
Memory safety in C/C++ programs – Part I
TDDC90 – Software Security

Ulf Kargén

Department of Computer and Information Science (IDA)

Division for Database and Information Techniques (ADIT)

The C and C++ languages

▪ Programs compile directly to machine code

▪ Fine-grained control of memory given to programmers

 Optimized for speed – not reliability

 Subtle mistakes can have devastating security implications!

 Understanding of low-level details necessary to take full advantage of language,

and to avoid introducing vulnerabilities

▪ Easy to make mistakes when coming from e.g. C# or Java!

2

Outline of lectures

First lecture

▪ Introduction and motivation

▪ Assembly language primer

▪ Vulnerabilities and exploits

Second lecture

▪ More vulnerabilities and exploits

▪ Writing secure code

▪ Mitigations

▪ “Modern” exploit techniques

3

Introduction and motivation

Why look at vulnerabilities in C/C++ code?

C and C++ are old languages with known security problems

 Why not just implement everything in Java / C# / Python / Rust and be done with it?

▪ Some code need to run “close to the metal” (OS kernels, device drivers)

▪ Performance reasons:

▪ Web browsers, game engines, etc.

▪ Low-powered devices (little RAM, slow CPU) e.g., IoT devices

▪ Huge amounts of code already written in C/C++ that needs to be

maintained for decades to come…

5

Why look at vulnerabilities in C/C++ code?

6

TIOBE language popularity index, October 2025:

Why study attack techniques?

▪ “Know thy enemy”

▪ How could you possibly protect from attacks if you don’t know what

techniques attackers use?

▪ Important to be able to tell if a bug has security implications

▪ Scheduling/prioritizing patches

▪ Decide what to publish on e.g. public bug trackers

7

Assembly language primer

Linux memory layout and x86 basics

Memory layout of x86-64 Linux
(What you will use in the Pong lab)

▪ All processes have 128 TB of private continuous virtual

memory. (Mapped by OS to RAM)

▪ The stack is located at high memory addresses and

grows downwards in memory

▪ Used for storing local variables of function calls,

function call parameters, return addresses, etc.

▪ An element on the stack is always 64 bits (8 bytes)

(for example, pushing a single byte to the stack requires that it

is first zero or sign extended to 8 bytes)

▪ Main executable (Text), and its Data and BSS segment, is

located in low memory

▪ The heap is located above the Text, Data, and BSS

segment. Grows upwards in memory.

▪ Used for dynamically allocated memory (malloc, new)

▪ Note: x86 is a little-endian architecture: First byte of e.g. a

8-byte word is the least significant byte.

9

Kernel memory

Stack

Text (program code)

Data
(Initialized global variables)

BSS
(Un-initialized global variables)

Heap

Shared library

Shared library

Low memory

0x0000000000000000

High memory

0xFFFFFFFFFFFFFFFF

0x00007FFFFFFFFFFF

0xFFFFF80000000000

Memory hole

Registers on the x86-64

10

▪ 6 general-purpose 8-byte registers (RAX – RDX, RSI, RDI) “inherited” from 32-bit

▪ 8 new ones in 64-bit mode: R8 – R15

▪ Partial registers

▪ 4 least significant bytes of full register: EnX

▪ 2 least significant bytes of full register: nX

▪ Bytes 1 and 2 of nX called respectively nL and nH (Low and High)

▪ Different naming schemes for partials of RSI, RDI, R8 – R15.

Special registers

• RSP – points to topmost element of stack

• RBP – points to current frame (on the stack),

which contains local variables of one function

call. Local variables accessed relative to RBP.

Often omitted in optimized code.

• RIP – points to the currently executing instruction

RAX EAX ALAH AX

Additional registers

• CS, SS, DS, ES, FS, GS

• EFLAGS

• …

Assembly language mnemonics

Intel style

• opcode destination, source

• mov [rsp+4], rax

AT&T (gcc, gdb) style

• opcode source, destination

• movl %rax, 4(%rsp)

mov dst, src Copy the data in src to dst

add/sub dst, src Add/subtract the data in src to the data in dst

and/xor dst, src Bitwise AND/XOR the data in src with the data in dst and store result in dst

push target Push target onto the stack, decrementing RSP

pop target Pop target from the stack, incrementing RSP

lea dst, src Load the address of src into dst

call address Push address of the next instruction onto stack and set RIP to address

ret Pop RIP from the stack

leave Exit a high-level function (copy RPB to RSP, pop RBP from stack)

jcc address Jump to address if condition code cc (e.g. e, ne, ge) is set

jmp address Jump to address

int value Call interrupt of value (0x80 will perform a Linux system call)

Semantics of some important x86 instructions

▪ push <op>

Equivalent to:

rsp = rsp – 8

[rsp] = <op>

▪ pop <op>

Equivalent to:

<op> = [rsp]

rsp = rsp + 8

▪ call <function address>

Instruction for performing a function call.

