
Finding Security
Vulnerabilities

in Java Applications
with Static Analysis

Benjamin Livshits and Monica S. Lam

Computer Science Department
Stanford University

{livshits, lam}@cs.stanford.edu

Technical Report

September 25, 2005

CONTENTS 2

Contents

1 Introduction 5
1.1 Causes of Vulnerabilities . 6
1.2 Code Auditing for Security . 7
1.3 Static Analysis . 7
1.4 Contributions . 8
1.5 Report Organization . 8

2 Overview of Vulnerabilities 10
2.1 SQL Injection Example . 10
2.2 Injecting Malicious Data . 11

2.2.1 Parameter Tampering . 11
2.2.2 URL Tampering . 11
2.2.3 Hidden Field Manipulation 12
2.2.4 HTTP Header Manipulation 12
2.2.5 Cookie Poisoning . 13
2.2.6 Non-Web Input Sources 14

2.3 Exploiting Unchecked Input . 14
2.3.1 SQL Injections . 14
2.3.2 Cross-site Scripting Vulnerabilities 15
2.3.3 HTTP Response Splitting 16
2.3.4 Path Traversal . 16
2.3.5 Command Injection . 17

2.4 Secure Coding Practices . 17

3 Static Analysis 19
3.1 Tainted Object Propagation . 19
3.2 Specifications Completeness . 21
3.3 Static Analysis . 21

3.3.1 Role of Pointer Information 21
3.3.2 Finding Violations Statically 22
3.3.3 Role of Pointer Analysis Precision 23

3.4 Specifying Taint Problems in PQL 24
3.4.1 Simple SQL Injection Query 26
3.4.2 Queries for a Taint Problem 28

4 Precision and Coverage Improvements 30
4.1 Precision Improvements . 30

4.1.1 Handling of Containers 31
4.1.2 Handling of String Routines 31

4.2 Coverage Improvements . 32
4.2.1 Finding Root Methods in Web Applications 32

CONTENTS 3

4.2.2 Treatment of Reflection 34
4.3 Soundness and Completeness . 34

5 Auditing Environment 35

6 Experimental Results 36
6.1 Benchmark Applications . 36
6.2 Experimental Setup . 37
6.3 Vulnerabilities Discovered . 38

6.3.1 Validating the Errors We Found 38
6.3.2 Classification of Errors . 39
6.3.3 SQL Injection Vector in hibernate 40
6.3.4 Cross-site Tracing Attacks 41

6.4 Analysis Features and False Positives 41

7 Related Work 45
7.1 Penetration Testing . 45
7.2 Runtime Monitoring . 45
7.3 Static Analysis Approaches . 46

8 Future Work 47

9 Conclusions 49

10 Acknowledgements 50

A Source, Sink, and Derivation Descriptors 57

Abstract

This report proposes a static analysis technique for detecting many recently
discovered application vulnerabilities such as SQL injections, cross-site scripting,
and HTTP splitting attacks. These vulnerabilities stem from unchecked input,
which is widely recognized as the most common source of security vulnerabilities
in Web applications. We propose a static analysis approach based on a scalable
and precise points-to analysis.

In our system, user-provided specifications of vulnerabilities are automat-
ically translated into static analyzers. Our approach finds all vulnerabilities
matching a specification in the statically analyzed code. Results of our static
analysis are presented to the user for assessment in an auditing interface inte-
grated within Eclipse, a popular Java development environment.

Our static analysis found 29 security vulnerabilities in nine large, popular
open-source applications, with two of the vulnerabilities residing in widely-used
Java libraries. In fact, all but one application in our benchmark suite had
at least one vulnerability. Context sensitivity, combined with improved object
naming, proved instrumental in keeping the number of false positives low. Our
approach yielded very few false positives in our experiments: in fact, only one
of our benchmarks suffered from false alarms.

This report is an extended version of the material that appears in [LL05].

5

SECTION 1

Introduction

The security of Web applications has become increasingly important in the last
decade. More and more Web-based enterprise applications deal with sensitive
financial and medical data, which, if compromised, can cause significant down-
time and millions of dollars in damages. It is crucial to protect these applications
from hacker attacks.

