Memory safety in C/C++ programs — Part |
TDDC90 — Software Security

Ulf Kargén
Department of Computer and Information Science (IDA)

Division for Database and Information Techniques (ADIT)

LiU EXPANDING REALITY

——



The C and C++ languages

= Programs compile directly to machine code

= Fine-grained control of memory given to programmers
= Optimized for speed — not reliability

= Subtle mistakes can have devastating security implications!

= Understanding of low-level details necessary to take full advantage of language,
and to avoid introducing vulnerabilities

= Easy to make mistakes when coming from e.g. C# or Java!

LiU EXPANDING REALITY



Outline of lectures

First lecture

Introduction and motivation
Assembly language primer

Vulnerabilities and exploits

Second lecture

More vulnerabilities and exploits
Writing secure code
Mitigations

“Modern” exploit techniques

LiU EXPANDING REALITY



Introduction and motivation




Why look at vulnerabilities in C/C++ code”?

C and C++ are old languages with known security problems
=  Why not just implement everything in Java / C# / Python / Rust and be done with it?

= Some code need to run “close to the metal” (OS kernels, device drivers)
= Performance reasons:
= Web browsers, game engines, etc.

= Low-powered devices (little RAM, slow CPU) e.g., loT devices

= Huge amounts of code already written in C/C++ that needs to be
maintained for decades to come...

LiU EXPANDING REALITY



Why look at vulnerabilities in C/C++ code”?

TIOBE language popularity index, October 2025:

TIoBE a

Oct 2024 Programming Language Ratings
1 1 p Python 24.45% +2.55%
2 4 A G C 9.29% +0.91%
3 2 v @ G+ 8.84% 2.77%
4 3 v E : Java 8.35% -2.15%
5 5 @ C# 6.94% +1.32%
6 6 JS JavaScript 3.41% -0.13%
7 7 @ Visual Basic 3.22% +0.87%
8 8 =G0 Go 1.92% -0.10%

CIUEXPANDTNG REALTTY



Why study attack techniques?

= “Know thy enemy”

= How could you possibly protect from attacks if you don’t know what
techniques attackers use?

= |mportant to be able to tell if a bug has security implications

= Scheduling/prioritizing patches
= Decide what to publish on e.g. public bug trackers

LiU EXPANDING REALITY



Assembly language primer

Linux memory layout and x86 basics



Memory layout of x86-64 Linux

High memory
OXFFFFFFFFFFFFFFFF

Kernel memory

OxFFFFF80000000000
Memory hole

0x00007FFFFFFFFFFF

Stack

v

Shared library

Shared library

ﬁ

Heap

BSS

(Un-initialized global variables)

Data

(Initialized global variables)

Text (program code)

Low memory
0x0000000000000000

(What you will use in the Pong lab)

All processes have 128 TB of private continuous virtual
memory. (Mapped by OS to RAM)

The stack is located at high memory addresses and
grows downwards in memory

= Used for storing local variables of function calls,
function call parameters, return addresses, etc.

= An element on the stack is always 64 bits (8 bytes)
(for example, pushing a single byte to the stack requires that it
is first zero or sign extended to 8 bytes)

Main executable (Text), and its Data and BSS segment, is
located in low memory

The heap is located above the Text, Data, and BSS
segment. Grows upwards in memory.

= Used for dynamically allocated memory (malloc, new)

Note: x86 is a little-endian architecture: First byte of e.g. a
8-byte word is the least significant byte.

LiU EXPANDING REALITY



Registers on the x86-64

6 general-purpose 8-byte registers (RAX — RDX, RSI, RDI) “inherited” from 32-bit
8 new ones in 64-bit mode: R8 — R15

Partial registers

= 4 least significant bytes of full register: EnX

= 2 least significant bytes of full register: nX

= Bytes 1 and 2 of nX called respectively nL and nH (Low and High)

RAX EAX AH AX AL

= Different naming schemes for partials of RSI, RDI, R8 — R15.