Pushes return address to stack and

jumps to start of called function.

Equivalent to:

push <address of next instruction>

rip = <function address>

▪ ret

Used to return from function. Pops return

address from stack and jumps back to

the calling function.

Equivalent to:

pop rip

Access

memory

pointed to

by esp

Direct vs indirect branches

Direct branches

Addresses are hardcoded offsets

relative to current instruction pointer

Examples:

▪ call 0x123

Equivalent to:

push <address of next instruction>

rip = rip + 0x123 (291 decimal)

▪ jmp 0x123

Equivalent to:

rip = rip + 0x123

▪ jcc 0x123

Conditional branches are

always direct

Indirect branches

Addresses are stored in a register

or memory, i.e. decided at runtime

Examples:

▪ call rax

Equivalent to:

push <address of next instruction>

rip = rax

▪ jmp rax

Equivalent to:

rip = rax

▪ ret

Target address stored on stack

Used to

implement calls

via function

pointers

Function calls on x86 (stdcall)

1. Caller pushes arguments from right to left onto stack

2. Caller issues a ‘call’ instruction – pushes return address and jumps to function start.

3. Function prologue executes

a. Pushes old value of RBP to stack, updates RBP to point to saved RBP on stack

b. Subtracts RSP to allocate space for local variables

4. Function main logic executes

5. Function epilogue executes

a. Puts return value (if any) into RAX register

b. “Deallocates” local variables on stack by increasing RSP

c. Pops saved RBP into RBP

d. Issues a ‘ret’ instruction – pops return address of stack and jumps to that address

6. Caller removes arguments from stack

14

Function calls on x86 (stdcall)
Example

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Caller’s stack frame

RSP

RBP

Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP, RBP

input (argument to foo)

Return address

Saved EBP

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

len

buffer

Saved EBP

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A NUL

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

Return address

Saved EBP RSP, RBP

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

Return address

RBP

RSP

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

input (argument to foo)

RBP

RSP

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Function calls on x86 (stdcall)
Example

Caller’s stack frame

RBP

RSP

.

.

foo(user_data);

.

.

void foo(char* input)

{

unsigned int len;

char buffer[16];

len = strlen(input);

strcpy(buffer, input);

printf(“%s: %d\n”, buffer, len);

}

Vulnerabilities and exploits

Vulnerabilities and exploits

▪ Vulnerabilities

▪ Flaws that makes it possible for a program to fail to meet its security

requirements

▪ What is an exploit?

▪ A verb: Exploiting a vulnerability means to take advantage of a vulnerability to

compromise security.

▪ A noun: An exploit is a procedure or piece of code that performs the above.

▪ The purpose of an exploit

▪ Arbitrary code execution – Completely take over program execution to do

anything the attacker wishes.

▪ Information disclosure – Leak sensitive information, e.g. Heartbleed

▪ Denial of Service – Disrupt functionality of a service, e.g. crash a web server

▪ Privilege escalation – Gain higher privileges than what is allowed according

to system policy. May be combined with arbitrary code execution exploits to

completely compromise system.

▪ Example: Program running as SUID root in Unix, or with

Administrator/SYSTEM privileges in Windows.

26

Vulnerabilities and exploits

▪ Local and remote exploits

▪ Local exploit – Physical access to system, or valid remote login

credentials, required for exploit.

▪ Remote exploit – “Anyone” on e.g. the Internet can perform exploit.

Example: Web server exploitable by external requests.

▪ Severity of a vulnerability depends on what kind of exploits it

enables

▪ Remote exploit leading to arbitrary code execution

▪ Local DoS exploit

▪ Local code execution exploit without privilege escalation

27

Vulnerabilities and exploits

▪ Local and remote exploits

▪ Local exploit – Physical access to system, or valid remote login

credentials, required for exploit.

