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The C and C++ languages

▪ Programs compile directly to machine code

▪ Fine-grained control of memory given to programmers

 Optimized for speed – not reliability

 Subtle mistakes can have devastating security implications!

 Understanding of low-level details necessary to take full advantage of language, 

and to avoid introducing vulnerabilities

▪ Easy to make mistakes when coming from e.g. C# or Java!
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Outline of lectures

First lecture

▪ Introduction and motivation

▪ Assembly language primer

▪ Vulnerabilities and exploits

Second lecture

▪ More vulnerabilities and exploits

▪ Writing secure code

▪ Mitigations

▪ “Modern” exploit techniques
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Introduction and motivation



Why look at vulnerabilities in C/C++ code?

C and C++ are old languages with known security problems

 Why not just implement everything in Java / C# / Python / Rust and be done with it?

▪ Some code need to run “close to the metal” (OS kernels, device drivers)

▪ Performance reasons: 

▪ Web browsers, game engines, etc.

▪ Low-powered devices (little RAM, slow CPU) e.g., IoT devices

▪ Huge amounts of code already written in C/C++ that needs to be 

maintained for decades to come…
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Why look at vulnerabilities in C/C++ code?
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TIOBE language popularity index, October 2025:



Why study attack techniques?

▪ “Know thy enemy”

▪ How could you possibly protect from attacks if you don’t know what 

techniques attackers use?

▪ Important to be able to tell if a bug has security implications

▪ Scheduling/prioritizing patches

▪ Decide what to publish on e.g. public bug trackers
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Assembly language primer

Linux memory layout and x86 basics



Memory layout of x86-64 Linux
(What you will use in the Pong lab)

▪ All processes have 128 TB of private continuous virtual 

memory. (Mapped by OS to RAM)

▪ The stack is located at high memory addresses and 

grows downwards in memory

▪ Used for storing local variables of function calls, 

function call parameters, return addresses, etc.

▪ An element on the stack is always 64 bits (8 bytes)

(for example, pushing a single byte to the stack requires that it 

is first zero or sign extended to 8 bytes)

▪ Main executable (Text), and its Data and BSS segment, is 

located in low memory

▪ The heap is located above the Text, Data, and BSS 

segment. Grows upwards in memory.

▪ Used for dynamically allocated memory (malloc, new)

▪ Note: x86 is a little-endian architecture: First byte of e.g. a 

8-byte word is the least significant byte.
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Kernel memory

Stack

Text (program code)

Data
(Initialized global variables)

BSS
(Un-initialized global variables)

Heap

Shared library

Shared library

Low memory 

0x0000000000000000

High memory

0xFFFFFFFFFFFFFFFF

0x00007FFFFFFFFFFF

0xFFFFF80000000000

Memory hole



Registers on the x86-64

10

▪ 6 general-purpose 8-byte registers (RAX – RDX, RSI, RDI) “inherited” from 32-bit

▪ 8 new ones in 64-bit mode: R8 – R15

▪ Partial registers

▪ 4 least significant bytes of full register: EnX

▪ 2 least significant bytes of full register: nX

▪ Bytes 1 and 2 of nX called respectively nL and nH (Low and High)

▪ Different naming schemes for partials of RSI, RDI, R8 – R15.

Special registers

• RSP – points to topmost element of stack

• RBP – points to current frame (on the stack),

which contains local variables of one function

call. Local variables accessed relative to RBP.

Often omitted in optimized code.

• RIP – points to the currently executing instruction

RAX EAX ALAH AX

Additional registers

• CS, SS, DS, ES, FS, GS

• EFLAGS

• …



Assembly language mnemonics

Intel style

• opcode destination, source

• mov  [rsp+4], rax

AT&T (gcc, gdb) style

• opcode source, destination

• movl %rax, 4(%rsp)

mov dst, src Copy the data in src to dst

add/sub dst, src Add/subtract the data in src to the data in dst

and/xor dst, src Bitwise AND/XOR the data in src with the data in dst and store result in dst 

push target Push target onto the stack, decrementing RSP

pop target Pop target from the stack, incrementing RSP

lea dst, src Load the address of src into dst

call address Push address of the next instruction onto stack and set RIP to address

ret Pop RIP from the stack

leave Exit a high-level function (copy RPB to RSP, pop RBP from stack)

jcc address Jump to address if condition code cc (e.g. e, ne, ge) is set

jmp address Jump to address

int value Call interrupt of value (0x80 will perform a Linux system call)



Semantics of some important x86 instructions

▪ push <op>

Equivalent to:

rsp = rsp – 8

[rsp] = <op>

▪ pop <op>

Equivalent to:

<op> = [rsp]

rsp = rsp + 8

▪ call <function address>

Instruction for performing a function call. 

