
it shouldn’t do, rather than that it
does something it is supposed to
(positive test cases)—are difficult to
construct because the number of
possible permutations is astronom-
ical. Yet, fuzzing covers a signifi-
cant portion of negative test cases
without forcing the tester to deal
with each specific test case for a
given boundary condition. If your
input includes a 4-byte signed inte-
ger that should be between 1 and
10, for example, boundary cases
would include 0, �1, 11, 12, large
negative numbers, and cases
around the byte boundaries (28,
216, 224, 231). Coding these cases
individually would be difficult, and
this is really a best case set of test
cases given the fact that an integer is
a relatively restricted input form
(strings have far more permuta-
tions). Boundary conditions are
important because significant sub-
sets of boundary condition failures
are security failures. As such, the
boundary conditions we don’t test
today are the security patches we’ll
have to issue tomorrow.

A fuzzer tool generates semivalid

data (data that is correct enough to
keep parsers from immediately dis-
missing it, but still invalid enough
to cause problems), sends it to a tar-
get application for processing, and
then observes the application to see
if it fails as it consumes the data. If
so, the tool saves the submitted data
for later analysis and submits new
malformed data. If the application
doesn’t fail, the tool chooses
whether to delete the malformed
data and continues to the next iter-
ation. Performing these steps man-
ually, we could perform only
several hundred or perhaps a few
thousand iterations. By automating
the entire cycle, however, a fuzzer
tool can perform hundreds of
thousands or millions of such itera-
tions, covering a significant num-
ber of interesting permutations for
which it would be difficult to write
individual test cases.

When writing secure applica-
tions that take input from untrusted
sources, developers must test input
parsers for all manner of boundary
conditions. Fuzzing can make this
process significantly easier and pro-

vide the best results for the time al-
located to testing, helping to un-
cover issues in data parsing that can
otherwise remain unnoticed. For
example, Microsoft shipped the
HyperTerm program—a terminal
emulation program—with Win-
dows for many years. It was written
in a different time when security
wasn’t as much of a concern as it is
today, and although the company
reviewed it, like all legacy code,
during the Windows Security
Push, the .ht files weren’t consid-
ered vulnerable to potentially mali-
cious input; consequently, testers
didn’t investigate the file parser at
that time. Moreover, the .ht exten-
sion is associated with HyperTerm
by default, which means a mail
client or Web browser could auto-
matically pass a malicious .ht file to
a vulnerable program if opened as
an attachment.

Someone outside of Microsoft
recently found a security issue
somewhere in the .ht format that
required a security bulletin. Using a
fuzzer uncovered eight other ex-
ploitable security issues in HyperT-
erm’s file parser within the first few
hours. Further fuzzing over the
next few days produced four addi-
tional vulnerabilities. This testing
technique, combined with a de-
tailed security code review, led us to
fix additional issues in the program.
One of the best uses of time for the
test resources during the investiga-
tion was to create a fuzzer for the .ht
file input.

PETER OEHLERT

Microsoft

F
uzzing lets developers or quality assurance (QA)

teams test large numbers of boundary cases when

doing so with techniques such as functional testing

would be cost prohibitive. Comprehensive negative

test cases—those that verify that a product does not do something

Violating Assumptions
with Fuzzing

58 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

Fuzzing (f ǔz’I) n.—a highly automated testing technique that covers numerous boundary cases using in-
valid data (from files, network protocols, API calls, and other targets) as application input to better ensure the
absence of exploitable vulnerabilities. From modem applications’ tendency to fail due to random input caused
by line noise on “fuzzy” telephone lines.

Basic Training
Editors: Michael Howard, mikehow@microsoft.com
James Whittaker, jw@se.fit.edu

Basic Training

Methodology
Fuzzing involves writing a tool that
will generate semivalid data, submit
it to an application, and determine
whether the application fails. For the
purposes of this article, I will con-
sider only automated approaches to
fuzzing. Figure 1 illustrates the dif-
ferent high-level states a fuzzing tool
moves through.

