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Abstract

Many operating system services require special priv-
ilege to execute their tasks. A programming error in a
privileged service opens the door to system compromise
in the form of unauthorized acquisition of privileges. In
the worst case, a remote attacker may obtain superuser
privileges. In this paper, we discuss the methodology
and design of privilege separation, a generic approach
that lets parts of an application run with different levels
of privilege. Programming errors occurring in the un-
privileged parts can no longer be abused to gain unau-
thorized privileges. Privilege separation is orthogonal
to capability systems or application confinement and
enhances the security of such systems even further.

Privilege separation is especially useful for system
services that authenticate users. These services exe-
cute privileged operations depending on internal state
not known to an application confinement mechanism.
As a concrete example, the concept of privilege sep-
aration has been implemented in OpenSSH. However,
privilege separation is equally useful for other authen-
ticating services. We illustrate how separation of priv-
ileges reduces the amount of OpenSSH code that is ex-
ecuted with special privilege. Privilege separation pre-
vents known security vulnerabilities in prior OpenSSH
versions including some that were unknown at the time
of its implementation.

1 Introduction

Services running on computers connected to the In-
ternet present a target for adversaries to compromise
their security. This can lead to unauthorized access to
sensitive data or resources.

Services that require special privilege for their op-
eration are critically sensitive. A programming error
here may allow an adversary to obtain and abuse the
special privilege.

The degree of the escalation depends on which priv-
ileges the adversary is authorized to hold and which
privileges can be obtained in a successful attack. For
example, a programming error that permits a user to

gain extra privilege after successful authentication lim-
its the degree of escalation because the user is already
authorized to hold some privilege. On the other hand,
a remote adversary gaining superuser privilege with no
authentication presents a greater degree of escalation.

For services that are part of the critical Internet
infrastructure is it particularly important to protect
against programming errors. Sometimes these services
need to retain special privilege throughout their life-
time. For example, in SSH, the SSH daemon needs to
know the private host key during re-keying to authenti-
cate the key exchange. The daemon also needs to open
new pseudo-terminals when the SSH client so requests.
These operations require durable special privilege as
they can be requested at any time during the lifetime
of a SSH connection. In current SSH implementations,
therefore, an exploitable programming error allows an
adversary to obtain superuser privilege.

Several approaches to help prevent security prob-
lems related to programming errors have been pro-
posed. Among them are type-safe languages [30] and
operating system mechanisms such as protection do-
mains [11] or application confinement [18, 21, 28].
However, these solutions do not apply to many exist-
ing applications written in C running on generic Unix
operating systems. Furthermore, system services that
authenticate users are difficult to confine because ex-
ecution of privileged operations depends on internal
state not known to the sandbox.

Instead, this paper discusses the methodology and
design of privilege separation, a generic approach to
limit the scope of programming bugs. The basic prin-
ciple of privilege separation is to reduce the amount of
code that runs with special privilege without affecting
or limiting the functionality of the service. This nar-
rows the exposure to bugs in code that is executed with
privileges. Ideally, the only consequence of an error in
a privilege separated service is denial of service to the
adversary himself.

The principle of separating privileges applies to any
privileged service on Unix operating systems. It is es-
pecially useful for system services that grant authenti-
cated users special privilege. Such services are difficult
to confine because the internal state of a service is not



known to an application confinement system and for
that reason it cannot restrict operations that the ser-
vice might perform for authenticated users. As a result,
an adversary who gains unauthorized control over the
service may execute the same operations as any authen-
ticated user. With privilege separation, the adversary
controls only the unprivileged code path and obtains
no unauthorized privilege.

Privilege separation also facilitates source code au-
dits by reducing the amount of code that needs to be
inspected intensively. While all source code requires
auditing, the size of code that is most critical to secu-
rity decreases.

In Unix, every process runs within its own protec-
tion domain, i.e., the operating system protects the ad-
dress space of a process from manipulation and control
by unrelated users. Using this feature, we accomplish
privilege separation by spawning unprivileged children
from a privileged parent. To execute privileged oper-
ations, an unprivileged child asks its privileged parent
to execute the operation on behalf of the child. An
adversary who gains control over the child is confined
in its protection domain and does not gain control over
the parent.

In this paper, we use OpenSSH as an example of
a service whose privileges can be separated. We show
that bugs in OpenSSH that led to system compromise
are completely contained by privilege separation. Priv-
ilege separation requires small changes to existing code
and incurs no noticeable performance penalty.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the principle of least privilege. We
introduce the concept of privilege separation in Sec-
tion 3 and describe a generic implementation for Unix
operating system platforms. We explain the implemen-
tation of privilege separation in OpenSSH in Section 4.
In Section 5, we discuss how privilege separation im-
proves security in OpenSSH. We analyze performance
impact in Section 6. Section 7 describes related work.
Finally, we conclude in Section 8.