Pushes return address to stack and 

jumps to start of called function.

Equivalent to:

push <address of next instruction>

rip = <function address>

▪ ret

Used to return from function. Pops return 

address from stack and jumps back to 

the calling function.

Equivalent to:

pop rip

Access 

memory 

pointed to

by esp



Direct vs indirect branches

Direct branches

Addresses are hardcoded offsets 

relative to current instruction pointer

Examples:

▪ call 0x123

Equivalent to:

push <address of next instruction>

rip = rip + 0x123 (291 decimal)

▪ jmp 0x123

Equivalent to:

rip = rip + 0x123

▪ jcc 0x123

Conditional branches are 

always direct

Indirect branches

Addresses are stored in a register 

or memory, i.e. decided at runtime

Examples:

▪ call rax

Equivalent to:

push <address of next instruction>

rip = rax

▪ jmp rax

Equivalent to:

rip = rax

▪ ret

Target address stored on stack

Used to 

implement calls 

via function 

pointers



Function calls on x86 (stdcall)

1. Caller pushes arguments from right to left onto stack

2. Caller issues a ‘call’ instruction – pushes return address and jumps to function start.

3. Function prologue executes

a. Pushes old value of RBP to stack, updates RBP to point to saved RBP on stack

b. Subtracts RSP to allocate space for local variables

4. Function main logic executes

5. Function epilogue executes

a. Puts return value (if any) into RAX register

b. “Deallocates” local variables on stack by increasing RSP

c. Pops saved RBP into RBP

d. Issues a ‘ret’ instruction – pops return address of stack and jumps to that address

6. Caller removes arguments from stack
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Function calls on x86 (stdcall)
Example

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Caller’s stack frame

RSP

RBP



Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP, RBP

input (argument to foo)

Return address

Saved EBP

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

len

buffer

Saved EBP

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A NUL

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

Return address

Saved EBP RSP, RBP

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

Return address

RBP

RSP

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

RBP

RSP

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Function calls on x86 (stdcall)
Example

Caller’s stack frame

RBP

RSP

.

.

foo(user_data);

.

.

void foo(char* input) 

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}



Vulnerabilities and exploits



Vulnerabilities and exploits

▪ Vulnerabilities

▪ Flaws that makes it possible for a program to fail to meet its security 

requirements

▪ What is an exploit?

▪ A verb: Exploiting a vulnerability means to take advantage of a vulnerability to 

compromise security.

▪ A noun: An exploit is a procedure or piece of code that performs the above.

▪ The purpose of an exploit

▪ Arbitrary code execution – Completely take over program execution to do 

anything the attacker wishes.

▪ Information disclosure – Leak sensitive information, e.g. Heartbleed

▪ Denial of Service – Disrupt functionality of a service, e.g. crash a web server

▪ Privilege escalation – Gain higher privileges than what is allowed according 

to system policy. May be combined with arbitrary code execution exploits to 

completely compromise system. 

▪ Example: Program running as SUID root in Unix, or with 

Administrator/SYSTEM privileges in Windows.
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Vulnerabilities and exploits

▪ Local and remote exploits

▪ Local exploit – Physical access to system, or valid remote login 

credentials, required for exploit.

▪ Remote exploit – “Anyone” on e.g. the Internet can perform exploit. 

Example: Web server exploitable by external requests.

▪ Severity of a vulnerability depends on what kind of exploits it 

enables

▪ Remote exploit leading to arbitrary code execution 

▪ Local DoS exploit 

▪ Local code execution exploit without privilege escalation
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Vulnerabilities and exploits

▪ Local and remote exploits

▪ Local exploit – Physical access to system, or valid remote login 

credentials, required for exploit.

▪ Remote exploit – “Anyone” on e.g. the Internet can perform exploit. 

Example: Web server exploitable by external requests.

▪ Severity of a vulnerability depends on what kind of exploits it 

enables

▪ Remote exploit leading to arbitrary code execution – Really, really bad!

▪ Local DoS exploit – Not as bad?