However, the current state of application security leaves much to be desired.
The 2002 Computer Crime and Security Survey conducted by the Computer
Security Institute and the FBI revealed that, on a yearly basis, over half of all
databases experience at least one security breach and an average episode results
in close to $4 million in losses [Com02]. The survey also noted that Web crime
has become commonplace. Web crimes range from cyber-vandalism (e.g., Web
site defacement) at the low end, to theft of sensitive information and financial
fraud at the high end. A recent penetration testing study performed by the
Imperva Application Defense Center included more than 250 Web applications
from e-commerce, online banking, enterprise collaboration, and supply chain
management sites [Web04]. Their vulnerability assessment concluded that at
least 92% of Web applications are vulnerable to some form of hacker attacks.
Security compliance of application vendors is especially important in light of
recent U.S. industry regulations such as the Sarbanes-Oxley act pertaining to
information security [Bea03, Gro04].

A great deal of attention has been given to network-level attacks such as
port scanning, even though, about 75% of all attacks against Web servers tar-
get Web-based applications, according to a recent survey [Hul01]. It is easy
to underestimate the potential level of risk associated with sensitive informa-
tion within databases accessed through Web applications until a severe security
breach actually occurs. Traditional defense strategies such as firewalls do not
protect against Web application attacks, as these attacks rely solely on HTTP
traffic, which is usually allowed to pass through firewalls unhindered. Thus,
attackers typically have a direct line to Web applications.

Many projects in the past focused on guarding against problems caused
by the unsafe nature of C, such as buffer overruns and format string vulner-
abilities [CPM+98, STFW01, WFBA00]. However, in recent years, Java has
emerged as the language of choice for building large complex Web-based sys-
tems, in part because of language safety features that disallow direct memory
access and eliminate problems such as buffer overruns. Platforms such as J2EE
(Java 2 Enterprise Edition) also promoted the adoption of Java as a language
for implementing e-commerce applications such as Web stores, banking sites,
etc.

A typical Web application accepts input from the user browser and inter-
acts with a back-end database to serve user requests; J2EE libraries make
these common tasks easy to code. However, despite Java language’s safety,

Causes of Vulnerabilities 6

Figure 1: Architecture of our static analysis framework.

it is possible to make logical programming errors that lead to vulnerabilities
such as SQL injections [Anl02a, Anl02b, Fri04] and cross-site scripting at-
tacks [CGI, Hu04, Spe02a]. Discovered several years ago, these attack tech-
niques are now commonly used to create exploits by malicious hackers. A score
of recently discovered vulnerabilities can be attributed to these attacks []. A
simple programming mistake can leave a Web application vulnerable to unau-
thorized data access, unauthorized updates or deletion of data, and application
crashes leading to denial-of-service attacks.

1.1 Causes of Vulnerabilities

Of all vulnerabilities identified in Web applications, problems caused by
unchecked input are recognized as being the most common [Ope04b]. To exploit
unchecked input, an attacker needs to achieve two goals:

Inject malicious data into Web applications. Common methods used
include:

• Parameter tampering: pass specially crafted malicious values in fields
of HTML forms.

• URL manipulation: use specially crafted parameters to be submitted
to the Web application as part of the URL.

• Hidden field manipulation: set hidden fields of HTML forms in Web
pages to malicious values.

• HTTP header tampering: manipulate parts of HTTP requests sent to
the application.

• Cookie poisoning: place malicious data in cookies, small files sent to
Web-based applications.

Manipulate applications using malicious data. Common methods used
include:

• SQL injection: pass input containing SQL commands to a database
server for execution.

Code Auditing for Security 7

• Cross-site scripting: exploit applications that output unchecked input
verbatim to trick the user into executing malicious scripts.

• HTTP response splitting: exploit applications that output input ver-
batim to perform Web page defacements or Web cache poisoning attacks.

• Path traversal: exploit unchecked user input to control which files are
accessed on the server.

• Command injection: exploit user input to execute shell commands.

These kinds of vulnerabilities are widespread in today’s Web applications. A
recent empirical study of vulnerabilities found that parameter tampering, SQL
injection, and cross-site scripting attacks account for more than a third of all
reported Web application vulnerabilities [SS04]. While different on the surface,
all types of attacks listed above are made possible by user input that has not
been (properly) validated. This set of problems is similar to those handled
dynamically by the taint mode in Perl [WCS96], even though our approach is
considerably more extensible. We refer to this class of vulnerabilities as the
tainted object propagation problem. Detailed information about these classes of
vulnerabilities can be found in “The 21 Primary Classes of Web Application
Threats” [Net04] and the “OWASP Secure Development Guide [Ope04a]”.

