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Integer overflows and sign errors

Adding, subtracting, or multiplying an integer with a too large value can cause it 

to wrap around

▪ Can be used to circumvent input validation to e.g. cause buffer overflows
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void print_user(char* username) {

char buffer[1024];

char* prefix = “User: “;

const unsigned int prefix_len = 6;

unsigned int len = strlen(username);

// Space required for prefix, username and

// string terminator.

unsigned int size = prefix_len + len + 1;

if(size > 1024)

exit_with_error();  // Error, too long string

strcpy(buffer, prefix);   // Copy prefix

strcat(buffer, username); // Concatenate username

printf(“%s”, buffer);

}

What happens if the user supplies 

an extremely long ‘username’ 

here?

▪ If username is longer than 

UINT_MAX - 7, an integer 

overflow will occur.

 Input will pass length check, 

but still more than 4GB copied 

into buffer…

Similar problems can arise when 

casting between data types.

E.g. int → short: 

Most significant two bytes are 

dropped



Integer overflows and sign errors

A similar class of vulnerabilities are sign errors – mixing signed and unsigned 

data types in an unsafe way
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// Reads ‘size’ bytes from file ‘f’ into buffer ‘out’

void

read_from_file(void* out, FILE* f, unsigned int size);

...

int read_entry(FILE* input) 

{

char buffer[1024];

int len;

// Read four-byte length field from file into ‘len’

read_from_file(&len, input, 4);

if(len > 1024)

return ERR_CODE; // Error, data won’t fit

// Read ‘len’ bytes from file into buffer

read_from_file(buffer, input, len);

...

The problem here is that signed 

and unsigned data types are 

mixed.

▪ What happens if the length 

field in the file is a negative 

number, e.g. -1?

 The length check will succeed, 

as -1 < 1024

 In the call to ‘read_from_file’, 

the ‘len’ variable will be 

interpreted as an unsigned 

data type

 The 32-bit representation of -1 

is 0xFFFFFFFF ≈ 4 billion, 

way more than the buffer size!



Integer overflows and sign errors
Can be extremely subtle!
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▪ The value returned by the ‘sizeof’ operator is always of an unsigned type (size_t)

▪ According to the C standard, if two values of different data types are compared, 

and one of the types can represent larger numbers than the other, the value of the 

smaller type is implicitly cast to the larger. 

▪ The above comparison becomes if((size_t)len > sizeof(buffer))

▪ … but don’t rely on these sort of things to avoid vulnerabilities :-)

if(len > 1024)

return ERR_CODE; // Error, data won’t fit

if(len > sizeof(buffer))

return ERR_CODE; // Error, data won’t fit

If the length check from previous example is changed from this… 

… to this, the code is no longer vulnerable. Why?



Avoiding integer errors

▪ Again: Perform input validation!

▪ Catch e.g. negative lengths of strings, etc.

▪ Avoid mixing signed and unsigned data types, as well as types of different 

sizes. Heed compiler warnings!

▪ Understand sizes and conversion rules for data types!

▪ Use the type ‘size_t’ for variables representing lengths of things.

▪ Is always an unsigned data type (cannot be negative)

▪ Guaranteed to be able to represent the length of any object in memory (i.e., it’s 

32 bits on a 32-bit system and 64 bits on a 64-bit system).

▪ Check for wraparounds :
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size_t A = ...

size_t B = ...

if(A > SIZE_MAX - B)

exit_with_error(); // Overflow

size_t sum = A + B;

...



Format string bugs

▪ Takes a format string with placeholders for variable output 

fields, and a number of arguments corresponding to 

placeholders in string.

▪ Vulnerability stems from lazy programmers writing 

printf(string_from_user) instead of 
printf(“%s”, string_from_user)

▪ This works fine, as long as the user-controlled string 

doesn’t contain format specifiers!

▪ printf simply assumes that arguments corresponding to all 

format specifiers exist on the stack – will output whatever is 

on the stack if that is not the case!

▪ Supply e.g. a string “%X%X%X%X” to output four 32-bit 

words from callers stack frame in hexadecimal notation –

trivial information disclosure.