▪ Remote exploit – “Anyone” on e.g. the Internet can perform exploit.

Example: Web server exploitable by external requests.

▪ Severity of a vulnerability depends on what kind of exploits it

enables

▪ Remote exploit leading to arbitrary code execution – Really, really bad!

▪ Local DoS exploit – Not as bad?

▪ Local code execution exploit without privilege escalation – Meaningless?

28

The “Hello World” exploit
Simple buffer overflow on the stack

Let’s return to our function ‘foo’ from before

▪ What happens if ‘input’ is longer than 15 bytes?

▪ Buffer overflows, overwriting return address if

string is long enough.

 Program later crashes when trying to return

to address 0x41414141 (“AAAA”)

 Results in DoS. How to achieve arbitrary

code execution?

29

void foo(char* input)

{

unsigned int len;

char buffer[16];

...

strcpy(buffer, input);

...

Caller’s stack frame

RSP

RBP

input (argument to foo)

Return address

len

buffer

Saved EBP

A A A A

A A A A

A A NUL

A A A A

A A A A

A A A A

A A A A

A A A A

Note: we use 32-bit

(4-byte) addresses

here to save space.

Same principles apply

to 64-bit

The “Hello World” exploit
Arbitrary code execution

Idea: Include executable machine code in input string, and

set the overwritten return pointer to point to that code.

▪ Such code is often referred to as “shellcode” –

traditionally often used to open a command shell with

elevated privileges.

▪ Payload consists of shellocode + padding (some A:s) +

new “return” address

▪ Note 1: Due to x86 being little-endian, each byte of the

address (here BFFFCD03 in hex) need to be given in

reverse order when crafting the string (i.e.

“\x03\xCD\xFF\xBF”)

▪ Note 2: Payload must usually not contain any bytes with the

value zero. Recall that zero (NUL) terminates the string.

▪ Note 3: This payload may not work for ‘foo’ since buffer is

only 16 bytes (not enough space for code). Also possible to

e.g. put shellcode before return address on stack, in the

caller’s stack frame.

▪ Problem: The above approach requires that we can

precisely predict absolute address of shellcode on stack.

▪ Typically not possible in practice!
30

Return address

len

buffer

Saved EBP

Shellcode

A A A A

A A A A

\x03 \xCD \xFF \xBF

A A

The “Hello World” exploit
Making the exploit reliable: Solution 1 – The NOP sled

To avoid having to know the exact shellcode address, we

can use a NOP sled

▪ Precede the shellcode with a sequence of NOP

instructions.

▪ A NOP instruction (hex \x90) does nothing, except

of advancing the instruction counter one byte.

▪ Point the return address somewhere in the middle of

the NOP sled

▪ Gives some “wiggle room” – As long as the return

address points somewhere into the NOP sled,

execution will follow the NOPs into the shellcode.

▪ Drawbacks:

▪ Requires larger buffers

▪ Still need to know approximate address of NOP

sled

31

Return address

Saved EBP

Shellcode

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A

NOP NOP NOP NOP

NOP NOP NOP NOP

NOP NOP NOP NOP

The “Hello World” exploit
Making the exploit reliable: Solution 2 – Register trampolines

A more robust solution than the NOP sled is to use

register trampolines (a.k.a. register springs)

▪ Find a register REG that right before the

function returns points to data that you control.

▪ Given that function behavior is deterministic, if

REG points to data on the stack, it will always

point to the same location relative to the

beginning of the stack frame.

▪ Make sure your shellcode starts at just the

location pointed to by REG

▪ Find an instruction in an executable image

(main executable or shared library) that

performs an indirect jump to address in REG

▪ Overwrite return address with the address to

the jump instruction.

▪ When function “returns”, it will jump to the

instruction, which in turn will jump to the

shellcode.