2 Least Privilege

We refer to a privilege as a security attribute that
is required for certain operations. Privileges are not
unique and may be held by multiple entities.

The motivation for this effort is the principle of least
privilege: every program and every user should oper-
ate using the least amount of privilege necessary to
complete the job [23]. Applying the principle to appli-
cation design limits unintended damage resulting from
programming errors. Linden [15] suggests three ap-

proaches to application design that help prevent unan-
ticipated consequences from such errors: defensive pro-
gramming, language enforced protection, and protec-
tion mechanisms supported by the operating system.

The latter two approaches are not applicable to
many Unix-like operating systems because they are de-
veloped in the C language which lacks type-safety or
other protection enforcement. Though some systems
have started to support non-executable stack pages
which prevent many stack overflows from being ex-
ploitable, even this simple mechanism is not available
for most Unix platforms.

Furthermore, the Unix security model is very coarse
grained. Process privileges are organized in a flat tree.
At the root of the tree is the superuser. Its leaves are
the users of the system. The superuser has access to
every process, whereas users may not control processes
of other users. Privileges that are related to file sys-
tem access have finer granularity because the system
grants access based on the identity of the user and his
group memberships. In general, privileged operations
are executed via system calls in the Unix kernel, which
differentiates mainly between the superuser and every-
one else.

This leaves defensive programming, which attempts
to prevent errors by checking the integrity of param-
eters and data structures at implementation, compile
or run time. For example, defensive programming pre-
vents buffer overflows by checking that the buffer is
large enough to hold the data that is being copied into
it. Improved library interfaces like strlcpy and strlcat
help programmers avoid buffer overflows [17].

Nonetheless, for complex applications it is still in-
evitable that programming errors remain. Further-
more, even the most carefully written application can
be affected by third-party libraries and modules that
have not been developed with the same stringency. The
likelihood of bugs is high, and an adversary will try to
use those bugs to gain special privilege. Even if the
principle of least privilege has been followed, an adver-
sary may still gain those privileges that are necessary
for the application to operate.

3 Privilege Separation

This section presents an approach called privilege
separation that cleaves an application into privileged
and unprivileged parts. Its philosophy is similar to the
decomposition found in micro-kernels or in Unix com-
mand line tools. Privilege separation is orthogonal to
other protection mechanisms that an operating system
might support, e.g., capabilities or protection domains.



We describe an implementation of privilege separation
that does not require special support from the operat-
ing system kernel and as such may be implemented on
almost any Unix-like operating system.

The goal of privilege separation is to reduce the
amount of code that runs with special privilege. We
achieve this by splitting an application into parts. One
part runs with privileges and the others run without
them. We call the privileged part the monitor and the
unprivileged parts the slaves. While there is usually
only one slave, it is not a requirement. A slave must
ask the monitor to perform any operation that requires
privileges. Before serving a request from the slave, the
monitor first validates it. If the request is currently
permitted, the monitor executes it and communicates
the results back to the slave.

In order to separate the privileges in a service, it is
necessary to identify the operations that require them.
The number of such operations is usually small com-
pared to the operations that can be executed without
special privilege. Privilege separation reduces the num-
ber of programming errors that occur in a privileged
code path. Furthermore, source code audits can focus
on code that is executed with special privilege, which
can further reduce the incidence of unauthorized priv-
ilege escalation.

Although errors in the unprivileged code path can-
not result in any immediate privilege escalation, it
might still be possible to abuse them for other attacks
like resource starvation. Such denial of service attacks
are beyond the scope of this paper.

In the remainder of this section, we explain the Unix
mechanisms that allow us to implement a privilege sep-
arated service. Processes are protection domains in
a Unix system. That means that one process cannot
control another unrelated process. To achieve privilege
separation, we create two entities: a privileged parent
process that acts as the monitor and an unprivileged
child process that acts as the slave. The privileged par-
ent can be modeled by a finite-state machine (FSM)
that monitors the progress of the unprivileged child.
The parent accepts requests from the child for actions
that require privileges. The set of actions that are per-
mitted changes over time and depends on the current
state of the FSM. If the number of actions that re-
quire privileges is small, most of the application code
is executed by the unprivileged child.

The design of the interface is important as it pro-
vides a venue of attack for an adversary who manages
to compromise the unprivileged child. For example, the
interface should not provide mechanisms that allow the
export of sensitive information to the the child, like a
private signing key. Instead, the interface provides a

request that allows the child to request a digital signa-
ture.