▪ Local code execution exploit without privilege escalation – Meaningless?
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The “Hello World” exploit
Simple buffer overflow on the stack

Let’s return to our function ‘foo’ from before

▪ What happens if ‘input’ is longer than 15 bytes?

▪ Buffer overflows, overwriting return address if 

string is long enough.

 Program later crashes when trying to return 

to address 0x41414141 (“AAAA”)

 Results in DoS. How to achieve arbitrary 

code execution?
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void foo(char* input) 

{

unsigned int len;

char buffer[16];

...

strcpy(buffer, input);

...

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A NUL

A A A A

A A A A

A A A A

A A A A

A A A A

Note: we use 32-bit 

(4-byte) addresses 

here to save space. 

Same principles apply 

to 64-bit



The “Hello World” exploit
Arbitrary code execution

Idea: Include executable machine code in input string, and

set the overwritten return pointer to point to that code.

▪ Such code is often referred to as “shellcode” –

traditionally often used to open a command shell with 

elevated privileges.

▪ Payload consists of shellocode + padding (some A:s) + 

new “return” address

▪ Note 1: Due to x86 being little-endian, each byte of the 

address (here BFFFCD03 in hex) need to be given in 

reverse order when crafting the string (i.e.

“\x03\xCD\xFF\xBF”)

▪ Note 2: Payload must usually not contain any bytes with the 

value zero. Recall that zero (NUL) terminates the string.

▪ Note 3: This payload may not work for ‘foo’ since buffer is 

only 16 bytes (not enough space for code). Also possible to 

e.g. put shellcode before return address on stack, in the 

caller’s stack frame.

▪ Problem: The above approach requires that we can 

precisely predict absolute address of shellcode on stack.

▪ Typically not possible in practice!
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Return address

len

buffer

Saved EBP

Shellcode

A A A A

A A A A

\x03 \xCD \xFF \xBF

A A



The “Hello World” exploit
Making the exploit reliable: Solution 1 – The NOP sled

To avoid having to know the exact shellcode address, we 

can use a NOP sled

▪ Precede the shellcode with a sequence of NOP 

instructions.

▪ A NOP instruction (hex \x90) does nothing, except 

of advancing the instruction counter one byte.

▪ Point the return address somewhere in the middle of 

the NOP sled

▪ Gives some “wiggle room” – As long as the return 

address points somewhere into the NOP sled, 

execution will follow the NOPs into the shellcode.

▪ Drawbacks: 

▪ Requires larger buffers

▪ Still need to know approximate address of NOP 

sled
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Return address

Saved EBP

Shellcode

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A

NOP NOP NOP NOP

NOP NOP NOP NOP

NOP NOP NOP NOP



The “Hello World” exploit
Making the exploit reliable: Solution 2 – Register trampolines

A more robust solution than the NOP sled is to use 

register trampolines (a.k.a. register springs)

▪ Find a register REG that right before the 

function returns points to data that you control.

▪ Given that function behavior is deterministic, if 

REG points to data on the stack, it will always 

point to the same location relative to the 

beginning of the stack frame.

▪ Make sure your shellcode starts at just the 

location pointed to by REG

▪ Find an instruction in an executable image 

(main executable or shared library) that 

performs an indirect jump to address in REG 

▪ Overwrite return address with the address to 

the jump instruction.

▪ When function “returns”, it will jump to the 

instruction, which in turn will jump to the 

shellcode.

▪ Obviously not always possible to find suitable 

REG and jump instruction.
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Return address

Saved EBP

Shellcode

A A A A

A A A A

\xD1 \x8C \x04 \08

A A

EAX

…

mov eax, [ecx+8]

jmp eax

…

A A A A

A A A A



Stack-buffer overflow variations

Sometimes possible to access memory outside buffers without overflow

▪ For example, incorrect logic when computing an array index

▪ Referred to as out-of-bounds-write (or read)

Exploit variations:

▪ The function may alter parts of the overwritten stack area prior to returning –

Special “tricks” often needed in practice

▪ Insert code that jumps past altered parts of stack to shellcode

▪ Put shellcode in environment variables

▪ Put shellcode in other buffers (e.g. on heap)

▪ … 

▪ If return address cannot be overwritten, other targets are also possible

▪ Overwrite saved RBP – alters stack frame of calling function

▪ Overwrite function pointers on stack

▪ Overwrite other sensitive non-control data (i.e. data that is not a pointer to code)
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Data-only attacks
Example