1.2 Code Auditing for Security

Many attacks described in the previous section can be detected with code au-
diting. Code reviews pinpoint potential vulnerabilities before an application is
run. In fact, most Web application development methodologies recommend a
security assessment or review step as a separate development phase after testing
and before application deployment [Ope04a, Ope04b].

Code reviews, while recognized as one of the most effective defense strate-
gies [HL01], are time-consuming, costly, and are therefore performed infre-
quently. Security auditing requires security expertise that most developers do
not possess, so security reviews are often carried out by external security consul-
tants, thus adding to the cost. In addition to this, because new security errors
are often introduced as old ones are corrected, double-audits (auditing the code
twice) is highly recommended. The current situation calls for better tools that
help developers avoid introducing vulnerabilities during the development cycle.

1.3 Static Analysis

We propose a tool based on a static analysis for finding vulnerabilities caused
by unchecked input. Users of the tool can describe vulnerability patterns of
interest succinctly in PQL [MLL05], which is an easy-to-use program query
language with a Java-like syntax. Our tool, as shown in Figure 1, applies user-
specified queries to Java bytecode and finds all potential matches statically. The
results of the analysis are integrated into Eclipse, a popular open-source Java

Contributions 8

development environment [DFK+04], making the potential vulnerabilities easy
to examine and fix as part of the development process.

The advantage of static analysis is that it can find all potential security vi-
olations without executing the application. The use of bytecode-level analysis
obviates the need for the source code to be accessible. This is especially im-
portant since libraries whose source is unavailable are used extensively in Java
applications. Our approach can be applied to other forms of bytecode such as
MSIL, thereby enabling the analysis of C# code [MRM03].

Our tool is distinctive in that it is based on a precise context-sensitive
pointer analysis that has been shown to scale to large applications [WL04].
This combination of scalability and precision enables our analysis to find all
vulnerabilities matching a specification within the portion of the code that
is analyzed statically. In contrast, previous practical tools are typically un-
sound [BPS00, HCXE02]. Without a precise analysis, these tools would find
too many potential errors, so they only report a subset of errors that are likely
to be real problems. As a result, they can miss important vulnerabilities in
programs.

1.4 Contributions

This report makes the following contributions.

A unified analysis framework. We unify multiple, seemingly diverse, re-
cently discovered categories of security vulnerabilities in Web applications and
propose an extensible tool for detecting these vulnerabilities using a sound yet
practical static analysis for Java.
A powerful static analysis. Our tool is the first practical static security
analysis that utilizes fully context-sensitive pointer analysis results. We improve
the state of the art in pointer analysis by improving the object-naming scheme.
The precision of the analysis is effective in reducing the number of false positives
issued by our tool.
A simple user interface. Users of our tool can find a variety of vulnerabilities
involving tainted objects by specifying them using PQL [MLL05]. Our system
provides a GUI auditing interface implemented on top of Eclipse, thus allowing
users to perform security audits quickly during program development.

Experimental validation. We present a detailed experimental evaluation
of our system and the static analysis approach on a set of large, widely-used
open-source Java applications. We found a total of 29 security errors, including
two important vulnerabilities in widely-used libraries. Eight out of nine of
our benchmark applications had at least one vulnerability, and our analysis
produced only 12 false positives.

1.5 Report Organization

The rest of this report is organized as follows. Section 2 presents a detailed
overview of application-level security vulnerabilities we address. Section 3 de-

Report Organization 9

scribes our static analysis approach. Section 4 describes improvements that
increase analysis precision and coverage. Section 5 describes the auditing envi-
ronment our system provides. Section 6 summarizes our experimental findings.
Section 7 describes related work, and Section 9 concludes. Finally, Appendix A
summarizes information about Java API methods pertaining to vulnerabilities
we find.

10

SECTION 2

Overview of Vulnerabilities

In this section we focus on a variety of security vulnerabilities in Web applica-
tions that are caused by unchecked input. According to an influential survey
performed by the Open Web Application Security Project [Ope04b], unvali-
dated input is the number one security problem in Web applications. Many
such security vulnerabilities have recently been appearing on specialized vul-
nerability tracking sites such as SecurityFocus and were widely publicized in
the technical press [Net04, Ope04b]. Recent reports include SQL injections in
Oracle products [Lit03a] and cross-site scripting vulnerabilities in Mozilla Fire-
fox [Kra05].