A privilege separated service can be in one of two
phases:

• Pre-Authentication Phase: A user has contacted
a system service but is not yet authenticated. In
this case, the unprivileged child has no process
privileges and no rights to access the file system.

• Post-Authentication Phase: The user has success-
fully authenticated to the system. The child has
the privileges of the user including file system ac-
cess, but does not hold any other special privilege.
However, special privilege are still required to cre-
ate new pseudo-terminals or to perform other priv-
ileged operations. For those operations, the child
must request an action from the privileged parent.

The unprivileged child is created by changing
its user identification (UID) and group identifica-
tion (GID) to otherwise unused IDs. This is achieved
by first starting a privileged monitor process. It forks
a slave process. To prevent access to the file system,
the child changes the root of its file system to an empty
directory in which it is not allowed to create any files.
Afterwards, the slave changes its UID and GID to lose
its process privileges.

To enable slave requests to the monitor, we use inter-
process communication (IPC). There are many differ-
ent ways to allow communication between processes:
pipes, shared memory, etc. In our case, we establish
a socket between the two processes using the socket-
pair system call. The file descriptor is inherited by the
forked child.

A slave may request different types of privileged op-
erations from the monitor. We classify them depending
on the result the slave expects to achieve: Information,
Capabilities, or Change of Identity.

A child issues an informational request if acquir-
ing the information requires privileges. The request
starts with a 32-bit length field followed by an 8-bit
number that determines the request type. In general,
the monitor checks every request to see if it is al-
lowed. It may also cache the request and result. In the
pre-authentication phase, challenge-response authenti-
cation can be handled via informational requests. For
example, the child first requests a challenge from the
privileged monitor. After receiving the challenge, the
child presents it to the user and requests authentica-
tion from the monitor by presenting the response to
it. In this case, the monitor remembers the challenge
that it created and verifies that the response matches.
The result is either successful or unsuccessful authen-
tication. In OpenSSH, most privileged operations can



cmsg = CMSG_FIRSTHDR(&msg);

cmsg->cmsg_len = CMSG_LEN(sizeof(int));

cmsg->cmsg_level = SOL_SOCKET;

cmsg->cmsg_type = SCM_RIGHTS;

*(int *)CMSG_DATA(cmsg) = fd;

Figure 1: File descriptor passing enables us to send a
file descriptor to another process using a special control
message. With file descriptor passing, the monitor can
grant an unprivileged child access to a file that the child
is not allowed to open itself.

be implemented with informational requests.
Ordinarily, the only capability available to a process

in a Unix operating systems is a file descriptor. When
a slave requests a capability, it expects to receive a file
descriptor from the privileged monitor that it could not
obtain itself. A good example of this is a service that
provides a pseudo-terminal to an authenticated user.
Creating a pseudo-terminal involves opening a device
owned by the superuser and changing its ownership to
the authenticated user, which requires special privilege.

Modern Unix operating systems provide a mecha-
nism called file descriptor passing. File descriptor pass-
ing allows one process to give access to an open file to
another process [25]. This is achieved by sending a con-
trol message containing the file descriptor to the other
process; see Figure 1. When the message is received,
the operating system creates a matching file descriptor
in the file table of the receiving process that permits
access to the sender’s file. We implement a capability
request by passing a file descriptor over the socket used
for the informational requests. The capability request
is an informational request in which the slave expects
the monitor to answer with a control message contain-
ing the passed file descriptor.

The change of identity request is the most difficult
to implement. The request is usually issued when a ser-
vice changes from the pre-authentication to the post-
authentication phase. After authentication, the service
wants to obtain the privileges of the authenticated user.
Unix operating systems provide no portable mechanism
to change the user identity1 a process is associated with
unless the process has superuser privilege. However, in
our case, the process that wants to change its identity
does not have such privilege.

One way to effect a change of identity is to terminate
the slave process and ask the monitor to create a new
process that can then change its UID and GID to the
desired identities. By terminating the child process all

1To our knowledge, Solaris is the only Unix operating system
to provide such a mechanism.

mm_master_t *mm_create(mm_master_t *, size_t);

void mm_destroy(mm_master_t *);

void *mm_malloc(mm_master_t *, size_t);

void mm_free(mm_master_t *, void *);

void mm_share_sync(mm_master_t **, mm_master_t **);

Figure 2: These functions represent the interface for
shared memory allocation. They allow us to export dy-
namically allocated data from a child process to its parent
without changing address space references contained in
opaque data objects.

the state that has been created during its life time is
lost. Normally a meaningful continuation of the session
is not possible without retaining the state of the slave
process. We solve this problem by exporting all state
of the unprivileged child process back to the monitor.