▪ Obviously not always possible to find suitable

REG and jump instruction.
32

Return address

Saved EBP

Shellcode

A A A A

A A A A

\xD1 \x8C \x04 \08

A A

EAX

…

mov eax, [ecx+8]

jmp eax

…

A A A A

A A A A

Stack-buffer overflow variations

Sometimes possible to access memory outside buffers without overflow

▪ For example, incorrect logic when computing an array index

▪ Referred to as out-of-bounds-write (or read)

Exploit variations:

▪ The function may alter parts of the overwritten stack area prior to returning –

Special “tricks” often needed in practice

▪ Insert code that jumps past altered parts of stack to shellcode

▪ Put shellcode in environment variables

▪ Put shellcode in other buffers (e.g. on heap)

▪ …

▪ If return address cannot be overwritten, other targets are also possible

▪ Overwrite saved RBP – alters stack frame of calling function

▪ Overwrite function pointers on stack

▪ Overwrite other sensitive non-control data (i.e. data that is not a pointer to code)

33

Data-only attacks
Example

Caller’s stack frame

ESP

EBP

admin (argument to bar)

Return address

full_priv

buffer

Saved EBP

A A A A

A A A A

NUL

void bar(char* user, bool isAdmin)

{

bool full_priv = isAdmin;

char buffer[16];

strcpy(buffer, user);

if(full_priv)

// Do privileged stuff

else

printf(
“User %s is not admin \n”,
user);

}

user (argument to bar)

A A A A

A A A A

\01

Overwrite full_priv

(to any non-zero value) with

buffer overflow

Special case: Off-by-one errors

Special case of stack-based overflows where only a single byte can be written

past buffer bounds – Often more subtle than “regular” buffer overflows.

35

char buffer[100];

if(strlen(input) > 100)

{

printf(“String too long!”);

exit(1);

}

strcpy(buffer, input);

Is this safe?

▪ No! ‘strlen’ does not include the space

needed for the NULL-terminator.

▪ Using a 100-character string results in a

NULL-byte being written past end of buffer.

▪ Could e.g. overwrite least significant byte of

saved EBP to alter context of calling function.

Can lead to arbitrary code execution!

char buffer[100];

if(strlen(input) >= 100)

{

printf(“String too long!”);

exit(1);

}

strcpy(buffer, input);

Example:

Should be:

Examples of stack-based buffer overflows

char mapped_path[MAXPATHLEN];

if(!(mapped_path[0] == '/' && mapped_path[1] == '\0'))

strcat(mapped_path, "/");

strcat(mapped_path, dir);

int resolve_request_filename(char *ptr)

{

char filename[255];

...

if(!strncmp(ptr, thehost->CGIDIR, strlen(thehost->CGIDIR))) {

strcpy(filename, thehost->CGIROOT);

ptr += strlen(thehost->CGIDIR);

strcat(filename, ptr);

} else {

strcpy(filename, thehost->DOCUMENTROOT);

strcat(filename, ptr);

...

Real-life overflow in FTP server

Real-life overflow in web server (the pointer ‘ptr’ points to user-controllable data)

Examples of stack-based buffer overflows
A more subtle example

Off-by-one overflow in the wu-ftpd FTP server

/*

* Join the two strings together, ensuring that the right thing

* happens if last component is empty, or the dirname is root.

*/

if (resolved[0] == '/' && resolved[1] == '\0')

rootd = 1;

else

rootd = 0;

if (*wbuf) {

if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {

errno = ENAMETOOLONG;

goto err1;

}

if (rootd == 0)

(void) strcat(resolved, "/");

(void) strcat(resolved, wbuf);

Avoiding buffer overflows
Some best practices

▪ Perform input validation

▪ Never trust user-supplied data!

▪ Accept only “known good” instead of using a blacklist

▪ Always perform correct bounds-checking before copying data to buffers

▪ Use safe(r) APIs for string operations

▪ E.g. strncpy(dst, src, len) instead of strcpy(dst, src)

▪ Beware: strncpy (and strncat) don’t NULL terminate strings if the length of ‘src‘

is larger than or equal to the maximum allowed (i.e. >= ‘len’)

▪ The following code leads to information leakage if strlen(str) >= 100 (Stack

content beyond ‘buffer‘ is printed, until a zero-byte is encountered) – Can also

lead to code execution under some conditions.

char buffer[100];

strncpy(buffer, str, sizeof(buffer));

...

printf(“%s”, buffer);

Avoiding buffer overflows
Some best practices

▪ Make sure to terminate strings when using the strn-functions.

▪ Use strlcpy, strlcat where available. These guarantee correct string termination.

▪ Note: These are not part of the standard C library. Not available on many systems

(including the one you use for Pong).