2.1 SQL Injection Example

Let us start with a discussion of SQL injections, one of the most well-known
kinds of security vulnerabilities found in Web applications. SQL injections are
caused by unchecked user input being passed to a back-end database for exe-
cution [Anl02a, Anl02b, Fri04, Kos04, Lit03b, Spe02b]. The hacker may embed
SQL commands into the data he sends to the application, leading to unintended
actions performed on the back-end database. When exploited, a SQL injection
may cause unauthorized access to sensitive data, updates or deletions from the
database, and even shell command execution.

Example 1. A simple example of a SQL injection is shown below:

HttpServletRequest request = ...;

String userName = request.getParameter("name");

Connection con = ...

String query = "SELECT * FROM Users " +

" WHERE name = ’" + userName + "’";

con.execute(query);

This code snippet obtains a user name (userName) by invoking method
request.getParameter("name") and uses it to construct a query to be passed
to a database for execution (via con.execute(query)). This seemingly innocent
piece of code may allow an attacker to gain access to unauthorized informa-
tion: if an attacker has full control of string userName obtained from an HTTP
request, he can for example set it to ’OR 1 = 1;−−. Two dashes are used to
indicate comments in the Oracle dialect of SQL, so the WHERE clause of the
query effectively becomes the tautology name = ’’ OR 1 = 1. This allows the
attacker to circumvent the name check and get access to all user records in the
database. �

SQL injection is but one of the vulnerabilities that can be formulated as
tainted object propagation problems. In this case, the input variable userName
is considered tainted. If a tainted object (the source or any other object de-
rived from it) is passed as a parameter to con.execute (the sink), then there

Injecting Malicious Data 11

is a vulnerability. As discussed above, such an attack typically consists of two
parts: (1) injecting malicious data into the application and (2) using the data
to manipulating the application. The former corresponds to the sources of a
tainted object propagation problem and the latter to the sinks. The rest of this
section presents attack techniques and examples of how exploits may be created
in practice.

Further information on the relevant Java API methods is given in Ap-
pendix A and the benchmarks are described in Section 6.

2.2 Injecting Malicious Data

Protecting Web applications against unchecked input vulnerabilities is difficult
because applications can obtain information from the user in a variety of dif-
ferent ways. One must check all sources of user-controlled data such as form
parameters, HTTP headers, and cookie values systematically. While commonly
used, client-side filtering of malicious values is not an effective defense strategy.
For example, a banking application may present the user with a form containing
a choice of only two account numbers; however, this restriction can be easily
circumvented by saving the HTML page, editing the values in the list, and re-
submitting the form. Therefore, inputs must be filtered by the Web application
on the server. Note that many attacks are relatively easy to mount: an attacker
needs little more than a standard Web browser to attack Web applications in
most cases.

2.2.1 Parameter Tampering

The most common way for a Web application to accept parameters is through
HTML forms. When a form is submitted, parameters are sent as part of an
HTTP request. An attacker can easily tamper with parameters passed to a
Web application by entering maliciously crafted values into text fields of HTML
forms.

2.2.2 URL Tampering

For HTML forms that are submitted using the HTTP GET method, form pa-
rameters as well as their values appear as part of the URL that is accessed after
the form is submitted. An attacker may directly edit the URL string, embed
malicious data in it, and then access this new URL to submit malicious data to
the application.

Example 2. Consider a Web page at a bank site that allows an authenticated
user to select one of her accounts from a list and debit $100 from the account.
When the submit button is pressed in the Web browser, the following URL is
requested:

http://www.mybank.com/myaccount?accountnumber=341948&debit_amount=100

However, if no additional precautions are taken by the Web application receiving
this request, accessing

Injecting Malicious Data 12

http://www.mybank.com/myaccount?accountnumber=341948&debit_amount=-5000

may in fact increase the account balance. �
There are other URL parameters that an attacker can modify, including

attribute parameters and internal modules. Attribute parameters are unique
parameters that characterize the behavior of the uploading page. For example,
consider a content-sharing Web application that enables the content creator
to modify content, while other users can only view content. The Web server
checks whether the user that is accessing an entry is the author or not (usually
by cookie). An ordinary user will request the following link:

http://www.mydomain.com/myaccount?id=77492&mode=readonly

An attacker can modify the mode parameter to readwrite in order to gain
authoring permissions for the content.

