Memory safety in C/C++ programs — Part |l
TDDC90 — Software Security

Ulf Kargén
Department of Computer and Information Science (IDA)

Division for Database and Information Techniques (ADIT)

e =G/au- ol sl . e - : : LiU EXPANDING REALITY

./’;\,sam raH

——

Integer overflows and sign errors

Adding, subtracting, or multiplying an integer with a too large value can cause it

to wrap around

= Can be used to circumvent input validation to e.g. cause buffer overflows

void print_user(char®* username) {

char buffer[1024];
char* prefix = “User: “;
const unsigned int prefix_len = 6;

unsigned int len = strlen(username);

// Space required for prefix, username and

// string terminator.

unsigned int size = prefix_len + len + 1;

if(size > 1024)
exit_with_error(); // Error, too long string

strcpy(buffer, prefix); // Copy prefix

strcat(buffer, username); // Concatenate username

printf(“%s”, buffer);

What happens if the user supplies
an extremely long ‘username’
here?

= |f username is longer than
UINT_MAX - 7, an integer
overflow will occur.

= Input will pass length check,
but still more than 4GB copied
into buffer...

Similar problems can arise when
casting between data types.

E.g. int — short:
Most significant two bytes are

dropped
PP LiU EXPANDING REALITY

Integer overflows and sign errors

A similar class of vulnerabilities are sign errors — mixing signed and unsigned
data types in an unsafe way

// Reads ‘size’ bytes from file ‘f’ into buffer ‘out’ | The problem here is that signed
void and unsigned data types are
read_from_file(void* out, FILE* f, unsigned int size); | mixed.

= What happens if the length
field in the file is a negative

int read_entry(FILE* input) number, e.g. -1?

{ char buffer[1024]: = The length check will succeed,
int len; as -1<1024
= In the call to ‘read_from_file’,
// Read four-byte length field from file into ‘len’ the ‘len’ variable will be
read_from_file(&len, input, 4); interpreted as an unsigned
data type

if(len > 1024)

_ = The 32-bit representation of -1
return ERR_CODE; // Error, data won’t fit

is OXFFFFFFFF = 4 billion,

o way more than the buffer size!
// Read ‘len’ bytes from file into buffer

read_from_file(buffer, input, Tlen);

LiU EXPANDING REALITY

Integer overflows and sign errors
Can be extremely subtle!

If the length check from previous example is changed from this...

if(len > 1024)

return ERR_CODE; // Error, data won’t fit

... to this, the code is no longer vulnerable. Why?

if(len > sizeof(buffer))

return ERR_CODE; // Error, data won’t fit

The value returned by the ‘sizeof’ operator is always of an unsigned type (size t)

According to the C standard, if two values of different data types are compared,
and one of the types can represent larger numbers than the other, the value of the
smaller type is implicitly cast to the larger.

The above comparison becomes if((size_t)len > sizeof(buffer))

... but don’t rely on these sort of things to avoid vulnerabilities :-)

LiU EXPANDING REALITY

Avoiding integer errors

Again: Perform input validation!
= (Catch e.g. negative lengths of strings, etc.

Avoid mixing signed and unsigned data types, as well as types of different
sizes. Heed compiler warnings!

Understand sizes and conversion rules for data types!
Use the type ‘size t’ for variables representing lengths of things.

= |s always an unsigned data type (cannot be negative)

= Guaranteed to be able to represent the length of any object in memory (i.e., it's
32 bits on a 32-bit system and 64 bits on a 64-bit system).

Check for wraparounds :

size_t A = ...

size_t B = ...

if(A > SIZE_MAX - B)
exit_with_error(); // overflow

size_t sum = A + B;

LiU EXPANDING REALITY

Format string bugs

The printf-family of functions are used in C to format output.

= Takes a format string with placeholders for variable output
fields, and a number of arguments corresponding to
placeholders in string. | '

I ,
printf(“An integer: %d, a string: %s”, 123, “Hello!”); | 1 Callers stack frame
// Output: An integer: 123N1ng: Hel TON

. » N Pointer to “Hello!”
® Vulnerability stems from lazy programmers w
123

printf(string_from_user) instead of
printf(“%s”, string_from_user)

Pointer to format string

= This works fine, as long as the user-controlled string

doesn’t contain format specifiers! Return address

= printf simply assumes that arguments corresponding to all Saved EBP
format specifiers exist on the stack — will output whatever is
on the stack if that is not the case! Stack frame of printf

= Supply e.g. a string “%X%X%X%X" to output four 32-bit . .
words from callers stack frame in hexadecimal notation — : :
trivial information disclosure.