A trust boundary is any place that
data or execution goes from one trust
level to another, where a trust level is
a set of permissions to resources.
Transitioning from the user mode in
an operating system to the kernel
crosses a trust boundary, for example,
because the kernel is trusted to do
anything with the processor, whereas
the user mode allows only a subset of
processor operations. Similarly, a
trust boundary exists between a net-
work and a machine because anyone
on the network can modify network
data, whereas only someone on the
machine can modify the machine
data. Crossing between different user
contexts presents yet another trust
boundary. Another way to look at
trust boundaries is as locations where
vulnerabilities result in the elevation
of privileges. We must consider trust
boundaries when deciding what to
fuzz in an application; they help pri-
oritize which inputs to look at and
the order in which to do so.

Applications often have multiple
inputs, but if the product team does a
good job with threat modeling, the
threat model will contain a detailed
list of them all. In most systems, the
majority of input comes from files,
config and registry entries, APIs,
user interfaces, network interfaces,
database entries, and command line
arguments. These inputs are there-
fore prime targets for fuzzing, but
anyplace that a system receives input
is a candidate for submitting mal-
formed data.

The next step is to prioritize
which of those inputs to fuzz, which
can be a tricky process. For example,
I recently reviewed a Windows ser-
vice with a network interface that

took data from an admin-only au-
thenticated connection. It also read a
registry key through which the user
could specify which folders were
important to search. The develop-
ment team thought it would be
important to fuzz the network inter-
face because the component was
network facing. Instead, I recom-
mended that they focus on the reg-
istry entry because any authenticated
user could write to the registry key.
This input to the system crossed a
trust boundary and represented an
elevation of privilege from any user
to the service account. The network
interface could be attacked only by
users who were already administra-
tors because it didn’t cross a trust
boundary; in contrast, a vulnerabil-
ity in the software meant anyone
who could log on to the machine or
access the registry remotely could
write to the registry setting that let
them elevate to the service account.

Once you decide which entry
points to fuzz, many different tech-
niques are possible, but the fuzzer
first needs a source of malformed
data. Note that if all the submitted
data were malformed, the applica-
tion would throw out the input after
parsing the first invalid data block,
and none of the other code would be
tested. Thus, it’s critical to use data
that is mostly valid but includes a few
invalid or semivalid pieces. There are
a two main ways to get this data: data
generation and data mutation.

The fuzzer can generate data
based on a specification for how it
should look. The data description
could be as simple as “it’s an int.”
The actual description will depend
on the language your application is
written in, but it should not be am-
biguous for your specific applica-
tion. (I’ll ignore special complex
cases such as network applications,
which might require integer re-
ordering based on whether the inte-
ger is written or read from the
network or local machine; in most
cases, an integer is the simplest case.)
Alternatively, the description might

be as complex as an XML document
that describes individual offsets and
data structures for an arbitrarily
complex nested binary data struc-
ture. Of course, this would make
implementing the fuzzer more diffi-
cult because we first have to under-
stand the format’s specifics and then
create an XML schema to accurately
describe the format before finally
writing a fuzzer to parse the XML
schema and XML document to gen-
erate the semivalid data.

The second way to get mal-
formed data is to start with a known
set of good data and mutate it in spe-
cific places. HTML is a good exam-
ple of a complex file format for
which it would be difficult to create
a generator that could cover the en-
tire specification. Rather than gen-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 59

Figure 1. A complete fuzzer iteration, starting from
generation. The fuzzer begins by getting
semivalid data via one of the two main methods
for use in testing: generation or mutation. The
fuzzer then submits the data and tracks whether
the erroneous input causes the application to
crash (in which case, it saves the data for later
analysis). If not, the fuzzer automatically proceeds
to the next iteration.

2. Submit
to application

4. Save data

1. Get data

3. Application
fails?

No

Yes

Basic Training

erating the code from the HTML
format specification, the fuzzer can
use a valid example or template file,
copy and modify it in a few key areas,
and submit it to the target applica-
tion—a Web server or browser. Cre-
ating new test cases is as simple as
gathering template files from an
available source of existing files (in
this case, the Internet).