2.2.3 Hidden Field Manipulation

Because HTTP is stateless, many Web applications use hidden fields to emulate
persistence. Hidden fields are just form fields made invisible to the end-user.
For example, consider an order form that includes a hidden field to store the
price of items in the shopping cart:

<input type="hidden" name="total_price" value="25.00">

A typical Web site using multiple forms, such as an online store will likely rely
on hidden fields to transfer state information between pages. For instance, a
single page we sampled on Amazon.com contains a total of 25 built-in hidden
fields. Unlike regular fields, hidden fields cannot be modified directly by typing
values into an HTML form. However, since the hidden field is part of the page
source, saving the HTML page, editing the hidden field value, and reloading the
page will cause the Web application to receive the newly updated value of the
hidden field. This attack technique is commonly used to forge information being
sent to the Web application and to mount SQL injection or cross-site scripting
attacks.

2.2.4 HTTP Header Manipulation

HTTP headers typically remain invisible to the user and are used only by the
browser and the Web server. However, some Web applications do process these
headers, and attackers can inject malicious data into applications through them.
While a normal Web browser will not allow forging the outgoing headers, mul-
tiple freely available tools allow a hacker to craft an HTTP request leading to
an exploit [Chi04].

Example 3. An HTTP request fragment is shown below:

Host: www.mybank.com

Accept-Language: en-us, en;q=0.50

User-Agent: Lynx/2.8.4dev.9 libwww-FM/2.14

Referer: http://www.mybank.com/login

Amazon.com

Injecting Malicious Data 13

con.executeUpdate("UPDATE EMPLOYEES " PreparedStatement pstmt =

+ " SET SALARY = " + salary con.prepareStatement(

+ " WHERE ID = " + id); "UPDATE EMPLOYEES " +

" SET SALARY = ? " +

" WHERE ID = ?");

pstmt.setBigDecimal(1, salary);

pstmt.setInt(2, id);

(a) (b)

Figure 2: Two different ways to update an employee’s salary: (a) may lead to a SQL injection
and (b) safely updates the salary using a PreparedStatement.

Content-type: application/

x-www-form-urlencoded

Content-length: 100

The Accept-Language header indicates the preferred language of the user. An
internationalized Web application may take the language label from the HTTP
request and pass it to a database to look up a language-specific text message.
If the this header is sent verbatim to the database, an attacker may inject SQL
commands by modifying the header value. Likewise, if the header value is used
to build a file name with messages for the correct language, an attacker may be
able to launch a path-traversal attack [Ope04a]. �

Consider, for example, the Referer field, which contains the URL indicating
where the request comes from. This field is commonly trusted by the Web
application, but can be easily forged by an attacker. It is possible to manipulate
the Referer field’s value used in an error page or for redirection to mount cross-
site scripting or HTTP response splitting attacks. Similarly, the Referer field
should never be used to authenticate valid clients, as this authentication scheme
may be easily circumvented [Ope04a].

2.2.5 Cookie Poisoning

Cookie poisoning attacks consist of modifying a cookie, which is a small file ac-
cessible to Web applications stored on the user’s computer [Kle02b]. Many Web
applications use cookies to store information such as user login/password pairs
and user identifiers. This information is often created and stored on the user’s
computer after the initial interaction with the Web application, such as visiting
the application login page. Cookie poisoning is a variation of header manipu-
lation: malicious input can be passed into applications through values stored
within cookies. Because cookies are supposedly invisible to the user, cookie
poisoning is often more dangerous in practice than other forms of parameter or
header manipulation attacks.

Example 4. Consider the HTTP GET request in Figure 3. The URL on host
http://www.mybank.com requested by the browser transfer and the parameter
string transfer = yes indicates that the user wants to perform a funds transfer.

http://www.mybank.com

Exploiting Unchecked Input 14

The request includes a cookie that contains the following parameters:
SESSION, which is a unique identification string that associates the user with
the site and Amount, which is the transfer amount for this transaction. Amount
is validated by the Web application before being stored in a cookie. However,
an attacker can easily edit the cookie and change the Amount value in order
to circumvent account overdraw checks that are performed before the cookie is
created to transfer more money that is contained in an account. �

As this example illustrates, cookie poisoning is typically used in a manner
similar to hidden field manipulation, i.e. to change the outcome the attacker’s
advantage. However, since programmers rely on cookies as a location for storing
parameters, all parameter attacks including SQL injection, cross-site scripting,
etc. can be performed with the help of cookie poisoning [Bar03].