Exporting state is messy. For global structures, we
use XDR-like [16] data marshaling which allows us
to package all data contained in a structure includ-
ing pointers and send it to the monitor. The data is
unpacked by the newly forked child process. This pre-
vents data corruption in the exported data from affect-
ing the privileged monitor in any way.

For structures that are allocated dynamically, e.g.,
via malloc, data export is more difficult. We solve this
problem by providing memory allocation from shared
memory. As a result, data stored in dynamically allo-
cated memory is also available in the address space of
the privileged monitor. Figure 2 shows the interface to
the shared memory allocator.

The two functions mm create and mm share sync
are responsible for permitting a complete export of
dynamically allocated memory. The mm create func-
tion creates a shared address space of the specified size.
There are several ways to implement shared memory,
we use anonymous memory maps. The returned value
is a pointer to a mm master structure that keeps track
of allocated memory. It is used as parameter in subse-
quent calls to mm malloc and mm free. Every call to
those two functions may result in allocation of addi-
tional memory for state that keeps track of free or al-
located memory in the shared address space. Usually,
that memory is allocated with libc’s malloc function.
However, the first argument to the mm create func-
tion may be a pointer to another shared address space.
In that case, the memory manager allocates space for
additional state from the passed shared address space.

Figure 3 shows an overview of how allocation in the
shared address space proceeds. We create two shared
address spaces: back and mm. The address space mm
uses back to allocate state information. When the child



mm = mm_create(back, 655360);

back = mm_create(NULL, 65536);

Parent

...

pid = fork();

waitpid(pid, NULL, 0);

Parent

p = mm_malloc(mm, size);

...

exit(0);

MmBack

Back Mm

Child

Figure 3: The complete state of a slave process in-
cludes dynamically allocated memory. When exporting
this state, the dynamically allocated address space in
opaque data objects must not change. By employing a
shared memory allocator that is backed by another shared
address space, we can export state without changing the
addresses of dynamically allocated data.

wants to change its identity, it exits and the thread of
execution continues in the parent. The parent has ac-
cess to all the data that was allocated in the child.
However, one problem remains. The shared address
space back uses libc’s malloc that allocated memory
in the child’s address space to keep track of its state.
If this information is lost when the child process exits,
then subsequent calls to mm malloc or mm free fail. To
solve the problem, the parent calls the mm share sync
function which recreates the state information in the
shared address space back. Afterwards, freeing and al-
locating memory proceeds without any problems.

We use shared memory and XDR-like data marshal-
ing to export all state from the child to the parent. Af-
ter the child process exports its state and terminates,
the parent creates a new child process. The new pro-
cess changes to the desired UID and GID and then
imports the exported state. This effects a change of
identity in the slave that preserves state information.

4 Separating Privileges in OpenSSH

In this section, we show how to use privilege sep-
aration in OpenSSH, a free implementation of the
SSH protocols. OpenSSH provides secure remote lo-
gin across the Internet. OpenSSH supports protocol
versions one and two; we restrict our explanation of
privilege separation to the latter. The procedure is
very similar for protocol one and also applies to other
services that require authentication.

Key Exchange

Auth Result

Request Auth

User Request
Processing

privileged
OpenSSH

privileged
OpenSSH

privileged
OpenSSH

T
im

eline

Network connection

fork unprivileged child

State Export

User Network Data
Request PTY

Pass PTYMonitor

Monitor Processing
Network

Listen *:22

fork user child

unprivileged
OpenSSH

OpenSSH
user privileged

Authentication

Figure 4: Overview of privilege separation in OpenSSH.
An unprivileged slave processes all network communica-
tion. It must ask the monitor to perform any operation
that requires privileges.

When the SSH daemon starts, it binds a socket to
port 22 and waits for new connections. Every new con-
nection is handled by a forked child. The child needs
to retain superuser privileges throughout its lifetime
to create new pseudo terminals for the user, to au-
thenticate key exchanges when cryptographic keys are
replaced with new ones, to clean up pseudo terminals
when the SSH session ends, to create a process with
the privileges of the authenticated user, etc.

With privilege separation, the forked child acts as
the monitor and forks a slave that drops all its priv-
ileges and starts accepting data from the established
connection. The monitor now waits for requests from
the slave; see Figure 4. Requests that are permitted
in the pre-authentication phase are shown in Figure 5.
If the child issues a request that is not permitted, the
monitor terminates.

First, we identify the actions that require special
privilege in OpenSSH and show which request types
can fulfill them.