Caller’s stack frame

ESP

EBP

admin (argument to bar)

Return address

full_priv

buffer

Saved EBP

A A A A

A A A A

NUL

void bar(char* user, bool isAdmin) 

{

bool full_priv = isAdmin;

char buffer[16];

strcpy(buffer, user);

if(full_priv)

// Do privileged stuff

else

printf(
“User %s is not admin \n”,
user);

}

user (argument to bar)

A A A A

A A A A

\01

Overwrite full_priv

(to any non-zero value) with 

buffer overflow



Special case: Off-by-one errors

Special case of stack-based overflows where only a single byte can be written 

past buffer bounds – Often more subtle than “regular” buffer overflows.
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char buffer[100];

if(strlen(input) > 100)

{

printf(“String too long!”);

exit(1);

}

strcpy(buffer, input);

Is this safe?

▪ No! ‘strlen’ does not include the space 

needed for the NULL-terminator. 

▪ Using a 100-character string results in a 

NULL-byte being written past end of buffer. 

▪ Could e.g. overwrite least significant byte of 

saved EBP to alter context of calling function. 

Can lead to arbitrary code execution!

char buffer[100];

if(strlen(input) >= 100)

{

printf(“String too long!”);

exit(1);

}

strcpy(buffer, input);

Example:

Should be:



Examples of stack-based buffer overflows

char mapped_path[MAXPATHLEN];

if(!(mapped_path[0] == '/' && mapped_path[1] == '\0'))

strcat(mapped_path, "/");

strcat(mapped_path, dir);

int resolve_request_filename(char *ptr)

{

char filename[255];

...

if(!strncmp(ptr, thehost->CGIDIR, strlen(thehost->CGIDIR))) {

strcpy(filename, thehost->CGIROOT);

ptr += strlen(thehost->CGIDIR);

strcat(filename, ptr);

} else { 

strcpy(filename, thehost->DOCUMENTROOT);

strcat(filename, ptr);

...

Real-life overflow in FTP server

Real-life overflow in web server (the pointer ‘ptr’ points to user-controllable data)



Examples of stack-based buffer overflows
A more subtle example

Off-by-one overflow in the wu-ftpd FTP server

/*

* Join the two strings together, ensuring that the right thing

* happens if last component is empty, or the dirname is root.

*/

if (resolved[0] == '/' && resolved[1] == '\0')

rootd = 1;

else

rootd = 0;

if (*wbuf) {

if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {

errno = ENAMETOOLONG;

goto err1;

}

if (rootd == 0)

(void) strcat(resolved, "/");

(void) strcat(resolved, wbuf);



Avoiding buffer overflows
Some best practices

▪ Perform input validation

▪ Never trust user-supplied data!

▪ Accept only “known good” instead of using a blacklist

▪ Always perform correct bounds-checking before copying data to buffers

▪ Use safe(r) APIs for string operations

▪ E.g. strncpy(dst, src, len) instead of strcpy(dst, src)

▪ Beware: strncpy (and strncat) don’t NULL terminate strings if the length of ‘src‘ 

is larger than or equal to the maximum allowed (i.e. >= ‘len’)

▪ The following code leads to information leakage if strlen(str) >= 100 (Stack 

content beyond ‘buffer‘ is printed, until a zero-byte is encountered) – Can also 

lead to code execution under some conditions.

char buffer[100];

strncpy(buffer, str, sizeof(buffer));

...

printf(“%s”, buffer);



Avoiding buffer overflows
Some best practices

▪ Make sure to terminate strings when using the strn-functions.

▪ Use strlcpy, strlcat where available. These guarantee correct string termination.

▪ Note: These are not part of the standard C library. Not available on many systems 

(including the one you use for Pong).

▪ C++ has safer alternatives:

▪ vector and string for dynamically-sized arrays and strings

▪ Comes at additional computational cost

▪ span for “keeping track” of buffer sizes in a single object (C++ 20)

char buffer[100];

strncpy(buffer, str, sizeof(buffer));

buffer[sizeof(buffer) – 1] = 0;

...

printf(“%s”, buffer);



Heap-based buffer overflows

▪ Often similar causes as stack-based buffer overflows

▪ Also often exploitable, but different methods compared to 

overflows on the stack (no return pointer to overwrite)

▪ Overwrite function pointers or C++ VTable entries in other 

heap-allocated objects

▪ Overwrite memory allocator metadata
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Heap-based buffer overflows

Chunks of memory allocated on the heap are often adjacent to each other –

Overflowing from one chunk into another possible

▪ Possible to gain control by overflowing a heap-allocated buffer and 

overwriting function pointers in adjacent object on heap.

