32

SECURITY DEVELOPMENT

LIFECYCLE (SDL)

33

Security Development Lifecycle (SDL)

If a software development project is determined to be subject to

the security development lifecycle (SDL) then the team must

successfully complete sixteen mandatory security activities to

comply with the Microsoft SDL process.

-Simplified Implementation of the Microsoft SDL

34

Pre-SDL: Security training

• All members must receive appropriate training to stay

informed about security basics and recent trends in security

and privacy.

• Topics include:

• Threat modeling (e.g. design implications)

• Secure coding (e.g. buffer overruns, cross-site scripting)

• Privacy (e.g. types of privacy-sensitive data)

• This is only the baseline training, specialization and advanced

training may be necessary.

35

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 1: Requirements

• Specify security requirements for the application as it is designed to

run in its planned operational environment.

• A project team must define quality gates (e.g. all compiler warnings

must be fixed before committing code), these are defined for each

phase of the development and are negotiated with a security advisor.

• Bug bars must be defined which can be seen as quality gates for the

entire project, e.g. no known vulnerabilities in the application with a

“critical” or “important” rating at time of release.

36

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Identify functional aspects of the software that require deep review:

• Which portions of the project will require security design reviews

before release?

• Which portions of the project will require penetration testing by a

mutually agreed upon group that is external to the project team?

• What is the privacy impact rating?

• P1: High privacy risk, e.g. installs software

• P2: Moderate privacy risk, e.g. one-time user initiated data-transfer

• P3: Low privacy risk, e.g. no anonymous or personal data is transferred

37

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 2: Design

• All design specifications should describe how to securely

implement all functionality provided by a given feature or

function:

• Attack surface reduction

• Give attackers less opportunity to exploit a potential weak spot

• For example, reduce amount of code that is exposed to untrusted inputs

• Defense in depth

• Design system with multiple layered independent defenses. (Design

with the assumption that unknown vulnerabilities might exist.)

• Threat modeling (risk analysis) of components or features that have

meaningful security risks (can be defined by the security risk assessment

during requirements).

• Secure design patterns (discussed later)
38

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 3: Implementation

• Publish a list of approved tools and their associated security

checks, such as compilers/linker options and warnings.

• List is to be approved by external security advisor.

• Teams should analyze all functions and APIs that will be used

in conjunction with a software development project and

prohibit those that are determined to be unsafe.

• Once a prohibited list is defined, all code should be scanned

for these functions and APIs and modified accordingly.

• Static analysis of code should be performed

• Helps to catch certain bugs early

• Helps to ensure that secure coding policies are followed

39

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Example: SDL Banned C APIs
CharToOem, CharToOemA, CharToOemBuffA, CharToOemBuffW, CharToOemW,

IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr,

IsBadStringPtr, IsBadWritePtr, Makepath, OemToChar, OemToCharA,

OemToCharW, StrCat, StrCatA, StrCatBuff, StrCatBuffA, StrCatBuffW,

StrCatChainW, StrCatN, StrCatNA, StrCatNW, StrCatW, StrCpy, StrCpyA,

StrCpyN, StrCpyNA, StrCpyNW, StrCpyW, StrLen, StrNCat, StrNCatA,

StrNCatW, StrNCpy, StrNCpyA, StrNCpyW, _alloca, _fstrncat, _fstrncpy,

_getts, _gettws, _i64toa, _i64tow, _itoa, _itow, _makepath, _mbccat,

_mbccpy, _mbscat, _mbscpy, _mbslen, _mbsnbcat, _mbsnbcpy, _mbsncat,

_mbsncpy, _mbstok, _mbstrlen, _snprintf, _sntprintf, _sntscanf,

_snwprintf, _splitpath, _stprintf, _stscanf, _tccat, _tccpy, _tcscat,

_tcscpy, _tcsncat, _tcsncpy, _tcstok, _tmakepath, _tscanf, _tsplitpath,

_ui64toa, _ui64tot, _ui64tow, _ultoa, _ultot, _ultow, _vsnprintf,

_vsntprintf, _vsnwprintf, _vstprintf, _wmakepath, _wsplitpath, alloca,

gets, lstrcat, lstrcatA, lstrcatW, lstrcatn, lstrcatnA, lstrcatnW,

lstrcpy, lstrcpyA, lstrcpyW, lstrcpyn, lstrcpynA, lstrcpynW, lstrlen,

lstrncat, nsprintf, scanf, snscanf, snwscanf, sprintf, sprintfA,

sprintfW, sscanf, strcat, strcatA, strcatW, strcpy, strcpyA, strcpyW,

strcpynA, strlen, strncat, strncpy, strtok, swprintf, swscanf, vsprintf,

vswprintf, wcscat, wcscpy, wcslen, wcsncat, wcsncpy, wcstok, wnsprintf,

wnsprintfA, wnsprintfW, wscanf, wsprintf, wsprintfA, wsprintfW,

wvnsprintf, wvnsprintfA, wvnsprintfW, wvsprintf, wvsprintfA, wvsprintfW

40

Phase 4: Verification

• Dynamic program analysis, monitor application problems with

memory corruption, user privilege issues, etc.

• Fuzz testing, deliberately introduce malformed or random data

to an application during dynamic analysis.

• Update threat model and attack surface analysis, account for

any design or implementation changes to the system,and

assure that any new threats/attack are reviewed and mitigated.

41

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 5: Release

• An incident response plan must be in place:

• A first point of contact in an emergency.

• On-call contacts with decision-making authority that are available

24-hours a day.

• Security servicing plans for code inherited from other groups in the

organization.

• Security servicing plans for third-party code (and if appropriate the

right to make changes).

42

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 5: Release (cont.)

• Final security review: Includes an examination of threat models, tool

output, performance against quality gates and bug bars.

• Pass FSR – Good to go.

• Pass FSR with exceptions – Issues that can be fixed in the next release.

• FSR with escalation – Go back and address whatever SDL requirement that

is not fulfilled or escalate to executive management for decision.

• Release product conditional on FSR.

• If at least one component has privacy rating P1 then a privacy advisor

must certify that the privacy requirements are satisfied.

• All specifications, code, binaries, threat models, plans, etc. must be

archived so that service can be done on the product at a later stage.

43

Pre-SDL Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

• Security advisors can request that for some critical software

additional activities are completed, e.g.:

• Manual code review

• Penetration testing

• Vulnerability analysis of similar applications

• SDL is not a “one-size-fits-all” process, teams must implement

SDL in a fashion that is appropriate to time and resources.

• There exists variants, such as SDL for Agile.

44

Security Development Lifecycle (SDL)

SECURE DESIGN PATTERNS

45

Software Development Life Cycle

46

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Secure design patterns

• Descriptions or templates describing a general solution to a

security problem that can be applied in many different

situations.

• The design patterns are meant to eliminate the accidental

insertion of vulnerabilities into code or to mitigate the

consequence of vulnerabilities.

• Categorized by abstraction: architecture, design or

implementation.

47

Categories

• Architectural-level patterns: Focus on high-level allocation of responsibilities

between different components and define the interaction between those high-

level components.

• Privilege separation (PrivSep)

• Design-level patterns: Address problems in the internal design of a single

high-level component.

• Secure factory

• Secure chain of responsibility

• Implementation-level patterns: Low-level security issues, applicable to

specific functions or methods in the system.

• Secure logger

• Clear sensitive information

48

Privilege separation (PrivSep)

• Intent: Reduce the amount of code that runs with special

privilege without affecting or limiting the functionality of the

program.

• Motivation: In many applications, a small set of simple

operations require elevated privileges, while a much larger set

of complex and security error-prone operations can run in the

context of normal privileged user.

• PrivSep is applicable when high-privilege and low-privilege code

can be separated into separate components, and there is a small

amount of interaction between these components

• If continuous interaction is required Defer to Kernel (see course

literature) is more appropriate

49

Open socket and
listen for connections

Privilege separation (PrivSep)

50

root Request from unauthorized user

Spawn a child process
that has least
possible privilege

root

Authenticate (complex
code)

Unprivileged

Spawn a child with
the privileges of the
authorized user

root

Do some work as user

User

Return identity

• The majority of the code is run

without elevated privileges.