4.1 Pre-Authentication Phase

In this section, we describe the privileged requests
for the pre-authentication phase:

• Key Exchange: SSH v2 supports the Diffie-
Hellman Group Exchange which allows the client
to request a group of a certain size from the
server [10]. To find an appropriate group the
server consults the /etc/moduli file. However, be-
cause the slave has no privileges to access the file
system, it can not open the file itself, so, it is-
sues an informational request to the monitor. The



struct mon_table mon_dispatch_proto20[] = {

{MONITOR_REQ_MODULI, MON_ONCE, mm_answer_moduli},

{MONITOR_REQ_SIGN, MON_ONCE, mm_answer_sign},

{MONITOR_REQ_PWNAM, MON_ONCE, mm_answer_pwnamallow},

{MONITOR_REQ_AUTHSERV, MON_ONCE, mm_answer_authserv},

{MONITOR_REQ_AUTHPASSWORD, MON_AUTH, mm_answer_authpassword},

[...]

{MONITOR_REQ_KEYALLOWED, MON_ISAUTH, mm_answer_keyallowed},

{MONITOR_REQ_KEYVERIFY, MON_AUTH, mm_answer_keyverify},

{0, 0, NULL}

};

Figure 5: The table describes valid requests that a slave may send to the monitor in the pre-authentication phase for
SSH protocol version two. After authentication, the set of valid requests changes and is described by a separate table.

monitor returns a suitable group after consulting
the moduli file. The returned group is used by the
slave for the key exchange. As seen in Figure 5,
the slave may issue this request only once.

• Authenticated Key Exchange: To prevent man-in-
the-middle attacks, the key exchange is authenti-
cated. That means that the SSH client requires
cryptographic proof of the server identity. At the
beginning of the SSH protocol, the server sends
its public key to the client for verification. As the
public key is public, the slave knows it and no spe-
cial request is required. However, the slave needs
to ask the monitor to authenticate the key ex-
change by signing a cryptographic hash of all val-
ues that have been exchanged between the client
and the server. The signature is obtained by an
informational request.

• User Validation: After successful key exchange, all
communication is encrypted and the SSH client
informs the server about the identity of the user
who wants to authenticate to the system. At this
point, the server decides if the user name is valid
and allowed to login. If it is invalid, the protocol
proceeds but all authentication attempts from the
client fail. The slave can not access the password
database, so it must issue an informational request
to the server. The server caches the user name and
reports back to the slave if the name is valid.

• Password Authentication: Several methods can be
used to authenticate the user. For password au-
thentication, the SSH client needs to send a cor-
rect login and password to the server. Once again,
the unprivileged slave can not access the password
database, so it asks the monitor to verify the pass-
word. The monitor informs the slave if the au-
thentication succeeds or fails. If it succeeds, the

pre-authentication phase ends.

• Public Key Authentication: Public Key Authen-
tication is similar to password authentication. If
it is successful, the pre-authentication phase ends.
However, two informational requests are required
to use public keys for authentication. The first re-
quest allows the slave to determine if a public key
presented by the client may be used for authenti-
cation. The second request determines if the sig-
nature returned by the client is valid and signs the
correct data. A valid signature results in success-
ful authentication.

At any time, the number of requests that the slave
may issue are limited by the state machine. When
the monitor starts, the slave may issue only the first
two requests in Figure 5. After the key exchange has
finished, the only valid request is for user validation.
After validating the user, all authentication requests
are permitted. The motivation for keeping the number
of valid requests small is to reduce the attack profile
available to an intruder who has compromised the slave
process.

All requests up to this point have been informa-
tional. The pre-authentication phase ends with suc-
cessful authentication as determined by the monitor.
At this point, the slave needs to change its identity
to that of the authenticated user. As a result, the
slave obtains all privileges of the user, but no other
privileges. We achieve this with a change of identity
request.

The monitor receives the state of the slave process
and waits for it to exit. The state consists of the fol-
lowing: the encryption and authentication algorithms
including their secret keys, sequence counters for in-
coming and outgoing packets, buffered network data
and the compression state.



Exporting the cryptographic key material is uncom-
plicated. The main problem is exporting the compres-
sion state. The SSH protocols use the zlib compression
format [7, 8] which treats network data as a stream
instead of sequence of packets. Treating network data
as a stream allows zlib to improve its dictionary with
increasing amount of compressed data. On the other
hand, it also means that compression in the server can-
not be stopped and then restarted as the client uses a
dictionary that depends on all the preceding data. For-
tunately, zlib provides hooks for user supplied mem-
ory management functions. We provide it with func-
tions that use mm malloc and mm free as back end.
After the child exits, the monitor needs only to call
mm share sync to import the compression state.