When the fuzzer or someone
running it can easily obtain good
data sources—for config and registry
settings, user interfaces, command
line interfaces, and database inter-
faces, for example—mutation is
often the simpler method. In other
cases, getting a good copy of the
input can be more difficult than sim-
ply generating it from scratch (with
APIs, for instance). Formats can also
be highly sensitive to malformed
data. For example, network proto-
cols are often strictly defined so that
too much variation, particularly in
key control fields, can terminate the
parsing early in the code path—per-
haps in the network stack before the
application sees it. In such cases,
mutation ends up being more work
because parsing good data to deter-
mine what can be altered for fuzzing
is difficult.

Intelligent vs.
unintelligent fuzzers
In cases like the network example,
the fuzzer requires extensive knowl-
edge of the format it is attacking. In
other situations, the fuzzer can just
randomly mutate some data and
submit it to an application with no a
priori knowledge of the format. So
which technique is better? On one
hand, an intelligent fuzzer knows the
format, which enables it to specify
valid data for most of what it’s at-
tempting to fuzz. Intuitively, we can
see that an intelligent fuzzer could
potentially proceed farther along a
parser’s code paths and get better
code coverage.

On the other hand, an unintelli-
gent fuzzer has no built-in assump-
tions about the format or application

it is attacking; it simply changes bits
randomly to see what happens when
the target application consumes the
data. From this perspective, it’s con-
vincing to think such an approach
could cover cases far outside the
bounds of what the application ex-
pects, simply because a given modi-
fication seems so unlikely to cause
problems that no one has ever tried
it. Random changes can expose
problems such as those related to null
characters in text-based formats,
which use text-based control codes
like carriage return and line feed (CR
and LF) or special characters (such as
< and >) as delimiters. Nulls are
often completely invalid, but appli-
cations sometimes treat them as the
end of a string.

Clearly, both techniques have
some benefits. Investigating the issue
a bit deeper, we find a whole spec-
trum of intelligence we can build
into a fuzzer. At one end, the tool
might randomly choose a location in
a bit stream to insert, delete, or
change values; at the other extreme,
the tool might be able to exploit its
knowledge of a complex format’s
exact usage and structure. In be-
tween are fuzzers such as those that
look for simple binary patterns
(often problematic in parsers) or
those that can specify large portions
of a network control protocol but ig-
nore binary opaque blocks in the
middle of a packet. Certain applica-
tions will dictate the use of one tech-
nique over the other.

Patterns
When writing a fuzzer, you’ll often
find that patterns provide the great-
est benefit for the cost. The results
of pattern-based fuzzing vary ac-
cording to the data format’s com-
plexity and use of structures and
techniques such as checksums or
numerous relative referencing fields.
Nonetheless, pattern-based fuzzers
generally cost less to write than in-
telligent fuzzers, while providing
results of a similar caliber.

A pattern-based fuzzer looks for

particular data patterns and then per-
forms some data modification when
it locates them. For example, a pat-
tern of n number of sequential byte
values that correspond to ASCII data
in the printable characters range
(0x20 – 0x7F) in a binary code block
might indicate a string. Similarly, byte
values alternating between a value in
the ASCII range and zero might indi-
cate unicode data. After identifying
this pattern, a fuzzer could take some
interesting action, such as inserting
additional valid string data into the
block in an attempt to find a buffer
overrun. As I mentioned, removing
the trailing null termination character
from an identified string is another
useful fuzzing technique because a
parser will sometimes expect this
character and fail when it’s not there.
String data structures also commonly
prepend strings with their lengths,
which means modifying the value
immediately preceding a string can
expose interesting bugs. A buffer
overrun might ensue, for example,
because the parser is depending on
the prepended length to allocate the
buffer and a null terminator to copy
the data.