Special registers Additional registers
RSP - points to topmost element of stack - CS,SS,DS, ES, FS, GS
+  RBP - points to current frame (on the stack), ©  EFLAGS

which contains local variables of one function
call. Local variables accessed relative to RBP.
Often omitted in optimized code.

RIP — points to the currently executing instruction LiU EXPANDING REALITY



Assembly language mnemonics

Intel style AT&T (gcc, gdb) style
* opcode destination, source * opcode source, destination
* mov [rsp+4], rax * movl %rax, 4(%rsp)

mov dst, src Copy the data in src to dst

add/sub dst, src Add/subtract the data in src to the data in dst

and/xor dst, src Bitwise AND/XOR the data in src with the data in dst and store result in dst
push target Push target onto the stack, decrementing RSP

pop target Pop target from the stack, incrementing RSP

lea dst, src Load the address of src into dst

call address Push address of the next instruction onto stack and set RIP to address
ret Pop RIP from the stack

leave Exit a high-level function (copy RPB to RSP, pop RBP from stack)

jcc address Jump to address if condition code cc (e.g. e, ne, ge) is set

jmp address Jump to address

int value Call interrupt of value (0x80 will perform a Linux system call)

LiU EXPANDING REALITY



Semantics of some important x86 instructions

= push <op>
Equivalent to:
rsp=rsp—38
[rsp] = <op>

Access
memory

" pop <op>

galgiediio Equivalent to:
by esp
<op> = [rsp]
rsp=rsp+8

call <function address>

Instruction for performing a function call.
Pushes return address to stack and
jumps to start of called function.
Equivalent to:

push <address of next instruction>

rip = <function address>

ret

Used to return from function. Pops return
address from stack and jumps back to
the calling function.

Equivalent to:

pop rip

LiU EXPANDING REALITY



Direct vs indirect branches

Direct branches Indirect branches
Addresses are hardcoded offsets Addresses are stored in a register
relative to current instruction pointer | or memory, i.e. decided at runtime
Examples: Examples:
= call 0x123 = call rax
Equivalent to: Equivalent to:
push <address of next instruction> push <address of next instruction>
rip = rip + 0x123 (291 decimal) rip = rax
= jmp 0x123 = jmp rax - Usedto
Equivalent to: Equivalent to: I elEnCaResll
rip = rip + 0x123 rip = rax via mncuon
P pointers
= jec 0x123 = ret
Conditional branches are Target address stored on stack
always direct

LiU EXPANDING REALITY



—

6.

Function calls on x86 (stdcall)

Caller pushes arguments from right to left onto stack

Caller issues a ‘call’ instruction — pushes return address and jumps to function start.

Function prologue executes

a. Pushes old value of RBP to stack, updates RBP to point to saved RBP on stack

b.  Subtracts RSP to allocate space for local variables
Function main logic executes
Function epilogue executes
Puts return value (if any) into RAX register

a.
b. “Deallocates” local variables on stack by increasing RSP
c. Pops saved RBP into RBP

d.

Issues a ‘ret’ instruction — pops return address of stack and jumps to that address

Caller removes arguments from stack

LiU EXPANDING REALITY



Function calls on x86 (stdcall)
Example

foo(user_data);

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Caller’s stack frame

LiU EXPANDING REALITY



Function calls on x86 (stdcall)
Example

foo(user_data);

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Caller’s stack frame

input (argument to foo) | €—— RSP

LiU EXPANDING REALITY



Function calls on x86 (stdcall)
Example

foo(user_data);

\

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Caller’s stack frame

input (argument to foo)

Return address

<— RSP

LiU EXPANDING REALITY



Function calls on x86 (stdcall)
Example

foo(user_data);

\

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Lk

Caller’s stack frame

input (argument to foo)

Return address

Saved EBP

<—— RSP, RBP

LiU EXPANDING REALITY



Function calls on x86 (stdcall)
Example

foo(user_data);

\

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Lk

Caller’s stack frame

input (argument to foo)