2.2.6 Non-Web Input Sources

Malicious data can also be passed in as command-line parameters. This problem
is not as important because typically only administrators are allowed to execute
components of Web-based applications directly from the command line. How-
ever, by examining our benchmarks, we discovered that command-line utilities
are often used to perform critical tasks such as initializing, cleaning, or validat-
ing a back-end database or migrating the data. Therefore, attacks against these
important utilities can still be dangerous.

2.3 Exploiting Unchecked Input

Once malicious data is injected into an application, an attacker may use one of
many techniques to take advantage of this data, as described below.

2.3.1 SQL Injections

SQL injections first described in Section 2.1 are caused by unchecked user input
being passed to a back-end database for execution. When exploited, a SQL
injection may cause a variety of consequences from leaking the structure of the
back-end database to adding new users, mailing passwords to the hacker, or
even executing arbitrary shell commands.

Many SQL injections can be avoided relatively easily with the use of better
APIs. J2EE provides the PreparedStatement class, that allows specifying a
SQL statement template with ?’s indicating statement parameters. Prepared
SQL statements are precompiled, and expanded parameters never become part

GET transfer?complete=yes

HTTP/1.0 Host: www.mybank.com Accept: */*

Referrer: http://www.mybank.com/login

Cookie: SESSION=89DSSSXX89JJSYUJG; Amount=5000

Figure 3: An HTTP GET request containing a cookie.

Exploiting Unchecked Input 15

of executable SQL. However, not using or improperly using prepared statements
still leaves plenty of room for errors.

Example 5. Figure 2 shows two ways to update the salary of an employee,
whose id is provided. The first method in Figure 2 (a) uses string concatenation
to construct the query and leading to potential SQL injection attacks; the second
in Figure 2 (b) uses PreparedStatements and is safe from SQL injection attacks.
�

Most SQL injections we have encountered can be categorized as the result
of not using PreparedStatements and constructing SQL statements directly.
However, while a good practical strategy for most purposes when programming
using J2EE, PreparedStamtents are not a panacea. As our practical experience
with auditing for SQL injections shows, there are some legitimate reasons for
using dynamically constructed SQL statements:

• SQL statements depend on the way the application is configured. For
instance, SQL statements are often read from configuration files that are
different depending on the back-end database being used.

• Only certain parts of SQL statements may be parameterized, for instance,
an online store that performs a search depending on both the search cri-
terion that corresponds to a database column, such as the name or the
address will likely construct the SQL query using string concatenation.

• Improper use of PreparedStatements, i.e. using non-constant template
strings for constructing prepared statements defeats the purpose of using
them in the first place.

2.3.2 Cross-site Scripting Vulnerabilities

Cross-site scripting occurs when dynamically generated Web pages display in-
put that has not been properly validated [CGI, Coo03, Hu04, Kle02a, Spe02a].
An attacker may embed malicious JavaScript code into dynamically generated
pages of trusted sites. When executed on the machine of a user who views the
page, these scripts may hijack the user account credentials, change user settings,
steal cookies, or insert unwanted content (such as ads) into the page. At the
application level, echoing the application input back to the browser verbatim
enables cross-site scripting.

Example 6. A cross-site scripting attack leverages the trust the user has
for a particular Web site, such as that of a financial institution, to perform
malicious activities. Suppose a bank’s online accounting system has an error
page that displays input verbatim. An attacker may trick the legitimate user
into following a benign-looking URL, which results in displaying an error page
containing a malicious script. Suppose the script looks like the following:

<script>

document.location =

’http://www.attack.org/?cookies=’ +

Exploiting Unchecked Input 16

document.cookie

</script>

When the error page is opened, the script will redirect the user’s browser, while
submitting the user’s cookie to a malicious site in the meantime. �

2.3.3 HTTP Response Splitting

HTTP response splitting is a general technique that enables various new attacks
including Web cache poisoning, cross-user defacement, sensitive page hijacking,
as well as cross-site scripting [Kle04]. By supplying unexpected line break CR
and LF characters, an attacker can cause two HTTP responses to be generated
for one maliciously constructed HTTP request. The second HTTP response
may be erroneously matched with the next HTTP request. By controlling the
second response, an attacker can generate a variety of issues, such as forging
or poisoning Web pages on a caching proxy server. Because the proxy cache
is typically shared by many users, this makes the effects of defacing a page or
constructing a spoofed page to collect user data even more devastating. For
HTTP splitting to be possible, the application must include unchecked input as
part of the response headers sent back to the client. For example, applications
that embed unchecked data in HTTP Location headers returned back to users
are often vulnerable.