Text formats offer similar targets
to string data. The difference is that
all data in a text-based format is, at
some point, string data. Tokenizing
the string data and manipulating it
based on the tokens can thus lead to
some interesting results. For exam-
ple, changing the order, inserting du-
plicates, and modifying the tokens
can cause a parser to fail. Addition-
ally, parsers identify delimiters and
use them to separate data into tokens.
Inserting delimiters in the middle of
these tokens or between them can
also work well for fuzzing. For text-
based formats, using null characters,
spaces, CRLF, CR, LF, and encoding
sequences can expose parsers’ poten-
tially inaccurate assumptions about
where these should be.

Integers are a great target with bi-
nary data, which often relies heavily
on them to specify sizes and counts
of arbitrary structures. Simply re-

60 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2005

Basic Training

placing an integer value with a spe-
cial value can often cause a parser to
crash in strange and wonderful ways.
Inserting all 0s (0x00, 0x0000,
0x00000000, and so on) or all 1s
(0xFF, 0xFFFF, 0xFFFFFFFF, and
such) into a binary block can be ef-
fective in identifying integer over-
runs where an integer is used to
allocate memory or index a buffer
during parsing. Adding or subtract-
ing some small value from the cur-
rent value can also locate issues
because binary structures are often
identified by some type that might
be an enumeration with a particular
small range. For example, Microsoft
SQL Server’s Tabular Data Stream
(TDS) network protocol uses a byte
at offset 4, which must be of the
range 0–5, to signify the TDS packet
type. A small change to this number
leads to a different parsing code path,
which might expect a similar but
different format, whereas a large
change might get the case thrown
out by a range check. Flipping the
top bit of an integer value to make it
negative (bitwise OR with 0x80,
0x8000, and so on) can help identify
signed/unsigned mismatch errors.
Finally, moving data around by ex-
changing different blocks within a
data stream can also uncover bugs.

Common
fuzzing problems
When building a fuzzer, you must
account for several common prob-
lems. Some you can anticipate by
closely examining the format you
are fuzzing, but you’ll discover oth-
ers after you’ve begun developing
the fuzzer. With a well-understood
format, you can probably deter-
mine whether you’ll have to deal
with any of the following valida-
tion problems, which can hamper a
fuzzer’s effectiveness.

Many formats and protocols per-
form various types of validation. For
example, network protocols and file
formats often use hashes and check-
sums to help verify the integrity of
packet and file content. Of course,
these mechanisms present an obsta-
cle for fuzzing because we need to be
able to change the content for test-
ing purposes. The solution is to pro-
vide additional logic in the fuzzer to
recalculate the correct hash after
content mutation or generation.

Encrypted hashes and digital sig-
natures are even more problematic
because they’re designed to verify
not only that data content hasn’t
changed since the source sent it but
also that the source has some known
identity. In these cases, the fuzzer
also needs knowledge of the digital

signature algorithm and the private
key used to sign it, so that it can pre-
tend that it is the source party.

With digitally signed or en-
crypted data, the input represents a
significant threat only if the encryp-
tion or signed data crosses a trust
boundary. For example, encrypted
(and thus signed) email is important
to fuzz because, even though the
sender is authenticated with a public
key, the user reading the email might
not consider the sender trusted. The
encrypted and signed data crosses a
trust boundary between the sender
and receiver whose trust levels aren’t
necessarily the same. On the other
hand, a patch is an example of data
that doesn’t generally cross a trust
boundary. If a software application
validates the software company’s
digital signature on the patch, it
might not be important to consider
malicious input because the com-
pany is trusted to always provide
good data. Of course, if the threat is
that a rogue employee of the soft-
ware company might produce a ma-
licious patch, fuzzing becomes
important again. This digression il-
lustrates the value of threat model-
ing: once you understand the threats
you need to protect against, it’s
much easier to mitigate them by
doing fuzz testing against input.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 61

The following terms represent key concepts for fuzzing and

other types of code testing.

Attack surface—a general term for the set of code to which an attacker

has access. A common measure is bugs per thousand lines of code

(KLOC): by reducing code on a system, you reduce the amount of

code that could have an exploitable condition.