Return address

Saved EBP <— RBP
len
buffer
<—— RSP

LiU EXPANDING REALITY



Function calls on x86 (stdcall)

Example

foo(user_data);

\

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Lk

Caller’s stack frame

input (argument to foo)

Return address

Saved EBP <— RBP
Ten

ARy

A A A A

A A A A |<«<—RsP

LiU EXPANDING REALITY



Function calls on x86 (stdcall)

Example
>: |
. :
| |
foo(user_data); ' Caller’s stack frame '
\ input (argument to foo)
void foo(char* input) [ Return address

{ Saved EBP <—— RSP, RBP
unsigned int len;

char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

LiU EXPANDING REALITY



Function calls on x86 (stdcall)

Example

: | €« RBP

|

1 1

1 1

foo(user_data); | Caller’s stack frame |

6\\\\\\\\\\\“\\\\\\\\\\\\\\\\\\\\ input (argument to foo)

I Return address <—— RSP

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

LiU EXPANDING REALITY



Function calls on x86 (stdcall)
Example

foo(user_data);

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Caller’s stack frame

input (argument to foo) | €—— RSP

LiU EXPANDING REALITY



Function calls on x86 (stdcall)
Example

foo(user_data);

void foo(char®* 1input)

{

unsigned int len;
char buffer[16];

len = strlen(input);
strcpy(buffer, input);

printf(“%s: %d\n”, buffer, Tlen);

Caller’s stack frame

LiU EXPANDING REALITY



Vulnerabilities and exploits




26

Vulnerabilities and exploits

Vulnerabilities

= Flaws that makes it possible for a program to fail to meet its security
requirements

What is an exploit?

= A verb: Exploiting a vulnerability means to take advantage of a vulnerability to
compromise security.

= A noun: An exploit is a procedure or piece of code that performs the above.

The purpose of an exploit

= Arbitrary code execution — Completely take over program execution to do
anything the attacker wishes.

= Information disclosure — Leak sensitive information, e.g. Heartbleed
= Denial of Service — Disrupt functionality of a service, e.g. crash a web server

= Privilege escalation — Gain higher privileges than what is allowed according
to system policy. May be combined with arbitrary code execution exploits to
completely compromise system.

= Example: Program running as SUID root in Unix, or with
Administrator/SYSTEM privileges in Windows.

LiU EXPANDING REALITY



27

Vulnerabilities and exploits

Local and remote exploits

= Local exploit — Physical access to system, or valid remote login
credentials, required for exploit.

= Remote exploit — “Anyone” on e.g. the Internet can perform exploit.
Example: Web server exploitable by external requests.

Severity of a vulnerability depends on what kind of exploits it
enables

= Remote exploit leading to arbitrary code execution
= Local DoS exploit

= Local code execution exploit without privilege escalation

LiU EXPANDING REALITY



28

Vulnerabilities and exploits

Local and remote exploits

= Local exploit — Physical access to system, or valid remote login
credentials, required for exploit.

= Remote exploit — “Anyone” on e.g. the Internet can perform exploit.
Example: Web server exploitable by external requests.

Severity of a vulnerability depends on what kind of exploits it
enables

= Remote exploit leading to arbitrary code execution — Really, really bad!
= Local DoS exploit — Not as bad?

= Local code execution exploit without privilege escalation — Meaningless?

LiU EXPANDING REALITY



29

The "Hello World” exploit

Simple buffer overflow on the stack

void foo(char* 1input)
{

unsigned int len;
char buffer[16];

strcpy(buffer, input);

Let’s return to our function ‘foo’ from before
= What happens if ‘input’ is longer than 15 bytes?

= Buffer overflows, overwriting return address if
string is long enough.

= Program later crashes when trying to return
to address 0x41414141 (“AAAA”)

= Results in DoS. How to achieve arbitrary
code execution?

Caller’s stack frame

Aput ArguNULio foo)

A AecdA A |«<—RBP

A AlenA A
A A A A
A '%\uffeé A
A A A A
A A A A |«<—RSP

Note: we use 32-bit
(4-byte) addresses
here to save space.