= Also possible to read memory at arbitrary address with
some trickery. LiU EXPANDING REALITY

Format string bugs

printf also has little known (and used) format specifier %n that is used to store the
number of written characters so far into a variable

printf(“A string: %s%n”, “Hello world!”, &x);
// Output: A string: Hello world!
// X == 22 after execution

Can be used by attacker to write arbitrary data to arbitrary address in memory!

= E.g. some function pointer at a known address, which is later used for a function call
|dea (to write arbitrary 32-bit value):
= Supply the address to write to in the format string itself

= Use a (large) number of format specifiers to advance printf's internal argument pointer to
the format string in the caller’s stack frame (to get to the write address)

= Control value written by controlling length of string
= Repeat four times, writing one byte at a time

Details not important here — available in extra reading material for interested
students.

LiU EXPANDING REALITY

Avoiding format string bugs

Use printf(“%s”, str) instead of printf(str)
= Unless, perhaps, stris a (hardcoded) constant string

Format string bugs can fairly easily be spotted with static analysis (use of
non-constant string as first argument)

Modern compilers usually warn about (some) insecure use of printf-family
of functions.

LiU EXPANDING REALITY

Summary: Arbitrary Code Execution

Anatomy of an arbitrary code execution exploit:

1.

Supply executable code (shellcode)

a. Inject shellcode into the memory of the process
= Supply in input strings/buffers
= Put in environment variable

D. Locate shellcode in memory
= NOP-sled

= Register trampolines

. Redirect execution to shellcode by overwriting pointer to code, which is

later dereferenced

= Return address on stack: stack-based buffer overflow

" Function pointers: stack/heap-based buffer overflow, use-after-free
= (C++ VTables: stack/heap-based buffer overflow, use-after-free

= Also, format string bugs allows any pointer with known location to be overwritten

LiU EXPANDING REALITY

Non-memory-corruption vulnerabilities

So far, we have looked at bugs allowing attackers to overwrite control-data
for, e.g., arbitrary code execution or DoS

= Many dangerous types of bugs are not the result of buffer overflows or
other memory corruption errors:

= Race conditions

= Qut-of-bounds reads of data

LiU EXPANDING REALITY

A sh

Race conditions

ared resource is changed between check and use

check_validity of user data()

[..]

use_user_data()

= Example: File system race conditions

if (access(filename, W_OK) == 0) {
if ((fd = open(filename, O_WRONLY)) == NULL) {
perror(filename);
return -1;
}

/* Write to the file */

What if file changes between access-check and open?

Attacker can e.g. replace real file with symbolic link with same name to

sensitive file (e.g. /etc/passwd on Unix)

LiU EXPANDING REALITY

Avoiding race conditions

= Very broad class of vulnerabilities
= Race conditions on file system
= Race conditions on memory access between threads
= eftc.

= See literature on course web page for recommendations on avoiding file
race conditions in Unix

LiU EXPANDING REALITY

Out-of-bounds reads
Case study: Heartbleed

Out-of-bounds read from heap-allocated memory in OpenSSL allows
attackers to read out certificates, private keys, sensitive documents, etc...

= Due to incorrect implementation of heartbeat extension of TLS

= One of the parties in a connection can send a payload with arbitrary
data to the other party, which echoes it back unchanged to confirm that
it is up and running.

= Problem: Length of payload that is echoed back is not checked. Can
read past actual payload into adjacent memory!

LiU EXPANDING REALITY

Out-of-bounds reads
Case study: Heartbleed

int
dt1sl_process_heartbeat(SSL
{

*S)

‘p’

points to data in }

SSL record

unsigned char *p = &s->s3->rrec.data[0], *pl;

unsigned short hbtype;
unsigned int payload;

unsigned int padding = 16; /* Use minimum padding */

/* Read type and payload length first */

hbtype = *p++;
n2s(p, payload);
pl = p;

‘pl’ points to
payload data

Record consists of:
Heartbeat type (1 byte)

Payload length (2 bytes)

Payload data (up to 65536 bytes)

Copy length of
payload into
‘payload’

~

)

LiU EXPANDING REALITY

Out-of-bounds reads
Case study: Heartbleed

unsigned char *buffer, *bp;

int r;

/* Allocate memory for the response, size is 1 byte Allocate heap
* message type, plus 2 bytes payload length, plus memory for reply
* payload, plus padding

7‘:/

buffer = OPENSSL_malloc(1l + 2 + payload + padding);
bp = buffer;

/* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp); Problem: The length of ‘payload’ is never checked!
memcpy (bp, pl, payload); Sender can claim a payload length longer than the
actual received SSL record.