▪ Also possible to read memory at arbitrary address with 

some trickery.
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printf(“An integer: %d, a string: %s”, 123, “Hello!”);

// Output: An integer: 123, a string: Hello!

The printf-family of functions are used in C to format output.

Caller’s stack frame

Pointer to format string

Return address

Saved EBP

123

Pointer to “Hello!”

Stack frame of printf



Format string bugs

▪ printf also has little known (and used) format specifier %n that is used to store the 

number of written characters so far into a variable

▪ Can be used by attacker to write arbitrary data to arbitrary address in memory!

▪ E.g. some function pointer at a known address, which is later used for a function call

▪ Idea (to write arbitrary 32-bit value): 

▪ Supply the address to write to in the format string itself

▪ Use a (large) number of format specifiers to advance printf’s internal argument pointer to 

the format string in the caller’s stack frame (to get to the write address)

▪ Control value written by controlling length of string

▪ Repeat four times, writing one byte at a time

▪ Details not important here – available in extra reading material for interested 

students.
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printf(“A string: %s%n”, “Hello World!”, &x);

// Output: A string: Hello World!

// x == 22 after execution



Avoiding format string bugs

▪ Use printf(“%s”, str) instead of printf(str) 

▪ Unless, perhaps, str is a (hardcoded) constant string

▪ Format string bugs can fairly easily be spotted with static analysis (use of 

non-constant string as first argument)

▪ Modern compilers usually warn about (some) insecure use of printf-family 

of functions.
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Summary: Arbitrary Code Execution

Anatomy of an arbitrary code execution exploit:

1. Supply executable code (shellcode)

a. Inject shellcode into the memory of the process

▪ Supply in input strings/buffers

▪ Put in environment variable

b. Locate shellcode in memory

▪ NOP-sled

▪ Register trampolines

2. Redirect execution to shellcode by overwriting pointer to code, which is 

later dereferenced

▪ Return address on stack: stack-based buffer overflow

▪ Function pointers: stack/heap-based buffer overflow, use-after-free

▪ C++ VTables: stack/heap-based buffer overflow, use-after-free

▪ Also, format string bugs allows any pointer with known location to be overwritten

10



Non-memory-corruption vulnerabilities

So far, we have looked at bugs allowing attackers to overwrite control-data 

for, e.g., arbitrary code execution or DoS

▪ Many dangerous types of bugs are not the result of buffer overflows or 

other memory corruption errors:

▪ Race conditions

▪ Out-of-bounds reads of data
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Race conditions

A shared resource is changed between check and use

▪ Example: File system race conditions

▪ What if file changes between access-check and open?

▪ Attacker can e.g. replace real file with symbolic link with same name to 

sensitive file (e.g. /etc/passwd on Unix)
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check_validity_of_user_data()

[…]

use_user_data()

if (access(filename, W_OK) == 0) {

if ((fd = open(filename, O_WRONLY)) == NULL) {

perror(filename);

return -1;

}

/* Write to the file */

}



Avoiding race conditions

▪ Very broad class of vulnerabilities

▪ Race conditions on file system

▪ Race conditions on memory access between threads

▪ etc.

▪ See literature on course web page for recommendations on avoiding file 

race conditions in Unix
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Out-of-bounds reads
Case study: Heartbleed

Out-of-bounds read from heap-allocated memory in OpenSSL allows 

attackers to read out certificates, private keys, sensitive documents, etc…

▪ Due to incorrect implementation of heartbeat extension of TLS

▪ One of the parties in a connection can send a payload with arbitrary 

data to the other party, which echoes it back unchanged to confirm that 

it is up and running.

▪ Problem: Length of payload that is echoed back is not checked. Can 

read past actual payload into adjacent memory!
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Out-of-bounds reads
Case study: Heartbleed
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int

dtls1_process_heartbeat(SSL *s)

{          

unsigned char *p = &s->s3->rrec.data[0], *pl;

unsigned short hbtype;

unsigned int payload;

unsigned int padding = 16; /* Use minimum padding */

...