Same principles apply
to 64-bit



The "Hello World” exploit
Arbitrary code execution

Idea: Include executable machine code in input string, and
set the overwritten return pointer to point to that code.

= Such code is often referred to as “shellcode” — , ,
traditionally often used to open a command shell with

elevated privileges. \x03 ’xCDaAxFEs\xBF
= Payload consists of shellocode + padding (some A:s) + A AedgAr A
new “return” address A AlenA A
en
= Note 1: Due to x86 being little-endian, each byte of the ;
address (here BFFFCDO3 in hex) need to be given in i A A
reverse order when crafting the string ie. | | TTTTTC
“X03\xCD\xFF\xBF”) S h B‘Mf}@ d e

= Note 2: Payload must usually not contain any bytes with the
value zero. Recall that zero (NUL) terminates the string.

* Note 3: This payload may not work for ‘foo’ since buffer is
only 16 bytes (not enough space for code). Also possible to
e.g. put shellcode before return address on stack, in the
caller’s stack frame.

" Problem: The above approach requires that we can - -

precisely predict absolute address of shellcode on stack. )
LiU EXPANDING REALITY

= Typically not possible in practice!

30



The "Hello World” exploit
Making the exploit reliable: Solution 1 — The NOP sled

To avoid having to know the exact shellcode address, we

can use a NOP sled , |
1 |

Precede the shellcode with a sequence of NOP

instructions. \xB0 MxCD axk=s\xBF
= A NOP instruction (hex \x90) does nothing, except A AecdiAr A
of advancing the instruction counter one byte. A A A A
= Point the return address somewhere in the middle of
the NOP sled A A
= Gives some “wiggle room” — As long as the return Shellcode

address points somewhere into the NOP sled,

execution will follow the NOPs into the shellcode. —
N P
= Drawbacks: %
- N P

= Requires larger buffers
NOP NOP NOP NOP

= Still need to know approximate address of NOP

sled I I
1 1
1 1

LiU EXPANDING REALITY



32

The "Hello World” exploit
Making the exploit reliable: Solution 2 — Register trampolines

A more robust solution than the NOP sled is to use I I
register trampolines (a.k.a. register springs) : ;

* Find a register REG that right before the \xD1Rx8C Ax04s \08
function returns points to data that you control. A A
ved AP A
= Given that function behavior is deterministic, if
REG points to data on the stack, it will always A A A A
point to the same location relative to the , A A
beginning of the stack frame. (L fX ___TX.
= Make sure your shellcode starts at just the She”COde
location pointed to by REG EAX —>
m '(:ind_ an instr;Jck;c:on in in ezelggjtabl)etir:n?ge A A A A
main executable or shared library) tha
performs an indirect jump to address in REG A A A A i
= QOverwrite return address with the address fo !
the jump instruction.
mov eax, [ecx+8]
= When fgnction_“returns”, it _wi_II jump to the | §mp eax —
instruction, which in turn will jump to the
shellcode.
= Obviously not always possible to find suitable LiU EXPANDING REALITY

REG and jump instruction.



33

Stack-buffer overflow variations

Sometimes possible to access memory outside buffers without overflow

= For example, incorrect logic when computing an array index

= Referred to as out-of-bounds-write (or read)

Exploit variations:

= The function may alter parts of the overwritten stack area prior to returning —
Special “tricks” often needed in practice

= Insert code that jumps past altered parts of stack to shellcode
= Put shellcode in environment variables

= Put shellcode in other buffers (e.g. on heap)

= If return address cannot be overwritten, other targets are also possible
= Overwrite saved RBP — alters stack frame of calling function
= Overwrite function pointers on stack

= Qverwrite other sensitive non-control data (i.e. data that is not a pointer to code)

LiU EXPANDING REALITY



Data-only attacks
Example

|
void bar(char®* user, bool isAdmin) :
{ 1 Caller’s stack frame

bool full_priv = isAdmin;
char buffer[16]; .. user (argument to bar)

admin (argument to bar)

strcpy(buffer, user);
Return address

if(full_priv) Saved EBP <—— EBP
e1sg/ Do privileged stuff \01 RUD priv
printf( o A A A A
uLSJZi;;As is not admin \n”, A e\uffe’e\ A
} -A A A A
A A A A |«<—ESP

Overwrite full_priv
(to any non-zero value) with
buffer overflow

LiU EXPANDING REALITY



35

Special case: Off-by-one errors

Special case of stack-based overflows where only a single byte can be written
past buffer bounds — Often more subtle than “regular” buffer overflows.