= Up to 64 kB of adjacent heap memory can be
Copy ‘payload’ leaked to attacker.

reply message from servers!

iR AV AR 1 1

bytes into buffer for = Has been shown to allow reading out private keys

tTY

B cvn BN~ DA
LIV CAFANUITING REAL

Avoiding memory safety vulnerabilities

LiU EXPANDING REALITY

Secure coding practices and principles

" Principles to adhere to
= Best practices

= Secure coding standards

= Safer languages

LiU EXPANDING REALITY

CERT top 10 Secure Coding Practices

. Validate input
Heed compiler warnings

. Architect and design for security policies
Keep it simple

. Adhere to the principle of least privilege
Sanitize data sent to other systems
Practice defense in depth
Use effective quality assurance techniques

1
2
3
4
5. Default deny
6
14
8
9
1

0. Adopt a secure coding standard

LiU EXPANDING REALITY

20

CERT C Secure Coding Standard (excerpt)

Recommendations

INTO1-C: Use rsize _t or size t for integer values representing size of an object
MSC15-C: Do not depend on undefined behavior

SRCO06-C: Do not assume that strtok() leaves the parse string unchanged
FIOO07-C: Prefer fseek() to rewind()

MEMO1-C: Store a new value in pointers immediately after free()

Rules

INT32-C: Ensure that operations on signed integers to not result in overflow
MSC33-C: Do not pass invalid data to the asctime() function

STR33-C: Size wide character strings correctly

FIO31-C: Do not open a file that is already open

MEMS32-C: Detect and handle memory allocation errors

LiU EXPANDING REALITY

21

... or use a safer language

If not performance-critical:
= Use language with managed memory (Java, C#, Python)

= Note: This generally avoids low-level memory errors, but still possible to have
serious security problems!

= Misuse crypto (or other) API:s, insecure deserialization,
improper authentication etc.

Otherwise:

= If “stuck” with C++, consider e.g. using smart pointers (with small
performance penalty)

= Consider switching to safer compiled language, like Rust
= Almost as fast as C/C++, however, security is never “free” ...
Language design of “safer” languages either

= impose (oftentimes unneeded) safety checks, with a performance penalty
(e.g., Java, C#)

= prevent you from designing/implementing code in a potentially unsafe (but often
convenient) way (e.g., Rust)

= Harder to learn

= More upfront work to find suitable abstractions during design LiU EXPANDING REALITY

Mitigations

OS and compiler exploit protections

23

Exploit mitigations

Mitigations are technical measures meant to make attacks harder
= Raises cost (time required, expertise) for attackers

= But doesn’t necessarily make all attacks impossible

Implemented in either operating system or compiler
= Stack cookies (Compiler based)

= Control-flow integrity (Compiler / Compiler + OS based)
= DEP (OS based)

= ASLR (OS based)

LiU EXPANDING REALITY

24

Stack cookies

Implemented in compiler, must be applied during compilation
A stack cookie or canary is inserted in stack frame before the return pointer

Cookie is checked prior to executing ‘ret’ instruction. If it has changed, program is
terminated with an error message.

= Impossible for attacker to overwrite return pointer with a buffer overflow without
altering cookie.

Typical implementation works approximately like this:

= Cookie placed before saved frame pointer (RBP) — prevents overwrite of both
return address and saved frame pointer

= Cookie stored in global variable that is randomly generated at program startup
» Static cookies won’t work, can just be replicated by attacker!

= A call to a function that checks cookie integrity is inserted before ‘ret’ instruction.
Terminates program if cookie doesn’t match original.

= Typically also reorders local variables in stack frame so that buffers (arrays) are
located first — prevents overwrites of e.g. function pointers in local variables.

LiU EXPANDING REALITY

25

Stack cookies
Example

void foo(char®* 1input)

{

// Push global cookie to stack

unsigned int len;
char buffer[16];

Ten = strilen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

// Check that cookie match global
// cookie. Terminate otherwise.