4.2 Post-Authentication Phase

The monitor forks a new process that then changes
its process identification to that of the authenticated
user. The slave process obtains all the privileges of
the authenticated user. At this point, we enter the
post-authentication phase which requires only a few
privileged operations. They are as follows:

• Key Exchange: In SSH protocol version two, it
is possible to renew cryptographic keys. This re-
quires a new key exchange, so just as in the pre-
authentication phase, the monitor chooses a suit-
able group for the Diffie-Hellman key exchange
and signs for authentication.

• Pseudo Terminal Creation: After authentication,
the user requires a pseudo terminal whose creation
requires superuser privileges. For a Unix applica-
tion, a pseudo terminal is just a file descriptor.
The slave issues a capability request to the moni-
tor. The monitor creates the terminal and passes
the corresponding file descriptor to the child pro-
cess. An informational request suffices when the
slave wants to close the pseudo terminal.

4.3 Discussion

Observe that the majority of all privileged opera-
tions can be implemented with informational requests.
In fact, some degree of privilege separation is possible
if neither capability nor change of identity requests are
available. If the operating system does not support file
descriptor passing, privilege separation perforce ends
after the pre-authentication phase. To fully support
the change of identify request shared memory is re-
quired. Without shared memory, the compression state
cannot be exported without rewriting zlib. Nonethe-
less, systems that do not support shared memory can

disable compression and still benefit from privilege sep-
aration.

Using an alternative design, we can avoid the change
of identity request and shared memory. Instead of us-
ing only two processes: monitor and slave, we use three
processes: one monitor process and two slave processes.
The first slave operates similarly to the slave process
described in the pre-authentication phase. However,
after the user authenticates, the slave continues to run
and is responsible for encrypting and decrypting net-
work traffic. The monitor then creates a second slave
to execute a shell or remote command with the cre-
dentials of the authenticated user. All communication
passes via the first child process to the second. This
design requires no state export and no shared mem-
ory. Although the cryptographic processing is isolated
in the first child, it has only a small effect on security.
In the original design, a bug in the cryptographic pro-
cessing may allow an adversary to execute commands
with the privilege of the authenticated user. However,
after authentication, an adversary can already execute
any commands as that user. The three process design
may help for environments in which OpenSSH restricts
the commands a user is allowed to execute. On the
other hand, it adds an additional process, so that ev-
ery remote login requires three instead of two processes.
While removing the state export reduces the complex-
ity of the system, synchronizing three instead of two
processes increases it. An additional disadvantage is a
decrease in performance because the three process de-
sign adds additional data copies and context switches.

For the two process design, the changes to the ex-
isting OpenSSH sources are small. About 950 lines of
the 44,000 existing lines of source code, or 2%, were
changed. Many of the changes are minimal:

- authok = auth_password(authctxt, pwd);

+ authok = PRIVSEP(auth_password(authctxt, pwd);

The new code that implements the monitor and the
data marshaling amounts to about three thousand lines
of source code, or about seven percent increase in the
size of the existing sources.

While support for privilege separation increases the
source code size, it actually reduces the complexity of
the existing code. Privilege separation requires clean
and well abstracted subsystem interfaces so that their
privileged sections can run in a different process con-
text. During the OpenSSH implementation, the inter-
faces for several subsystems had to be improved to fa-
cilitate their separation. As a result, the source code is
better organized, more easily understood and audited,
and less complex.

The basic functionality that the monitor provides
is independent of OpenSSH. It may be used to enable



privilege separation in other applications. We benefit
from reusing security critical source code because it
results in more intense security auditing. This idea
has been realized in Privman, a library that provides
a generic framework for privilege separation [12].

5 Security Analysis

To measure the effectiveness of privilege separation
in OpenSSH, we discuss attacks that we protect against
and analyse how privilege separation would have af-
fected security problems reported in the past. We as-
sume that the employed cryptography is secure, there-
fore we do not discuss problems of cryptographic prim-
itives.

After privilege separation, two thirds of the source
code are executed without privileges as shown in Ta-
ble 1. The numbers include code from third-party li-
braries such as openssl and zlib. For OpenSSH itself,
only twenty five percent of the source code require priv-
ilege whereas the remaining seventy five percent are
executed without special privilege. If we assume that
programming errors are distributed fairly uniformly,
we can estimate the increase of security by counting
the number of source code lines that are now executed
without privileges. This back of the envelope analysis
suggests that two thirds of newly discovered or intro-
duced programming errors will not result in privilege
escalation and that only one third of the source code
requires intensive auditing.