Example:

char buffer[100];
if(strlen(input) > 100)
{
printf(“string too Tong!”);
ex1t(1l);
}
strcpy(buffer, input);

Should be:

char buffer[100];
if(strlen(input) >= 100)
{
printf(“string too long!”);
ex1t(1);
}
strcpy(buffer, input);

Is this safe?

= No! ‘strlen’ does not include the space
needed for the NULL-terminator.

= Using a 100-character string results in a
NULL-byte being written past end of buffer.

= Could e.g. overwrite least significant byte of
saved EBP to alter context of calling function.
Can lead to arbitrary code execution!

LiU EXPANDING REALITY



Examples of stack-based buffer overflows

Real-life overflow in FTP server

char mapped_path[MAXPATHLEN];

1f(! (mapped_path[0] == "'/' & & mapped_path[1l] == '\0'))
strcat(mapped_path, "/");

strcat(mapped_path, dir);

Real-life overflow in web server (the pointer ‘ptr’ points to user-controllable data)

int resolve_request_filename(char *ptr)

{
char filename[255];

if(!strncmp(ptr, thehost->CGIDIR, strlen(thehost->CGIDIR))) {
strcpy(filename, thehost->CGIROOT);
ptr += strlen(thehost->CGIDIR);
strcat(filename, ptr);
} else {
strcpy(filename, thehost->DOCUMENTROOT) ;
strcat(filename, ptr);

LiU EXPANDING REALITY



Examples of stack-based buffer overflows
A more subtle example

Off-by-one overflow in the wu-ftpd FTP server

/ e
v
s
S

Join the two strings together, ensuring that the right thing
* happens if last component is empty, or the dirname is root.

als /
«w

if (resolved[0] == '/' && resolved[1l] == '\0")
rootd = 1;

else
rootd = 0;

if (wbuf) {

if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {
errno = ENAMETOOLONG;
goto errl;

}

if (rootd == 0)
(void) strcat(resolved, "/");

(void) strcat(resolved, wbuf);

LiU EXPANDING REALITY



Avoiding buffer overflows
Some best practices

= Perform input validation

Never trust user-supplied data!
Accept only “known good” instead of using a blacklist
Always perform correct bounds-checking before copying data to buffers

= Use safe(r) APIs for string operations

E.g. strncpy(dst, src, len) instead of strcpy(dst, src)

Beware: strncpy (and strncat) don’t NULL terminate strings if the length of ‘src
is larger than or equal to the maximum allowed (i.e. >= “Ten’)

The following code leads to information leakage if strlen(str) >= 100 (Stack
content beyond ‘buffer’is printed, until a zero-byte is encountered) — Can also
lead to code execution under some conditions.

char buffer[100];
strncpy(buffer, str, sizeof(buffer));

printf(“%s”, buffer);

LiU EXPANDING REALITY



Avoiding buffer overflows
Some best practices

Make sure to terminate strings when using the strn-functions.

char buffer[100];
strncpy(buffer, str, sizeof(buffer));
buffer[sizeof(buffer) - 1] = 0;

printf(“%s”, buffer);

Use strilcpy, strlcat where available. These guarantee correct string termination.

= Note: These are not part of the standard C library. Not available on many systems
(including the one you use for Pong).