Note:
Reordered

Lk

Caller’s stack frame

input (argument to foo)

Return address

Saved EBP

Stack cookie

buffer

len

I
LiU EXPANDING REALITY

Defeating stack cookies

= Only mitigates stack-based buffer overflows

= Applying stack cookies comes at a cost — for small functions that are called
frequently, cost of cookie check can be significant

= Not applied to all functions — various heuristics to determine where to
use stack cookies

= Only used in functions with buffers of certain types and sizes — some
attacks may still be possible

= On Windows, the Structured Exception Handler (SEH) record on the stack
can be overwritten to take control before the return and cookie check

LiU EXPANDING REALITY

26

Control-flow integrity (CFl)

= Check at runtime that the target of an indirect branch is valid
= Most commonly used to check that indirect call targets are valid
= Protects against function-pointer overwrites, use-after-free, etc.

" Implemented in e.g. modern Windows versions and (partially) in the LLVM
and GCC compilers

Tricky to implement well!

" Need to maintain a whitelist of all valid targets

= Backwards compatibility issues (What about legacy libraries that do not have a
whitelist?)

= For example: Still only experimental support for CFl together with legacy libraries
in LLVM, not supported at all by GCC

= Checks are made at every indirect call — need to be very fast

= Requires very fast lookups in whitelist...
LiU EXPANDING REALITY

27

28

CFI Example: Microsoft Control Flow Guard

Practical implementation of CFl used in Windows

= Requires support from both compiler and OS

Compiler does:
= Store a whitelist of all valid function call targets in generated executable
" Insert calls to a check-function (cf. stack cookies) before all indirect calls

= Takes target function address as parameter

= By default a check-function that does nothing is used (to make the program runnable on older
OS versions)

OS does:

= Creates a bitmap of valid addresses for each loaded executable (program or library),
using the stored whitelist in executable

= Each 8-byte unit of memory has an entry in bitmap that says if it contains a valid call target
= Legacy libraries without CFG have their entire address range marked as valid

= Replaces all calls to the dummy function in loaded executables with a “real” version

= Does a lookup in bitmap using supplied address — terminates program if not valid

LiU EXPANDING REALITY

29

Control Flow Guard Limitations

= CFG uses a coarse-grained whitelist to save RAM — granularity is 8 bytes
= Instructions close to a valid function start also passes check

= This can be exploited to bypass CFG by using ROP-gadgets (soon to be
explained) from a function epilogue right before a valid function.

Moral of this story: Practical software-based CFI-solutions typically require a
tradeoff between thoroughness and memory/computation overhead

= Completely “waterproof” protections are usually too slow to use

= Tradeoffs often enable potential bypass — with some extra effort

LiU EXPANDING REALITY

Data Execution Prevention

Use hardware-enforced nonexecutable data pages to prevent shellcode
from running

Implemented in many different operating systems under different names
= OpenBSD: WAX (Write xor Execute)

= Windows: Data Execution Prevention (DEP)

® Linux: Variants of the PaX MPROTECT patch for Linux kernel

LiU EXPANDING REALITY

30

31

Data Execution Prevention

Recall: Virtual memory divided into pages (typically 4 kB on x86)

= Pages can be marked as Readable, Writable, and Executable

= Write to non-Writable page results in program termination
(Segmentation fault)

Older CPUs (prior to ~2005) didn’t have hardware support to enforce the
Executable permission

= Possible to execute code from pages marked as non-Executable
Modern CPUs have this — the NX-bit (for No eXecute)

=> Setting all pages for stack, heap, etc. as non-Executable prevents
shellcode from executing.

= Effectively mitigates all code execution exploits from previous slides.

LiU EXPANDING REALITY

32

Defeating DEP

The return-to-libc attack

Instead of injecting executable code, re-use existing function within program

Overflow stack buffer to set up stack to look like a function call is about
to be made

Overwrite return pointer to “return” into start of desired function
= No code on the stack is executed — DEP won’t help

Functions within the standard C library (libc) are popular targets, since
libc is present in address space of (almost) every program. Hence the
name.

= E.g. the ‘system’ library function is popular — executes an arbitrary
shell command with privileges of calling program

LiU EXPANDING REALITY

33

return-to-libc example

Recall the stdcall calling convention:

Caller pushes arguments from right to left to stack.

The ‘call’ instruction pushes return address to stack
and jumps to first instruction of called function

To “call” function bar(int argl, int arg2) using
return-to-libc:

= Overwrite return pointer with address to first
instruction of ‘bar’

= Put a dummy value above return pointer. This is
where ‘bar’ expects the caller’s ‘call’ instruction to
have put the return address.

= Put the arguments to ‘bar’ in correct order on the
stack.