▪ C++ has safer alternatives:

▪ vector and string for dynamically-sized arrays and strings

▪ Comes at additional computational cost

▪ span for “keeping track” of buffer sizes in a single object (C++ 20)

char buffer[100];

strncpy(buffer, str, sizeof(buffer));

buffer[sizeof(buffer) – 1] = 0;

...

printf(“%s”, buffer);

Heap-based buffer overflows

▪ Often similar causes as stack-based buffer overflows

▪ Also often exploitable, but different methods compared to

overflows on the stack (no return pointer to overwrite)

▪ Overwrite function pointers or C++ VTable entries in other

heap-allocated objects

▪ Overwrite memory allocator metadata

40

Heap-based buffer overflows

Chunks of memory allocated on the heap are often adjacent to each other –

Overflowing from one chunk into another possible

▪ Possible to gain control by overflowing a heap-allocated buffer and

overwriting function pointers in adjacent object on heap.

▪ Use e.g. one of previously discussed methods to “find” shellcode in

memory

▪ (Semi)predicable location on stack or heap + NOP sled

▪ Register trampolines

▪ Shell code in environment variable, etc.

41

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap

(not stack)
Function

pointer

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Allocate new

MyStruct

object

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Set fun_ptr

to point to fun

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

buffer

Heap metadata

Allocate

16-byte buffer

buffer

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Buffer

overflow!

Heap metadata

A A A A

A A A A
A A A A

A A A A

A A A A

\xB0 \xCD \xFF \xBF

NUL

buffer

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Buffer

overflow!

Heap metadata

A A A A

A A A A
A A A A

A A A A

A A A A

\xB0 \xCD \xFF \xBF

NUL

fun_ptr now

points to

nopsled/shellcode

buffer

Function pointer overwrites
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

char* buffer = new char[16];

strcpy(buffer, str);

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Heap metadata

A A A A

A A A A
A A A A

A A A A

A A A A

\xB0 \xCD \xFF \xBF

NUL

When trying to call fun
(through fun_ptr),

we instead jump to the

shellcode

Function pointer overwrites
Overwriting C++ VTable pointers

▪ Objects of classes with virtual functions have

an implicit VTable-pointer data member

▪ The VTable pointer points to a table of

function pointers for the specific class.

▪ Calls to virtual functions are made by looking

up corresponding function pointer in VTable

during runtime

 Specific class type of object doesn’t need

be statically known during compilation

▪ Possible to overwrite VTable pointer to point

to a fake VTable using a buffer overflow

▪ Not as easy as it may seem!

▪ Need to overwrite with a pointer to a

pointer to desired address

▪ May still be possible with various “tricks”

49

class MyClass {

int var_a;

int var_b;

virtual void foo();

virtual void bar();

};

VTable pointer

var_a

var_b

Pointer to MyClass::foo

Pointer to MyClass::bar

Representation of a

MyClass object in memory

Other heap-related vulnerabilities
Use-after-free

▪ Program use stale pointer to heap-allocated memory that has already been freed.

▪ May lead to information disclosure…

▪ Attacker can trick program into printing data in freed memory, after it has been re-

allocated to store sensitive data

▪ …or arbitrary code execution

▪ Attacker can have program re-allocate freed memory to store attacker-supplied data.

▪ If program later use a function pointer or C++ VTable entry in freed object, execution

can be redirected by attacker.

▪ One of the main “remaining” sources or memory safety bugs in mature C++ code!

Double-free

▪ Program calls ‘free’ or ‘delete’ on pointer to already freed memory

▪ Can corrupt memory manager metadata to allow arbitrary code execution

Attacks often requires attacker to set up heap to look in a specific way for exploit to succeed

▪ “Heap feng shui”

51

Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Still heap,

not stack
Function

pointer

Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Allocate new

MyStruct
and init

fun_ptr

Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptrFree pointer to

the MyStruct

Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr
buffer

Allocate buffer.

Previously freed

space is now

re-used

Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Attacker-

controlled data

is copied into

buffer

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A A NUL

Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Attacker-

controlled data

is copied into

buffer

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A A NUL

Address to

shellcode…

Use-after-free
Example (C++)

struct MyStruct {

int var_a;

void (*fun_ptr)(int);

};

void fun(int i);

void baz(char* str) {

MyStruct* s = new MyStruct;

s->fun_ptr = &fun;

...

delete s;

char* buffer = new char[16];

strcpy(buffer, str);

...

s->fun_ptr(5);

Heap metadata

var_a

fun_ptr

Program erroneously

uses stale pointer to s to

call fun_ptr.