Code coverage—a technique for determining which pieces of code

have run during a specific time period, often by instrumenting the

code to be tested with special instructions that run at the beginning

and end of a function. When the code runs, the special instructions

record which functions were executed. Recording which code a test

case covers can indicate how much additional testing is needed to

cover all the code.

Format—in the current context, the valid input structure expected by

an application being fuzzed. The format for network input will likely

be the network protocol, for example, whereas the format for com-

mand line parameters will likely be several space-separated parame-

ters with the – or / indicated control parameters.

Invalid data—data that the infrastructure being used to transport it

is likely to reject before it can reach the application that con-

sumes it.

Parser—a set of code that takes data as input and converts it to a form

that a program can use. This often means deserializing binary or

text data formats into structures or classes that a program can in-

terpret easier.

Semivalid data—a detailed document describing an application and

its vulnerabilities. Testers use threat models to find architectural se-

curity holes and prioritize components for security code reviews and

security testing.

Glossary

In general, encrypted formats
don’t lend themselves well to
fuzzing. If the fuzzer does anything
beyond random bit flipping, its pat-
tern recognizer or parser will be
unable to parse the data. The key
here is to ensure that the fuzzer has
the additional capability to decrypt
data before it mutates and reen-
crypts it; with data generation, it
needs to be able to encrypt before
submitting to the application. For-
mats that use compression present
nearly identical issues, and the solu-
tion is the same: provide for de-
compression and compression ca-
pabilities in the fuzzer.

Of course, this is hardly a com-
prehensive list of problems you
might encounter while developing a
fuzzer. Once you have a working
tool, you can identify additional
problems through code coverage
analysis. By running the fuzzer
against an application while moni-
toring for code coverage, you can
quickly determine whether all your
cycles are being rejected in the same
place in the code. By analyzing the
specific section of code, you can
then determine what to do to let the
fuzzer proceed beyond that point (at
least some of the time).

Application behavior
What actually happens when you
submit fuzzed data to a target appli-
cation depends largely on what
you’re fuzzing. If you’re testing a
network stack, the data travels to the
application via the network, but it
can be difficult to tell if the data has
had the desired effect once it arrives.
Determining when an application
fails is much easier than proving
when it succeeds.

In fuzzing, it’s best to start by look-
ing for the things that are really wrong.
For example, the Windows operating
system uses exception handling to sig-
nal failure cases to an application and
to other parts of the OS. A debugger
can see these exceptions, so building
one in to a fuzzer allows it to deter-
mine when an application crashes.

Other ways to check application
correctness during fuzzing include
looking for spikes in the program’s
memory usage or CPU utilization,
which could indicate that the appli-
cation is using the malformed input
to make calculations for memory al-
location. It could also indicate an in-
teger overrun condition if the
program performs arithmetic opera-
tions on the input values. This might
result in an exploitable buffer over-
run condition. Similarly, a CPU
spike generally means that the pro-
gram is using an intensive algorithm
that isn’t properly bounded—
perhaps as simple as a loop in which
the variable used to determine how
many loops to perform comes from
the malicious input. At the least, this
indicates a denial of service if not
something more dangerous.

From these simple failure models,
we can envision more complex and
complete failure and success models
that actually examine the system to
ensure that it is working correctly
after parsing malformed data. I rec-
ommend using an extensible pattern
in the fuzzer to implement checks for
the success or failure of applications
parsing the malformed data. This is
true particularly because what
constitutes success and failure will
change over the fuzzer’s lifetime.

W hen creating software, devel-
opers must seriously consider

how to cover all boundary condi-
tions—focusing particularly on
those that can lead to security vul-
nerabilities. The ideas I’ve presented
here should provide some under-
standing of how to proceed in build-
ing a fuzzer and what to expect from
the fuzzing process.

Peter Oehlert is a security software engi-
neer at Microsoft. His research interests
include finding security vulnerabilities in
applications, networks, and databases. He
is a Microsoft certified systems engineer
(MCSE), Microsoft certified solution devel-
oper (MCSD), and a certified information
systems security professional (CISSP).
Contact him at peteoe@microsoft.com.

Basic Training

62 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2005