• If there is a vulnerability and

somebody gets control of the

process, then they are confined

within the same level of

privilege.

• Extra testing, verification,

reviews etc. can be focused on

the code that runs with elevated

privileges.

51

Authenticate (complex code)

Unprivileged

Do some work as user

User

Open socket and listen
for connections

root

Spawn a child process
that has least possible
privilege

root

Spawn a child with the
privileges of the
authorized user

root

Privilege separation (PrivSep)

Secure Factory

• Intent: Separate the security dependent logic involved in

creating an object from the basic functionality of the created

object.

• Motivation: An application may make use of an object whose

behavior is dependent on the privileges of the user running the

application.

52

Secure Factory

53

AbstractSecureFactory

+getInstance() : AbstractSecureFactory

+getObject(givenCredentials : SecurityCredentials) : SomeObject

ConcreteteSecureFactory1

+getObject(givenCredentials : SecurityCredentials) : SomeObject

ConcreteteSecureFactory2

+getObject(givenCredentials : SecurityCredentials) : SomeObject

Getting SomeObject is done by making the call:

AbstractSecureFactory.getInstance().getObject(securityCredentials)

The returned object, SomeObject, is an object that operates with the correct privileges.

Secure Factory

• Inside the factory:

54

1. Using the current concrete implementation of AbstractSecureFactory

2. Look at security credentials that were passed in the call

3. Create an instance of the appropriate concrete version of SomeObject

4. Further specialise settings in SomeObject

SomeObject

LowPrivilegeSomeObject

MidPrivilegeSomeObject

HighPrivilegeSomeObject

Secure Factory

55

• The caller and SomeObject does not have to contain logic for checking

privileges. It is always returned by the factory, and the factory picks the

SomeObject with correct behavior.

• Concrete versions of SomeObject does not have to implement code for

functions that are not callable by the level of privilege to which it is

developed.

• The LowPrivilegeSomeObject does not need to implement the Write

function.

Secure Chain of Responsibility

• Intent: Decouple the logic that determines privileges from the

portion of the program that is requesting the functionality.

• Motivation: Applications sometimes need to allow and disallow

certain functions depending on the role of the user.

56

Secure Chain of Responsibility

57

Manager
Report

Generator

Sale Analyst
Report

Generator

Sales Intern
Report

Generator

Supply

request

and user

credentials

Handle request Handle request Handle or reject request

Pass request if

credential check

fails

Pass request if

credential check

fails

Secure Chain of Responsibility

• The selection of functionality is hidden from the caller, it will be

selected based on the user credentials.

• The caller is not aware of which handler has dealt with the request.

• Easy to change the behavior of the system (add/remove handlers).

Can even be done dynamically at runtime by changing the links.

58

Manager
Report

Generator

Sale Analyst
Report

Generator

Sales Intern
Report

Generator

Supply request

and user

credentials

Handle request Handle request Handle or reject request

Pass request if credential

check fails

Pass request if credential

check fails

Secure Logger

• Intent: Prevent an attacker from gathering potentially useful

information about the system from system logs and to prevent

an attacker from hiding their actions by editing system logs.

• Motivation: System logs usually contain a great deal of

information about the system itself and its users.

59

Secure Logger

60

Application Secure Logger

Log ReaderLog Viewer

Log

Protected data

Unprotected data

Secure Logger

• Standard mechanisms for reading log files will not work as the

data will be somehow encrypted.

• The reader is necessary to access log files, and it requires

authentication and authorization.

• Any adversary that gets a hold of log files can not use their

content.

• (A possible implementation could use existing disk encryption systems).

61

Application Secure Logger

Log ReaderLog Viewer

Log

Protected data

Unprotected data

Clear Sensitive Information

• Intent: It is possible that sensitive information has been stored

in reusable resources after a user session or application has

run. Sensitive information should be cleared from reusable

resources.

• Motivation: In many cases the action of returning a reusable

resource to the pool of resources simply marks the resource as

available. The contents of the resource are left intact until the

resource is actually reused. This could potentially lead to

leaking of private information.