C++ has safer alternatives:
= vector and string for dynamically-sized arrays and strings
= Comes at additional computational cost

= span for “keeping track” of buffer sizes in a single object (C++ 20)
LiU EXPANDING REALITY



Heap-based buffer overflows

=  Often similar causes as stack-based buffer overflows

= Also often exploitable, but different methods compared to
overflows on the stack (no return pointer to overwrite)

= Qverwrite function pointers or C++ VTable entries in other
heap-allocated objects

= QOverwrite memory allocator metadata

LiU EXPANDING REALITY



41

Heap-based buffer overflows

Chunks of memory allocated on the heap are often adjacent to each other —
Overflowing from one chunk into another possible

Possible to gain control by overflowing a heap-allocated buffer and
overwriting function pointers in adjacent object on heap.

Use e.g. one of previously discussed methods to “find” shellcode in
memory

= (Semi)predicable location on stack or heap + NOP sled
= Register trampolines

= Shell code in environment variable, etc.

LiU EXPANDING REALITY



Function pointer overwrites
Example (C++)

Heap
(not stack)

struct MyStruct { Function
int var_a; pointer
void (*fun_ptr) (int); |
} . I I
void fun(int 1);
void baz(char* str) {
MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5);

LiU EXPANDING REALITY



Function pointer overwrites
Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr) (i
s

Allocate new
MyStruct
object

void funCint 1); Heap metadata

var_a

void baz(char* str)
MyStruct* s = new MyStruct;
s->fun_ptr = &fun;

fun_ptr

char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5);

LiU EXPANDING REALITY



Function pointer overwrites
Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr)(int);

s

Set fun_ptr
to point to fun

void funCint 1); Heap metadata

var_a

void baz(char* str
MyStruct®* s ew MyStruct;
s->fun_ptr = &fun;

fun_ptr

char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5);

LiU EXPANDING REALITY



Function pointer overwrites
Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr)(int)-

Allocate
16-byte buffer

s

void funCint 1); Heap metadata

var_a

void baz(char* str) { i
MyStruct* s = new M
s->fun_ptr = &fun;

fun_ptr

Heap metadata

char* buffer = new char[16];

strcpy(buffer, str); buffer

s->fun_ptr(5);

LiU EXPANDING REALITY



Function pointer overwrites
Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr)(int); :

}. | |
void fun(int i); Heap metadata
NUL var_a
void baz(char* str) {
MyStruct* s = new MyStruct; XBO \xGR ki F \xBF
s->fun_ptr = &fun; A HeA metAata A
char* buffer = new char[16]; ﬁi ji ﬁi ji
strcpy(buffer, str); N eedr
] A A A A
s->fun_ptr(5);
A A A A

Buffer
overflow! ; ;
| |

LiU EXPANDING REALITY



Function pointer overwrites
Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr)(int);

b fun_ptr now

points to
nopsled/shellcode

void fun(int

void baz(char* str) {
MyStruct* s = new MyStruct;
s->fun_ptr = &fun;

char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5);

Buffer
overflow!

Heap metadata

NUL var_a

\xBO \xCD WFF \xBF
A HeA metPata A
A A A A
A AA A
A A A A
A A A A

LiU EXPANDING REALITY



Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int); I
s | |

void funCint 1); Heap metadata

NUL var_a
\xBO \x€CD \xFF \xBF

void baz(char* str) {
MyStruct* s = new MyStruct;

s->fun_ptr = &fun; A HeA metAata A

char* buffer = new char[16]; /\ /\ /\ A

strcpy(buffer, str); /\ /éufﬁ£§ /\

A A A A

s->fun_ptr(5); ———N\\\\JA\\ A A A
When trying to call fun

(through fun_ptr),
we instead jump to the

shellcode LiU EXPANDING REALITY



49

Function pointer overwrites
Overwriting C++ VTable pointers

Objects of classes with virtual functions have
an implicit VTable-pointer data member

The VTable pointer points to a table of
function pointers for the specific class.

Calls to virtual functions are made by looking
up corresponding function pointer in VTable
during runtime

=> Specific class type of object doesn’t need
be statically known during compilation

Possible to overwrite VTable pointer to point
to a fake VTable using a buffer overflow

" Not as easy as it may seem!