Several HTTP splitting vulnerabilities in deployed software have been an-
nounced in recently, including two in Java applications. SecurityFocus.com
bid ids 11413 and 11180. The latter one is in snipsnap, which is one of the
benchmarks in our suite. A common coding pattern that makes Java applica-
tions vulnerable to HTTP response splitting is redirecting to user-defined URLs,
as illustrated by this code snipped from one of our benchmark applications,
personalblog:

request.sendRedirect(request.getParameter("referer"));

2.3.4 Path Traversal

Path-traversal vulnerabilities allow a hacker to access or control files outside
of the intended file access path. Path-traversal attacks are normally carried
out via unchecked URL input parameters, cookies, and HTTP request headers.
Many Java Web applications use files to maintain an ad-hoc database and store
application resources such as visual themes, images, and so on.

If an attacker has control over the specification of these file locations, then
he may be able to read or remove files with sensitive data or mount a denial-of-
service attack by trying to write to read-only files. Using Java security policies
allows the developer to restrict access to the file system (similar to using chroot
jail in Unix). However, missing or incorrect policy configuration still leaves
room for errors. When used carelessly, IO operations in Java may lead to path-
traversal attacks.

Example 7. The following code snippet we found in blojsom turns out to be
not secure because permlink is under user control:

SecurityFocus.com

Secure Coding Practices 17

String permalinkEntry =

_blog.getBlogHome() +

category + permalink;

File blogFile = new File(permalinkEntry);

Changing permlink on the part of the attacker can be used to mount denial of
service attacks when accessing non-existent files. �

2.3.5 Command Injection

Command injection involves passing shell commands into the application for
execution. This attack technique enables a hacker to attack the server using ac-
cess rights of the application. While relatively uncommon in Web applications,
especially those written in Java, this attack technique is still possible when ap-
plications carelessly use functions that execute shell commands or load dynamic
libraries.

2.4 Secure Coding Practices

Clearly, all of the issues presented above are caused by unsafe coding tech-
niques. Although user-provided data is typically validated on the client side,
for example, using JavaScript validation routines for HTML form parameters
before being being passed to the Web application, this sort of validation can be
easily circumvented by an attacker by crafting either an HTTP request using
one of widely available penetration testing tools [Chi04] or by inserting malicious
parameter into the URL requested from the server. While client-side validation
is still helpful to reject obviously invalid input, it is in no way a replacement of
server-site checking.

Below we discuss some of the common prevention techniques commonly used
by security-aware developers to avoid attacks based on insufficiently validated
user input. In order to avoid attacks like SQL injections and cross-site scripting,
all untrusted data must be properly validated before it is either passed to the
database or output back to the browser. The following three approaches are
widely-recognized strategies for protecting against malicious input [Ope04a]:

White-listing. (Accept Only Known Valid Data.) This is the preferred way
to validate data. Applications should accept only input that is known
to be safe and expected. As an example, lets assume a password reset
system takes in usernames as input. Valid usernames would be de- fined
as ASCII A-Z and 0-9. The application should check that the input is
of type string, is comprised of A-Z and 0-9 (performing canonicalization
checks as appropriate) and is of a valid length.

Black-listing. (Reject Known Bad Data.) The rejecting bad data strategy
relies on the application knowing about specific malicious payloads. For
instance, searching for JavaScript keywords passed in as part of input is
one example of this strategy. While it is true that this strategy can limit

Secure Coding Practices 18

exposure, it is very difficult for any application to maintain an up-to-date
database of Web application attack signatures.

Sanitize All Input Data. Attempting to make bad data harmless is certainly
an effective second line of defense, especially when dealing with rejecting
bad input. However, the task of writing sanitization routines is a difficult
one. Better widely available libraries are necessary so that developers do
not have to develop their own sanitization routines. In fact, the errors we
found in blojsom were due to sanitization routines that did not perform
adequate checking.

19

SECTION 3

Static Analysis

In this section we present a static analysis that addresses the tainted object
propagation problem described in Section 2.

3.1 Tainted Object Propagation

We start by defining the terminology that was informally introduced in Exam-
ple 1. We define an access path as a sequence of field accesses, array index
operations, or method calls separated by dots. For instance, the result of ap-
plying access path f.g to variable v is v.f.g. We denote the empty access path
by ε; array indexing operations are indicated by [].