▪ Use e.g. one of previously discussed methods to “find” shellcode in 

memory

▪ (Semi)predicable location on stack or heap + NOP sled

▪ Register trampolines

▪ Shell code in environment variable, etc.
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Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap 

(not stack)
Function 

pointer



Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Allocate new 

MyStruct

object



Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Set fun_ptr

to point to fun



Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

buffer

Heap metadata

Allocate 

16-byte buffer



buffer

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Buffer 

overflow!

Heap metadata

A A A A

A A A A
A A A A

A A A A

A A A A

\xB0 \xCD \xFF \xBF

NUL



buffer

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Buffer 

overflow!

Heap metadata

A A A A

A A A A
A A A A

A A A A

A A A A

\xB0 \xCD \xFF \xBF

NUL

fun_ptr now 

points to 

nopsled/shellcode



buffer

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Heap metadata

A A A A

A A A A
A A A A

A A A A

A A A A

\xB0 \xCD \xFF \xBF

NUL

When trying to call fun
(through fun_ptr), 

we instead jump to the 

shellcode



Function pointer overwrites
Overwriting C++ VTable pointers

▪ Objects of classes with virtual functions have 

an implicit VTable-pointer data member

▪ The VTable pointer points to a table of 

function pointers for the specific class.

▪ Calls to virtual functions are made by looking 

up corresponding function pointer in VTable

during runtime

 Specific class type of object doesn’t need  

be statically known during compilation

▪ Possible to overwrite VTable pointer to point 

to a fake VTable using a buffer overflow

▪ Not as easy as it may seem!

▪ Need to overwrite with a pointer to a 

pointer to desired address

▪ May still be possible with various “tricks”

49

class MyClass {

int var_a;

int var_b;

virtual void foo();

virtual void bar();

};

VTable pointer

var_a

var_b

Pointer to MyClass::foo

Pointer to MyClass::bar

Representation of a 

MyClass object in memory



Other heap-related vulnerabilities
Use-after-free

▪ Program use stale pointer to heap-allocated memory that has already been freed.

▪ May lead to information disclosure…

▪ Attacker can trick program into printing data in freed memory, after it has been re-

allocated to store sensitive data

▪ …or arbitrary code execution

▪ Attacker can have program re-allocate freed memory to store attacker-supplied data. 

▪ If program later use a function pointer or C++ VTable entry in freed object, execution 

can be redirected by attacker.

▪ One of the main “remaining” sources or memory safety bugs in mature C++ code!

Double-free

▪ Program calls ‘free’ or ‘delete’ on pointer to already freed memory

▪ Can corrupt memory manager metadata to allow arbitrary code execution

Attacks often requires attacker to set up heap to look in a specific way for exploit to succeed

▪ “Heap feng shui”

51



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Still heap, 

not stack
Function 

pointer



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Allocate new 

MyStruct
and init

fun_ptr



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptrFree pointer to 

the MyStruct



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr
buffer

Allocate buffer.

Previously freed 

space is now

re-used



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Attacker-

controlled data 

is copied into 

buffer

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A A NUL



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Attacker-

controlled data 

is copied into 

buffer

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A A NUL

Address to 

shellcode…



Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Program erroneously 

uses stale pointer to s to 

call fun_ptr.

Execution instead goes to 

shellcode!

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A A NUL



Avoiding use-after-free and double-free bugs

▪ Set pointers to NULL directly after calling free/delete on them to avoid trivial 

errors.

▪ In practice, bugs are often caused by pointer aliasing – several pointers 

pointing to the same memory

▪ One component calls free/delete on a pointer, while a different 

component keeps using another copy of the pointer

▪ Avoid passing around pointers to heap-allocated data between different 

modules.

▪ Using the C++ “Resource Allocation Is Initialization” (RAII) pattern avoids 

confusion about which component is responsible for deallocating data.

▪ Use C++ “smart pointers” (at small performance cost)

▪ std::unique_ptr – can only have a single owner (no copying), 

implementation of RAII pattern.

▪ std::shared_ptr – can be copied, uses reference counting: 

automatically deallocates data when all copies have gone out of scope
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