" Need to overwrite with a pointer to a
pointer to desired address

= May still be possible with various “tricks”

class MyClass {
int var_a;
int var_b;
virtual void foo(Q);
virtual void bar(Q);

s

Representation of a
MyClass object in memory

VTable pointer

var_a

var_b

Pointer to MyClass: : foo

Pointer to MyClass: :bar

LiU EXPANDING REALITY



51

Other heap-related vulnerabilities

Use-after-free
= Program use stale pointer to heap-allocated memory that has already been freed.
= May lead to information disclosure...

= Attacker can trick program into printing data in freed memory, after it has been re-
allocated to store sensitive data

= ...or arbitrary code execution
= Attacker can have program re-allocate freed memory to store attacker-supplied data.

= |If program later use a function pointer or C++ VTable entry in freed object, execution
can be redirected by attacker.

® One of the main “remaining” sources or memory safety bugs in mature C++ code!

Double-free

® Program calls ‘free’ or ‘delete’ on pointer to already freed memory

= Can corrupt memory manager metadata to allow arbitrary code execution

Attacks often requires attacker to set up heap to look in a specific way for exploit to succeed

= “Heap feng shui”

LiU EXPANDING REALITY



Use-after-free
Example (C++)

struct MyStruct { Function
int var_a; pointer
void (*fun_ptr)(int); |

}; '

void fun(int 1i);

void baz(char* str) {
MyStruct* s = new MyStruct;
s->fun_ptr = &fun;

delete s;
char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5); ,

Still heap,
not stack

LiU EXPANDING REALITY



Use-after-free
Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr) (i

Allocate new
MyStruct
and init

fun_ptr

s

void funCint 1); Heap metadata

var_a

T fun_ptr

void baz(char* str) {
MyStruct* s = new MyStruct;
s->fun_ptr = &fun;

delete s;
char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5); : I

LiU EXPANDING REALITY




Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);
s

void fun(int 1i);

void baz(charp
MyStruct®
s->fun_ptr

Free pointer to
the MyStruct

delete s;
char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5);

LiU EXPANDING REALITY




Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);
s

void fun(int 1i);

Allocate buffer.
Previously freed
space is now
re-used

void baz(char?*
MyStruct* s
s->fun_ptr

delete s;
char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

fun_ptr

LiU EXPANDING REALITY




Use-after-free

Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr)(int); :

s '

void fun(int 1i);

Heap metadata

A

Aar-A

NUL

void baz(char* str) {
MyStruct* s = new MyStruct;

\xBO \xCD \xkF \xBF

s->fun_ptr = &fun; /\ /\ /\ /\

A

A A

A

delete s;

char* buffer = new char[16];
strcpy(buffer, str); ///i;;;ckep

s->fun_ptr(5); buffer

controlled data
is copied into

LiU EXPANDING REALITY



Use-after-free
Example (C++)

struct MyStruct {
int var_a;
void (*fun_ptr)(int); : |

}; ' |

Heap metadata

Address to
shellcode... A  Aar A NUL
void baz(char* str) {
MyStruct* s = new MyStruct; B0 \xCB x-F \XBF
s->fun_ptr = &fun; /\ /\ /\ /\
A A A A

void fun(int 1i);

delete s;
char* buffer = new char[16];
strcpy(buffer, str); ///i;;;ckep
controlled data
is copied into
buffer

s->fun_ptr(5);

LiU EXPANDING REALITY



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);
s

void fun(int 1i);
void baz(char* str) {

MyStruct* s = new MyStruct;
s->fun_ptr = &fun;

delete s;
char* buffer = new char[16];
strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

A  Aar A NUL
\xBO \xCD \xkF \xBF
A A A A
A A A A

| —

Program erroneously
uses stale pointer to s to
call fun_ptr.

Execution

shellcode!

instead goes to

LiU EXPANDING REALITY



59

Avoiding use-after-free and double-free bugs

= Set pointers to NULL directly after calling free/delete on them to avoid trivial
errors.