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload);

pl = p;

...

‘p’ points to data in 

SSL record

Copy length of 

payload into 

‘payload’

Record consists of:

Heartbeat type (1 byte)

Payload length (2 bytes)

Payload data (up to 65536 bytes)

‘pl’ points to 

payload data



Out-of-bounds reads
Case study: Heartbleed
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...

unsigned char *buffer, *bp;

int r;

/* Allocate memory for the response, size is 1 byte

* message type, plus 2 bytes payload length, plus

* payload, plus padding

*/

buffer = OPENSSL_malloc(1 + 2 + payload + padding);

bp = buffer;

...

/* Enter response type, length and copy payload */

*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

Allocate heap 

memory for reply

Copy ‘payload’ 

bytes into buffer for 

reply message 

Problem: The length of ‘payload’ is never checked! 

Sender can claim a payload length longer than the 

actual received  SSL record.

 Up to 64 kB of adjacent heap memory can be 

leaked to attacker.

 Has been shown to allow reading out private keys 

from servers!



Avoiding memory safety vulnerabilities



Secure coding practices and principles

▪ Principles to adhere to

▪ Best practices

▪ Secure coding standards

▪ Safer languages
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CERT top 10 Secure Coding Practices

1. Validate input

2. Heed compiler warnings

3. Architect and design for security policies

4. Keep it simple

5. Default deny

6. Adhere to the principle of least privilege

7. Sanitize data sent to other systems

8. Practice defense in depth

9. Use effective quality assurance techniques

10.Adopt a secure coding standard
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CERT C Secure Coding Standard (excerpt)

Recommendations

▪ INT01-C: Use rsize_t or size_t for integer values representing size of an object

▪ MSC15-C: Do not depend on undefined behavior

▪ SRC06-C: Do not assume that strtok() leaves the parse string unchanged

▪ FIO07-C: Prefer fseek() to rewind()

▪ MEM01-C: Store a new value in pointers immediately after free()

Rules

▪ INT32-C: Ensure that operations on signed integers to not result in overflow

▪ MSC33-C: Do not pass invalid data to the asctime() function

▪ STR33-C: Size wide character strings correctly

▪ FIO31-C: Do not open a file that is already open

▪ MEM32-C: Detect and handle memory allocation errors
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… or use a safer language
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If not performance-critical:

▪ Use language with managed memory (Java, C#, Python)

▪ Note: This generally avoids low-level memory errors, but still possible to have 

serious security problems!

▪ Misuse crypto (or other) API:s, insecure deserialization,

improper authentication etc.

Otherwise:

▪ If “stuck” with C++, consider e.g. using smart pointers (with small 

performance penalty)

▪ Consider switching to safer compiled language, like Rust

▪ Almost as fast as C/C++, however, security is never “free” …

Language design of “safer” languages either

▪ impose (oftentimes unneeded) safety checks, with a performance penalty 

(e.g., Java, C#)

▪ prevent you from designing/implementing code in a potentially unsafe (but often

convenient) way (e.g., Rust)

▪ Harder to learn

▪ More upfront work to find suitable abstractions during design



Mitigations

OS and compiler exploit protections



Exploit mitigations

Mitigations are technical measures meant to make attacks harder

▪ Raises cost (time required, expertise) for attackers

▪ But doesn’t necessarily make all attacks impossible

Implemented in either operating system or compiler

▪ Stack cookies (Compiler based)

▪ Control-flow integrity (Compiler / Compiler + OS based)

▪ DEP (OS based)

▪ ASLR (OS based)
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Stack cookies

▪ Implemented in compiler, must be applied during compilation

▪ A stack cookie or canary is inserted in stack frame before the return pointer

▪ Cookie is checked prior to executing ‘ret’ instruction. If it has changed, program is 

terminated with an error message.

 Impossible for attacker to overwrite return pointer with a buffer overflow without 

altering cookie.

▪ Typical implementation works approximately like this:

▪ Cookie placed before saved frame pointer (RBP) – prevents overwrite of both 

return address and saved frame pointer

▪ Cookie stored in global variable that is randomly generated at program startup

➢ Static cookies won’t work, can just be replicated by attacker!