= At ‘ret’ instruction, ‘bar’ will be “called”, and stack
pointer will point at the dummy “return address”,
just like in a real call.

arg2

argl

Dummy

\x80Rx9D dxbxB7

Shved EAP

AlenA

> > > > > >
> o>

> >

> >
> > > > >\

- Start of ‘bar’
push ebp
mov ebp, esp

LiU EXPANDING REALITY

34

return-to-libc limitations

Limited to using existing functions within program address space

Calling functions which takes pointers (e.g. strings) as arguments
is tricky.

Can often not perform calls where one argument is required to
have the value zero (Why?)

LiU EXPANDING REALITY

Address Space Layout Randomization (ASLR)

Observation: Most exploit methods rely on predicting
the address of some piece of code or control data.

= |dea: Randomize position of heap, stack, main

executable, shared libraries, etc. to prevent attacks.

= New positions each time program is started
= Very effective at mitigating many kinds of attacks.

= Brute forcing still possible on 32-bit machines,
where the memory space available for
randomization is small. (Works mostly for local
exploits.)

= Methods that do not rely on predicting addresses
are still effective

= The relative position of data within the same
segment is unaffected by ASLR

= Still possible to e.g. overwrite sensitive non-
control data on stack or heap

35

Kernel memory

Stack

Shared library

Shared library

Heap

BSS

Data

Text

} Random

} Random

LiU EXPANDING REALITY

"Modern” exploit methods

A brief overview

37

Heap Spraying

Defeats: ASLR

Applicable in certain scenarios where user controllable input can exert
large control over heap allocations

Make the program allocate large numbers of large memory blocks, filling
most of the heap.

= Each block consists of a large NOP sled followed by shellcode.

When hijacking control flow of program, e.g. through a stack based-buffer
overflow, jump to random position in the middle of the heap

= Large probability of hitting one of the NOP sleds.

Typically requires a scriptable environment. Popular when e.g. attacking
web browsers

= Create large arrays with e.g. JavaScript, and fill them with NOPs +
shellcode.

LiU EXPANDING REALITY

38

Return Oriented Programming (ROP)

Defeats: DEP

The “standard” method used today by attackers to bypass DEP

Generalization of return-to-libc
First proposed by Hovav Shacham in 2007

= Showed that a Turing complete “language” could be created by re-
using code of an executable.

Allows arbitrary code execution without injecting any code — completely
circumvents DEP!

|dea: ldentify code snippets of the form
[do something useful]
ret

in existing code (main executable or libraries).

= Such snippets are referred to as gadgets

LiU EXPANDING REALITY

39

Return Oriented Programming (ROP)

Put addresses of gadgets on the stack, the first
one overwriting the return pointer.

= This “chain” of addresses is often referred
to as a ROP chain.

When the executing function returns, it will pop
the gadget address, jump to the gadget,
execute the useful instruction(s), and then
“return” to the next gadget, and so on.

Shacham showed that even complex program
constructs, such as loops, can be constructed
in this way.

pop ecx

\xFO \x01 \xAO \x08

\X96RBF axCBxBS
A PAedAp A
A AlenA A
A A A A
A 'ﬁ\uffee\ A
A A A A
A A A A

pop edx
ret

XOor eax, eax
ret

LiU EXPANDING REALITY

40

ROP in practice

Most real ROP exploits pivot the stack to another attacker-controlled location.

» Allows ROP for non stack-based attacks (function pointer overwrites,
use-after-free, etc.)

» Allows for larger ROP-chains

Pivoting principle: Redirect execution to initial pivot-gadget, for example:

mov rsp, rax
ret

= This will change rsp to instead point to whatever rax was pointing to

= rax here points to attacker-controlled part of e.g. heap
(Compare to register trampolines!)

= Make sure that ROP chain is set up in memory pointed to by rax.
After executing pivot gadget, the "main” ROP chain will start to execute

LiU EXPANDING REALITY

ROP in practice

Typically not necessary (or possible) to implement your entire shellcode
with ROP

= Place regular shellcode at a known address on stack or heap

= Construct a simple ROP chain that just uses, e.g., the mprotect
system call to mark the page with the shellcode as executable again

= Final step of the ROP chain is to simply jump to the regular shellcode

LiU EXPANDING REALITY

41

ROP mitigations

ROP attacks rely on being able to predict the addresses of gadgets, and are
thus mitigated by ASLR — given that the positions of all executable memory
regions are randomized.

= Still sometimes not the case in practice

» On older versions of Linux, the executable’s section itself (‘.text’
section) was not randomized, while shared libraries were.

= Some ROP mitigations also target stack pivoting specifically — OS checks
that stack pointer actually points to the stack when certain system APIs are
invoked. Makes ROP trickier (but not necessarily impossible) in practice.