= |n practice, bugs are often caused by pointer aliasing — several pointers
pointing to the same memory

= One component calls free/delete on a pointer, while a different
component keeps using another copy of the pointer

= Avoid passing around pointers to heap-allocated data between different
modules.

= Using the C++ “Resource Allocation Is Initialization” (RAIl) pattern avoids
confusion about which component is responsible for deallocating data.

= Use C++ “smart pointers” (at small performance cost)

" std::unique_ptr — can only have a single owner (no copying),
implementation of RAII pattern.

= std::shared_ptr — can be copied, uses reference counting:
automatically deallocates data when all copies have gone out of scope

LiU EXPANDING REALITY



	Default Section
	Bild 1
	Bild 2: The C and C++ languages
	Bild 3: Outline of lectures
	Bild 4: Introduction and motivation
	Bild 5: Why look at vulnerabilities in C/C++ code?
	Bild 6: Why look at vulnerabilities in C/C++ code?
	Bild 7: Why study attack techniques?
	Bild 8: Assembly language primer
	Bild 9: Memory layout of x86-64 Linux (What you will use in the Pong lab)
	Bild 10: Registers on the x86-64
	Bild 11: Assembly language mnemonics
	Bild 12: Semantics of some important x86 instructions
	Bild 13: Direct vs indirect branches
	Bild 14: Function calls on x86 (stdcall)
	Bild 15: Function calls on x86 (stdcall) Example
	Bild 16: Function calls on x86 (stdcall) Example
	Bild 17: Function calls on x86 (stdcall) Example
	Bild 18: Function calls on x86 (stdcall) Example
	Bild 19: Function calls on x86 (stdcall) Example
	Bild 20: Function calls on x86 (stdcall) Example
	Bild 21: Function calls on x86 (stdcall) Example
	Bild 22: Function calls on x86 (stdcall) Example
	Bild 23: Function calls on x86 (stdcall) Example
	Bild 24: Function calls on x86 (stdcall) Example
	Bild 25: Vulnerabilities and exploits
	Bild 26: Vulnerabilities and exploits
	Bild 27: Vulnerabilities and exploits
	Bild 28: Vulnerabilities and exploits
	Bild 29: The “Hello World” exploit Simple buffer overflow on the stack
	Bild 30: The “Hello World” exploit Arbitrary code execution
	Bild 31: The “Hello World” exploit Making the exploit reliable: Solution 1 – The NOP sled
	Bild 32: The “Hello World” exploit Making the exploit reliable: Solution 2 – Register trampolines
	Bild 33: Stack-buffer overflow variations
	Bild 34: Data-only attacks Example
	Bild 35: Special case: Off-by-one errors
	Bild 36: Examples of stack-based buffer overflows 
	Bild 37: Examples of stack-based buffer overflows A more subtle example
	Bild 38: Avoiding buffer overflows Some best practices 
	Bild 39: Avoiding buffer overflows Some best practices
	Bild 40: Heap-based buffer overflows
	Bild 41: Heap-based buffer overflows 
	Bild 42: Function pointer overwrites Example (C++)
	Bild 43: Function pointer overwrites Example (C++)
	Bild 44: Function pointer overwrites Example (C++)
	Bild 45: Function pointer overwrites Example (C++)
	Bild 46: Function pointer overwrites Example (C++)
	Bild 47: Function pointer overwrites Example (C++)
	Bild 48: Function pointer overwrites Example (C++)
	Bild 49: Function pointer overwrites Overwriting C++ VTable pointers
	Bild 51: Other heap-related vulnerabilities 
	Bild 52: Use-after-free Example (C++)
	Bild 53: Use-after-free Example (C++)
	Bild 54: Use-after-free Example (C++)
	Bild 55: Use-after-free Example (C++)
	Bild 56: Use-after-free Example (C++)
	Bild 57: Use-after-free Example (C++)
	Bild 58: Use-after-free Example (C++)
	Bild 59: Avoiding use-after-free and double-free bugs 