Execution instead goes to

shellcode!

A A A A

A A A A

\xB0 \xCD \xFF \xBF

A A A NUL

Avoiding use-after-free and double-free bugs

▪ Set pointers to NULL directly after calling free/delete on them to avoid trivial

errors.

▪ In practice, bugs are often caused by pointer aliasing – several pointers

pointing to the same memory

▪ One component calls free/delete on a pointer, while a different

component keeps using another copy of the pointer

▪ Avoid passing around pointers to heap-allocated data between different

modules.

▪ Using the C++ “Resource Allocation Is Initialization” (RAII) pattern avoids

confusion about which component is responsible for deallocating data.

▪ Use C++ “smart pointers” (at small performance cost)

▪ std::unique_ptr – can only have a single owner (no copying),

implementation of RAII pattern.

▪ std::shared_ptr – can be copied, uses reference counting:

automatically deallocates data when all copies have gone out of scope

59

	Default Section
	Bild 1
	Bild 2: The C and C++ languages
	Bild 3: Outline of lectures
	Bild 4: Introduction and motivation
	Bild 5: Why look at vulnerabilities in C/C++ code?
	Bild 6: Why look at vulnerabilities in C/C++ code?
	Bild 7: Why study attack techniques?
	Bild 8: Assembly language primer
	Bild 9: Memory layout of x86-64 Linux (What you will use in the Pong lab)
	Bild 10: Registers on the x86-64
	Bild 11: Assembly language mnemonics
	Bild 12: Semantics of some important x86 instructions
	Bild 13: Direct vs indirect branches
	Bild 14: Function calls on x86 (stdcall)
	Bild 15: Function calls on x86 (stdcall) Example
	Bild 16: Function calls on x86 (stdcall) Example
	Bild 17: Function calls on x86 (stdcall) Example
	Bild 18: Function calls on x86 (stdcall) Example
	Bild 19: Function calls on x86 (stdcall) Example
	Bild 20: Function calls on x86 (stdcall) Example
	Bild 21: Function calls on x86 (stdcall) Example
	Bild 22: Function calls on x86 (stdcall) Example
	Bild 23: Function calls on x86 (stdcall) Example
	Bild 24: Function calls on x86 (stdcall) Example
	Bild 25: Vulnerabilities and exploits
	Bild 26: Vulnerabilities and exploits
	Bild 27: Vulnerabilities and exploits
	Bild 28: Vulnerabilities and exploits
	Bild 29: The “Hello World” exploit Simple buffer overflow on the stack
	Bild 30: The “Hello World” exploit Arbitrary code execution
	Bild 31: The “Hello World” exploit Making the exploit reliable: Solution 1 – The NOP sled
	Bild 32: The “Hello World” exploit Making the exploit reliable: Solution 2 – Register trampolines
	Bild 33: Stack-buffer overflow variations
	Bild 34: Data-only attacks Example
	Bild 35: Special case: Off-by-one errors
	Bild 36: Examples of stack-based buffer overflows
	Bild 37: Examples of stack-based buffer overflows A more subtle example
	Bild 38: Avoiding buffer overflows Some best practices
	Bild 39: Avoiding buffer overflows Some best practices
	Bild 40: Heap-based buffer overflows
	Bild 41: Heap-based buffer overflows
	Bild 42: Function pointer overwrites Example (C++)
	Bild 43: Function pointer overwrites Example (C++)
	Bild 44: Function pointer overwrites Example (C++)
	Bild 45: Function pointer overwrites Example (C++)
	Bild 46: Function pointer overwrites Example (C++)
	Bild 47: Function pointer overwrites Example (C++)
	Bild 48: Function pointer overwrites Example (C++)
	Bild 49: Function pointer overwrites Overwriting C++ VTable pointers
	Bild 51: Other heap-related vulnerabilities
	Bild 52: Use-after-free Example (C++)
	Bild 53: Use-after-free Example (C++)
	Bild 54: Use-after-free Example (C++)
	Bild 55: Use-after-free Example (C++)
	Bild 56: Use-after-free Example (C++)
	Bild 57: Use-after-free Example (C++)
	Bild 58: Use-after-free Example (C++)
	Bild 59: Avoiding use-after-free and double-free bugs