▪ A call to a function that checks cookie integrity is inserted before ‘ret’ instruction. 

Terminates program if cookie doesn’t match original.

▪ Typically also reorders local variables in stack frame so that buffers (arrays) are 

located first – prevents overwrites of e.g. function pointers in local variables.
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Stack cookies
Example
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void foo(char* input) 

{

// Push global cookie to stack

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

// Check that cookie match global

// cookie. Terminate otherwise.

}

Caller’s stack frame

input (argument to foo)

Return address

len

buffer

Saved EBP

Stack cookie

Note: 
Reordered



Defeating stack cookies

▪ Only mitigates stack-based buffer overflows

▪ Applying stack cookies comes at a cost – for small functions that are called 

frequently, cost of cookie check can be significant

 Not applied to all functions – various heuristics to determine where to 

use stack cookies

 Only used in functions with buffers of certain types and sizes – some 

attacks may still be possible

▪ On Windows, the Structured Exception Handler (SEH) record on the stack 

can be overwritten to take control before the return and cookie check
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Control-flow integrity (CFI)

▪ Check at runtime that the target of an indirect branch is valid

▪ Most commonly used to check that indirect call targets are valid

 Protects against function-pointer overwrites, use-after-free, etc.

▪ Implemented in e.g. modern Windows versions and (partially) in the LLVM 

and GCC compilers

Tricky to implement well!

▪ Need to maintain a whitelist of all valid targets

▪ Backwards compatibility issues (What about legacy libraries that do not have a 

whitelist?)

▪ For example: Still only experimental support for CFI together with legacy libraries 

in LLVM, not supported at all by GCC

▪ Checks are made at every indirect call – need to be very fast

▪ Requires very fast lookups in whitelist…
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CFI Example: Microsoft Control Flow Guard

Practical implementation of CFI used in Windows

▪ Requires support from both compiler and OS

Compiler does:

▪ Store a whitelist of all valid function call targets in generated executable

▪ Insert calls to a check-function (cf. stack cookies) before all indirect calls

▪ Takes target function address as parameter

▪ By default a check-function that does nothing is used (to make the program runnable on older 

OS versions)

OS does:

▪ Creates a bitmap of valid addresses for each loaded executable (program or library), 

using the stored whitelist in executable

▪ Each 8-byte unit of memory has an entry in bitmap that says if it contains a valid call target

▪ Legacy libraries without CFG have their entire address range marked as valid

▪ Replaces all calls to the dummy function in loaded executables with a “real” version

▪ Does a lookup in bitmap using supplied address – terminates program if not valid
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Control Flow Guard Limitations

▪ CFG uses a coarse-grained whitelist to save RAM – granularity is 8 bytes

 Instructions close to a valid function start also passes check

▪ This can be exploited to bypass CFG by using ROP-gadgets (soon to be 

explained) from a function epilogue right before a valid function.

Moral of this story: Practical software-based CFI-solutions typically require a 

tradeoff between thoroughness and memory/computation overhead

▪ Completely “waterproof” protections are usually too slow to use

 Tradeoffs often enable potential bypass – with some extra effort
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Data Execution Prevention

Use hardware-enforced nonexecutable data pages to prevent shellcode

from running

Implemented in many different operating systems under different names

▪ OpenBSD: W^X (Write xor Execute)

▪ Windows: Data Execution Prevention (DEP)

▪ Linux: Variants of the PaX MPROTECT patch for Linux kernel
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Data Execution Prevention

Recall: Virtual memory divided into pages (typically 4 kB on x86)

▪ Pages can be marked as Readable, Writable, and Executable

 Write to non-Writable page results in program termination 

(Segmentation fault)

▪ Older CPUs (prior to ~2005) didn’t have hardware support to enforce the 

Executable permission

 Possible to execute code from pages marked as non-Executable

▪ Modern CPUs have this – the NX-bit (for No eXecute)

 Setting all pages for stack, heap, etc. as non-Executable prevents 

shellcode from executing.