We assume that an adversary can exploit a program-
ming error in the slave process to gain complete con-
trol over it. Once the adversary compromised the slave
process, she can make any system call in the process
context of the slave. We assume also that the system
call interface to the operating system itself is secure2.
Still, there are several potential problems that an im-
plementation of privilege separation needs to address:

• The adversary may attempt to signal or ptrace
other processes to get further access to the system.
This is not possible in our design because the slave
processes use their own UID.

• The adversary may attempt to signal or ptrace
the slave processes of other SSH sessions. When
changing the UID of a process from root to another
UID, the operating system marks the process as
P SUGID so that only root may signal or ptrace it.

2This assumption does not always hold. A bug in OpenBSD’s
select system call allowed an adversary to execute arbitrary code
at the kernel-level [5, 20].

Subsystem Lines of Code Percentage
Unprivileged 17589 67.70%
OpenSSH 10360 39.88%

Ciphers 267 1.03%
Packet Handling 1093 4.21%

Miscellaneous 7944 30.58%
Privsep Interface 1056 4.06%

OpenSSL 3138 12.08%
Diffie Hellman 369 1.42%

Symmetric Ciphers 2769 10.66%
Zlib 4091 15.75%
Privileged 8391 32.30%
OpenSSH 3403 13.10%

Authentication 803 3.09%
Miscellaneous 1700 6.54%

Monitor 900 3.46%
OpenSSL 4109 15.82%

BigNum/Hash 3178 12.23%
Public Key 931 3.58%

SKey 879 3.17%

Table 1: Number of source code lines that are executed
with and without privileges.

As a result, a slave process can not signal another
slave.

• She may attempt to use system calls that change
the file system, for example to create named pipes
for interprocess communication or device nodes.
However, as a non-root user the slave process has
its file system root set to an empty read-only di-
rectory that the adversary can not escape from.

• Using privilege separation, we cannot prevent the
adversary from initiating local network connec-
tions and potentially abusing trust relations based
on IP addresses. However, we may restrict the
child’s ability to access the system by employing
external policy enforcement mechanisms like Sys-
trace [21].

• The adversary may attempt to gather information
about the system, for example, the system time or
PIDs of running processes, that may allow her to
compromise a different service. Depending on the
operating system, some information is exported
only via the file system and can not be accessed
by the adversary. A sandbox may help to further
restrict the access to system information.

Another way an adversary may try to gain addi-
tional privileges is to attack the interface between the



privileged monitor and the slave. The adversary could
send badly formatted requests in the hope of exploiting
programming errors in the monitor. For that reason,
it is important to carefully audit the interface to the
monitor. In the current implementation, the monitor
imposes strict checks on all requests. Furthermore, the
number of valid requests is small and any request de-
tected as invalid causes the privileged monitor to ter-
minate.

Nonetheless, there may be other ways that an ad-
versary might try to harm the system. She might try
to starve the resources of the system by forking new
processes or by running very time intensive computa-
tions. As a result, the system might become unusable.
The effect of such an attack can be mitigated by plac-
ing process limits on the slave process. For example,
we can limit the number of file descriptors the slave
may open and the number of processes it is allowed
to fork. The monitor may also watch other resource
utilization like CPU time and terminate the slave if a
certain threshold is reached.

In the following, we discuss how privilege separa-
tion would have affected previous progamming errors
in OpenSSH.

The SSH-1 Daemon CRC32 Compensation Attack
Detector Vulnerability permits an adversary to gain su-
peruser privileges remotely without authenticating to
the systems [31]. The problem is caused by an inte-
ger overflow in a function that processes network pack-
ets. With privilege separation, this function is executed
without any privileges, which makes it impossible for
an adversary to directly compromise the system.

Similarly, the off-by-one error in OpenSSH’s channel
code allows an adversary to gain superuser privileges
after authenticating to the system [19]. With privi-
lege separation, the process has only the privileges of
the authenticated user. An adversary cannot obtain
system privileges in this case either.

A security problem in the external zlib compression
library was found that might allow a remote adversary
to gain superuser privileges without any authentica-
tion [3]. This problem occurs in a third-party library,
so no audit of the OpenSSH source code itself can find
it. Privilege separation prevents a system compromise
in this case, too.

At the time of this writing, additional security prob-
lems have been found in OpenSSH. A bug in the Ker-
beros ticket passing functions allowed an authenticated
user to gain superuser rights. A more severe problem in
code for challenge-response authentication allows a re-
mote adversary to obtain superuser privileges without
any authentication [4]. Privilege separation prevents
both of these problems and is mentioned in the CERT

advisory as a solution.
The programming errors in the channel code and

in the Kerberos ticket passing functions occur in the
post-authentication phase. Without privilege separa-
tion, these errors allow an authenticated user to gain
superuser privilege. The remaining errors occur dur-
ing pre-authentication and may allow an adversary to
gain superuser privilege without any authentication if
privilege separation is not used.