(Resources include files, memory allocations, etc.)

62

Clear Sensitive Information

63

Application Pool

Scrub data
Release data Return to pool

Get resource

Do not simply release back

Clear Sensitive Information

64

ClientInfo::~ClientInfo() {

 this->ipAddr = 0;

 this->trustLevel = BOGUS;

 this->numFaultyRequests = 0;

}

An example of clearing sensitive information in the destructor of an object. In this

way the information stored in memory is made insensitive before destroying the

object.

Secure Design Patterns

• Secure design patterns are important for all developers,

regardless of platform or language.

• Their main purpose is to:

• Eliminate the accidental insertion of vulnerabilities into code or

to mitigate the consequence of vulnerabilities.

• Using design patterns you are taking advantage of many years

of learning from mistakes made by others, and you are using

best practices.

• It also helps when communicating about code with other

developers.

• There are many more very useful patterns:

• C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, K. Tagashi.

Secure Design Patterns. Technical Report CMU/SEI-2009-TR-010.

65

Software Development Life Cycle

66

Requirements

Gather
requirements
and use cases

Architecture
and Design

Plan how the
system shall

work and how
code should
be written

Implementation

Code and
make test

plans

Verification

Test and
ensure that

requirements
and design are

fulfilled

Release &
Maintenance

Release, patch,
release, patch,

…

Security requirements
Risk analysis

Risk-based

security tests

Static analysis

Risk analysis and

penetration testing

Misuse cases
CORAS/

Attack Trees

Secure design patterns

SDL

	Default Section
	Bild 1
	Bild 2: Agenda
	Bild 3: Introduction
	Bild 4: Introduction
	Bild 5: Software Development Life Cycle
	Bild 6: Software Development Life Cycle
	Bild 7: Software Development Life Cycle
	Bild 8: Security Requirements
	Bild 9: Use cases and Misuse cases
	Bild 10: Misuse case legend
	Bild 11: Misuse case example
	Bild 12: Electronic Patient Record
	Bild 13: User input in web-based systems
	Bild 14: An insider on the system development team
	Bild 15: Requirements
	Bild 16: Software Development Life Cycle
	Bild 17: Risk analysis
	Bild 18: CORAS (overview)
	Bild 19: CORAS (overview)
	Bild 20: CORAS (overview)
	Bild 21: CORAS (overview)
	Bild 22: Attack trees
	Bild 23: Attack Trees
	Bild 24: Attack Trees
	Bild 25: Attack Trees
	Bild 26: Attack Trees
	Bild 27: Attack Trees
	Bild 28: Attack Trees
	Bild 29: Software Development Life Cycle
	Bild 30: Software Development Life Cycle
	Bild 31: Software Development Life Cycle
	Bild 32: Software development process

	SDL
	Bild 33: Security DEVELOPMENT LIFECYCLE (SDL)
	Bild 34: Security Development Lifecycle (SDL)
	Bild 35
	Bild 36
	Bild 37
	Bild 38
	Bild 39
	Bild 40: Example: SDL Banned C APIs
	Bild 41
	Bild 42
	Bild 43
	Bild 44: Security Development Lifecycle (SDL)

	Secure design patterns
	Bild 45: Secure Design patterns
	Bild 46: Software Development Life Cycle
	Bild 47: Secure design patterns
	Bild 48: Categories
	Bild 49: Privilege separation (PrivSep)
	Bild 50: Privilege separation (PrivSep)
	Bild 51: Privilege separation (PrivSep)
	Bild 52: Secure Factory
	Bild 53: Secure Factory
	Bild 54: Secure Factory
	Bild 55: Secure Factory
	Bild 56: Secure Chain of Responsibility
	Bild 57: Secure Chain of Responsibility
	Bild 58: Secure Chain of Responsibility
	Bild 59: Secure Logger
	Bild 60: Secure Logger
	Bild 61: Secure Logger
	Bild 62: Clear Sensitive Information
	Bild 63: Clear Sensitive Information
	Bild 64: Clear Sensitive Information
	Bild 65: Secure Design Patterns
	Bild 66: Software Development Life Cycle