 Effectively mitigates all code execution exploits from previous slides.

31



Defeating DEP
The return-to-libc attack

Instead of injecting executable code, re-use existing function within program

▪ Overflow stack buffer to set up stack to look like a function call is about 

to be made 

▪ Overwrite return pointer to “return” into start of desired function

 No code on the stack is executed – DEP won’t help

▪ Functions within the standard C library (libc) are popular targets, since 

libc is present in address space of (almost) every program. Hence the 

name.

▪ E.g. the ‘system’ library function is popular – executes an arbitrary 

shell command with privileges of calling program
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return-to-libc example

Recall the stdcall calling convention:

▪ Caller pushes arguments from right to left to stack.

▪ The ‘call’ instruction pushes return address to stack 

and jumps to first instruction of called function

▪ To “call” function bar(int arg1, int arg2) using 

return-to-libc:

▪ Overwrite return pointer with address to first 

instruction of ‘bar’

▪ Put a dummy value above return pointer. This is 

where ‘bar’ expects the caller’s ‘call’ instruction to 

have put the return address.

▪ Put the arguments to ‘bar’ in correct order on the 

stack.

▪ At ‘ret’ instruction, ‘bar’ will be “called”, and stack 

pointer will point at the dummy “return address”, 

just like in a real call.
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Return address

len

buffer

Saved EBP

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

Dummy

\x80 \x9D \x59 \xB7

arg1

arg2

; Start of ‘bar’

push ebp

mov ebp, esp

...



return-to-libc limitations

▪ Limited to using existing functions within program address space

▪ Calling functions which takes pointers (e.g. strings) as arguments 

is tricky.

▪ Can often not perform calls where one argument is required to 

have the value zero (Why?)
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Address Space Layout Randomization (ASLR)

Observation: Most exploit methods rely on predicting 

the address of some piece of code or control data.

▪ Idea: Randomize position of heap, stack, main 

executable, shared libraries, etc. to prevent attacks.

▪ New positions each time program is started

▪ Very effective at mitigating many kinds of attacks.

▪ Brute forcing still possible on 32-bit machines, 

where the memory space available for 

randomization is small. (Works mostly for local 

exploits.)

▪ Methods that do not rely on predicting addresses 

are still effective

▪ The relative position of data within the same 

segment is unaffected by ASLR

▪ Still possible to e.g. overwrite sensitive non-

control data on stack or heap
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Kernel memory

Stack

Text

Data

BSS

Heap

Shared library

Shared library

Random

Random

Random

Random



”Modern” exploit methods

A brief overview



Heap Spraying

Defeats: ASLR

▪ Applicable in certain scenarios where user controllable input can exert 

large control over heap allocations 

▪ Make the program allocate large numbers of large memory blocks, filling 

most of the heap. 

▪ Each block consists of a large NOP sled followed by shellcode.

▪ When hijacking control flow of program, e.g. through a stack based-buffer 

overflow, jump to random position in the middle of the heap

 Large probability of hitting one of the NOP sleds.

▪ Typically requires a scriptable environment. Popular when e.g. attacking 

web browsers

▪ Create large arrays with e.g. JavaScript, and fill them with NOPs + 

shellcode.
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Return Oriented Programming (ROP)

Defeats: DEP

▪ The “standard” method used today by attackers to bypass DEP

▪ Generalization of return-to-libc

▪ First proposed by Hovav Shacham in 2007

▪ Showed that a Turing complete “language” could be created by re-

using code of an executable.

▪ Allows arbitrary code execution without injecting any code – completely 

circumvents DEP!

▪ Idea: Identify code snippets of the form 
[do something useful]
ret

in existing code (main executable or libraries).

▪ Such snippets are referred to as gadgets

38



Return Oriented Programming (ROP)

▪ Put addresses of gadgets on the stack, the first 

one overwriting the return pointer. 

▪ This “chain” of addresses is often referred 

to as a ROP chain.

▪ When the executing function returns, it will pop 

the gadget address, jump to the gadget, 

execute the useful instruction(s), and then 

“return” to the next gadget, and so on.