LiU EXPANDING REALITY

42

ROP mitigations

Intel's so-called CET technology implements CFl in hardware
= Requires support from both CPU, compiler and OS

= Needs at least an 11t generation Intel Core CPU and compatible OS

= CET implements a shadow stack — return pointers are replicated on a separate
hidden stack by the CPU

= When returning from a function, CPU checks that the return pointer matches
the one in the shadow stack

= Prevents ROP chains from working (in addition to classical return pointer overwrites)

= Also introduces a new ENDBRANCH instruction that is prepended before
indirect jump/call targets.

= |f the next instruction after an indirect branch is not ENDBRANCH — CPU generates
an interrupt and OS Kkills the process

= A special whitelist bitmap is needed to allow process to call old libraries without
ENDBRANCH instructions

= Prevents related call and jump oriented programming attacks
LiU EXPANDING REALITY

43

ROP mitigations

Similar implementations of shadow stacks are also offered by other CPU
vendors (e.g., AMD, ARM)

Intel has touted CET as the end of ROP exploits

= Remains to be seen if that promise holds true

= Similar things have been said about all of the mitigations mentioned
In this course...

Still lots of legacy hardware/software around...

LiU EXPANDING REALITY

45

Effectiveness of mitigations

No mitigation is a silver bullet
Some attack methods are thwarted, but often still possible to craft exploits
However, standard techniques often don’t work “out of the box”

= Often need to combine many different attack techniques, several
different vulnerabilities, and program or OS-specific “tricks”

Example:

1. Take advantage of a flaw in particular ASLR implementation, or use an
information leakage bug, or find target-specific non-randomized executable
memory regions to create ROP chain.

2. Set of gadgets typically limited in practice, create small ROP payload that

disables DEP, and jumps to traditional shellcode.

3. Possibly utilize heap spraying or information leakage bugs to locate shellcode in
memory

LiU EXPANDING REALITY

46

Effectiveness of mitigations

Bottom line: Crafting exploits still possible, but requires considerable
expertise and time.

= People rarely write exploits “for fun” anymore
Instead:

= Professional penetration testers

= Organized crime

= Intelligence agencies

A previously unknown vulnerability (“zero-day”) in popular software with
reliable exploit can be worth $1 000 000 or more... GA

LiU EXPANDING REALITY

	Default Section
	Bild 1
	Bild 2: Integer overflows and sign errors
	Bild 3: Integer overflows and sign errors
	Bild 5: Integer overflows and sign errors Can be extremely subtle!
	Bild 6: Avoiding integer errors
	Bild 7: Format string bugs
	Bild 8: Format string bugs
	Bild 9: Avoiding format string bugs
	Bild 10: Summary: Arbitrary Code Execution
	Bild 11: Non-memory-corruption vulnerabilities
	Bild 12: Race conditions
	Bild 13: Avoiding race conditions
	Bild 14: Out-of-bounds reads Case study: Heartbleed
	Bild 15: Out-of-bounds reads Case study: Heartbleed
	Bild 16: Out-of-bounds reads Case study: Heartbleed
	Bild 17: Avoiding memory safety vulnerabilities
	Bild 18: Secure coding practices and principles
	Bild 19: CERT top 10 Secure Coding Practices
	Bild 20: CERT C Secure Coding Standard (excerpt)
	Bild 21: … or use a safer language
	Bild 22: Mitigations
	Bild 23: Exploit mitigations
	Bild 24: Stack cookies
	Bild 25: Stack cookies Example
	Bild 26: Defeating stack cookies
	Bild 27: Control-flow integrity (CFI)
	Bild 28: CFI Example: Microsoft Control Flow Guard
	Bild 29: Control Flow Guard Limitations
	Bild 30: Data Execution Prevention
	Bild 31: Data Execution Prevention
	Bild 32: Defeating DEP The return-to-libc attack
	Bild 33: return-to-libc example
	Bild 34: return-to-libc limitations
	Bild 35: Address Space Layout Randomization (ASLR)
	Bild 36: ”Modern” exploit methods
	Bild 37: Heap Spraying
	Bild 38: Return Oriented Programming (ROP)
	Bild 39: Return Oriented Programming (ROP)
	Bild 40: ROP in practice
	Bild 41: ROP in practice
	Bild 42: ROP mitigations
	Bild 43: ROP mitigations
	Bild 44: ROP mitigations
	Bild 45: Effectiveness of mitigations
	Bild 46: Effectiveness of mitigations