These examples demonstrate that privilege separa-
tion has the potential to contain security problems yet
unknown.

6 Performance Analysis

To analyze the performance of privilege separated
OpenSSH, we measure the execution time for several
different operations in monolithic OpenSSH and the
privileged separated version. We conduct the measure-
ments on a 1.13 GHz Pentium III laptop with all data
in the memory cache.

Test Normal Privsep
Login

- compressed 0.775s± 0.0071s 0.777s± 0.0067s
- uncompressed 0.767s± 0.0106s 0.774s± 0.0097s
Data Transfer

- compressed 4.229s± 0.0373s 4.243s± 0.0411s
- uncompressed 1.989s± 0.0223s 1.994s± 0.0143s

Table 2: Performance comparison between normal
OpenSSH and privilege separated OpenSSH. We measure
the overhead in login and data transfer time when employ-
ing privilege separation. In both cases, privilege separation
imposes no significant performance penality.

The first test measures the time it takes to login us-
ing public key authentication. We measure the time
with compression enabled and without compression.
The next two tests measure the data transfer time of
a 10 MB file filled with random data, with compres-
sion enabled, and without compression. The results
are shown in Table 2. It is evident that privilege sep-
arated OpenSSH does not penalize performance. As
the IPC between monitor and slave is never used for
moving large amounts of data, this is not surprising.

7 Related Work

Confidence in the security of an application starts
by source code inspection and auditing. Static analysis



provides methods to automatically analyze a program’s
source code for security weaknesses. Using static anal-
ysis, it is possible to automatically find buffer over-
run vulnerabilities [13, 27], format string vulnerabili-
ties [24], etc.

While source code analysis enables us to find some
security vulnerabilities, it is even more important to
design applications with security in mind. The prin-
ciple of least privilege is a guideline for developers to
secure applications. It states that every program and
every user should operate using the least amount of
privilege necessary to complete the job [22].

Security mechanisms at the operating system level
provide ways to reduce the privileges that applications
run with [1, 29, 18, 21]. However, these mechanisms
are unaware of an application’s internal state. For ex-
ample, they cannot determine if users authenticate suc-
cessfully. As a result, they have to allow all operations
of authenticated users even when attached by an ad-
versary. Privilege separation remedies this problem be-
cause it is built into the application and exposes only an
unprivileged child to the adversary. There are several
applications that make use of privilege separation as
we discuss below. The main difference in this research
is the degree and completeness of the separation.

Carson demonstrates how to reduce the number of
privileges that are required in the Sendmail mail sys-
tem [2]. His design follows the principle of least priv-
ilege. While Sendmail is a good example, the degrees
of privilege separation demonstrated in OpenSSH are
much more extensive. For example, we show how to
change the effective UID and how to retain privileges
securely for the whole duration of the session.

Venema uses semi-resident, mutually-cooperating
processes in Postfix [26]. He uses the process context
as a protection domain similar to our research in priv-
ilege separation. However, a mail delivery system does
not require the close interaction between privileged and
unprivileged processes as necessary for authentication
services like OpenSSH. For system services that require
transitions between different privileges, our approach
seems more suitable.

Evans very secure FTP daemon uses privilege sep-
aration to limit the effect of programming errors [9].
He uses informational and capability requests in his
implementation. His work is very similar to the imple-
mentation of privilege separation in OpenSSH, but not
as extensive and less generic.

Solar Designer uses a process approach to switch
privileges in his Owl Linux distribution [6]. His POP3
daemon popa3d forks processes that execute protocol
operations with lower privileges and communicate re-
sults back to the parent. The interaction between par-

ent and child is based completely on informational re-
quests.

Separating the privileges of an application causes a
decomposition into subsystems with well defined func-
tionality. This is similar to the design and functionality
of a microkernel where subsystems have to follow the
principle of independence and integrity [14]. For a priv-
ilege separated application, independence and integrity
are realized by multiple processes that have separate
address spaces and communicate via IPC.

8 Conclusion

Programming errors in privileged services can result
in system compromise allowing an adversary to gain
unauthorized privileges.

Privilege separation is a concept that allows parts
of an application to run without any privileges at all.
Programming errors in the unprivileged part of the ap-
plication cannot lead to privilege escalation.

As a proof of concept, we implemented privilege sep-
aration in OpenSSH and show that past errors that al-
lowed system compromise would have been contained
with privilege separation.

There is no performance penalty when running
OpenSSH with privilege separation enabled.
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