▪ Shacham showed that even complex program 

constructs, such as loops, can be constructed 

in this way.

39

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

\x96 \x8F \xC0 \xB5

...

...

xor eax, eax

ret

...

\xF0 \x01 \xA0 \x08

pop ecx

pop edx

ret

...



ROP in practice

Most real ROP exploits pivot the stack to another attacker-controlled location.

➢ Allows ROP for non stack-based attacks (function pointer overwrites, 

use-after-free, etc.)

➢ Allows for larger ROP-chains

Pivoting principle: Redirect execution to initial pivot-gadget, for example:

mov rsp,rax
ret 

▪ This will change rsp to instead point to whatever rax was pointing to

▪ rax here points to attacker-controlled part of e.g. heap

(Compare to register trampolines!)

▪ Make sure that ROP chain is set up in memory pointed to by rax. 

After executing pivot gadget, the ”main” ROP chain will start to execute
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ROP in practice

Typically not necessary (or possible) to implement your entire shellcode 

with ROP

▪ Place regular shellcode at a known address on stack or heap

▪ Construct a simple ROP chain that just uses, e.g., the mprotect

system call to mark the page with the shellcode as executable again

▪ Final step of the ROP chain is to simply jump to the regular shellcode
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ROP mitigations

ROP attacks rely on being able to predict the addresses of gadgets, and are 

thus mitigated by ASLR – given that the positions of all executable memory 

regions are randomized.

▪ Still sometimes not the case in practice

➢ On older versions of Linux, the executable’s section itself (‘.text’ 

section) was not randomized, while shared libraries were.

▪ Some ROP mitigations also target stack pivoting specifically – OS checks 

that stack pointer actually points to the stack when certain system APIs are 

invoked. Makes ROP trickier (but not necessarily impossible) in practice.
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ROP mitigations

Intel’s so-called CET technology implements CFI in hardware

▪ Requires support from both CPU, compiler and OS

▪ Needs at least an 11th generation Intel Core CPU and compatible OS

▪ CET implements a shadow stack – return pointers are replicated on a separate 

hidden stack by the CPU

▪ When returning from a function, CPU checks that the return pointer matches 

the one in the shadow stack

▪ Prevents ROP chains from working (in addition to classical return pointer overwrites)

▪ Also introduces a new ENDBRANCH instruction that is prepended before 

indirect jump/call targets.

▪ If the next instruction after an indirect branch is not ENDBRANCH → CPU generates 

an interrupt and OS kills the process

▪ A special whitelist bitmap is needed to allow process to call old libraries without 

ENDBRANCH instructions

▪ Prevents related call and jump oriented programming attacks
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ROP mitigations

Similar implementations of shadow stacks are also offered by other CPU 

vendors (e.g., AMD, ARM)

Intel has touted CET as the end of ROP exploits

▪ Remains to be seen if that promise holds true

▪ Similar things have been said about all of the mitigations mentioned 

in this course…

Still lots of legacy hardware/software around…
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Effectiveness of mitigations

▪ No mitigation is a silver bullet

▪ Some attack methods are thwarted, but often still possible to craft exploits

▪ However, standard techniques often don’t work “out of the box” 

▪ Often need to combine many different attack techniques, several 

different vulnerabilities, and program or OS-specific “tricks”

▪ Example:

1. Take advantage of a flaw in particular ASLR implementation, or use an 

information leakage bug, or find target-specific non-randomized executable 

memory regions to create ROP chain.

2. Set of gadgets typically limited in practice, create small ROP payload that 

disables DEP, and jumps to traditional shellcode.

3. Possibly utilize heap spraying or information leakage bugs to locate shellcode in 

memory
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Effectiveness of mitigations

▪ Bottom line: Crafting exploits still possible, but requires considerable 

expertise and time.

 People rarely write exploits “for fun” anymore

▪ Instead:

▪ Professional penetration testers

▪ Organized crime

▪ Intelligence agencies

▪ A previously unknown vulnerability (“zero-day”) in popular software with 

reliable exploit can be worth $1 000 000 or more…
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