A tainted object propagation problem consists of a set of source descriptors,
sink descriptors, and derivation descriptors: These descriptors formally specify
how source methods in the program can generate unsafe input and how sink
methods can be exploited if unsafe input is passed to them. They also specify
how string data can propagate between objects in the program by using Java
string manipulation routines.

• Source descriptors of the form 〈m,n, p〉 specify ways in which user-
provided data can enter the program. They consist of a source method m,
parameter number n and an access path p to be applied to argument n
to obtain the user-provided input. We use argument number -1 to denote
the return result of a method call.

• Sink descriptors of the form 〈m,n, p〉 specify unsafe ways in which data
may be used in the program. They consist of a sink method m, argument
number n, and an access path p applied to that argument.

• Derivation descriptors of the form 〈m,ns, ps, nd, pd〉 specify how data prop-
agates between objects in the program. They consist of a derivation
method m, a source object given by argument number ns and access path
ps, and a destination object given by argument number nd and access path
pd. This derivation descriptor specifies that at a call to method m, the
object obtained by applying pd to argument nd is derived from the object
obtained by applying ps to argument ns.

In the absence of derived objects, to detect potential vulnerabilities we only need
to know if a source object is used at a sink. Derivation descriptors are introduced
to handle the semantics of strings in Java. Because Strings are immutable
Java objects, string manipulation routines such as concatenation create brand
new String objects, whose contents are based on the original String objects.
Derivation descriptors are used to specify the behavior of string manipulation
routines, so that taint can be explicitly passed among the String objects.

Tainted Object Propagation 20

Most Java programs use built-in String libraries and can share the same
set of derivation descriptors as a result. However, some Web applications use
multiple String encodings such as Unicode, UTF-8, and URL encoding. If
encoding and decoding routines propagate taint and are implemented using
native method calls or character-level string manipulation, they also need to be
specified as derivation descriptors. Sanitization routines that validate input are
often implemented using character-level string manipulation. Since taint does
not propagate through such routines, they should not be included in the list of
derivation descriptors.

It is possible to obviate the need for manual specification with a static anal-
ysis that determines the relationship between strings passed into and returned
by low-level string manipulation routines. However, such an analysis must be
performed not just on the Java bytecode but on all the relevant native methods
as well.

Example 8. We can formulate the problem of detecting parameter tampering
attacks that result in a SQL injection as follows: the source descriptor for
obtaining parameters from an HTTP request is:

〈HttpServletRequest.getParameter(String),−1, ε〉

The sink descriptor for SQL query execution is:

〈Connection.executeQuery(String), 1, ε〉.

To allow the use of string concatenation in the construction of query strings, we
use derivation descriptors:

〈StringBuffer.append(String), 1, ε,−1, ε〉, and
〈StringBuffer.toString(), 0, ε,−1, ε〉

We show only a few descriptors here; more information about the descriptors
used in our experiments for different kinds of vulnerabilities can be found in
Appendix A. �

Below we formally define a security violation:

Definition 3.1 A source object for a source descriptor 〈m,n, p〉 is an object
obtained by applying access path p to argument n of a call to m.

Definition 3.2 A sink object for a sink descriptor 〈m,n, p〉 is an object obtained
by applying access path p to argument n of a call to method m.

Definition 3.3 Object o2 is derived from object o1, written
derivedStream(o1, o2), based on a derivation descriptor 〈m,ns, ps, nd, pd〉,
if o1 is obtained by applying ps to argument ns and o2 is obtained by applying
pd to argument nd at a call to method m.

Specifications Completeness 21

Definition 3.4 An object is tainted if it is obtained by applying relation
derivedStream to a source object zero or more times.

Definition 3.5 A security violation occurs if a sink object is tainted. A security
violation consists of a sequence of objects o1 . . . ok such that o1 is a source object
and ok is a sink object and each object is derived from the previous one:

∀
0≤i<k

i : derivedStream(oi, oi+1).

We refer to object pair 〈o1, ok〉 as a source-sink pair.

3.2 Specifications Completeness

The problem of obtaining a complete specification for a tainted object propa-
gation problem is an important one. If a specification is incomplete, important
errors will be missed even if we use a sound analysis that finds all vulnerabilities
matching a specification. To come up with a list of source and sink descriptors
for vulnerabilities in our experiments, we used the documentation of the relevant
J2EE APIs.

Since it is relatively easy to miss relevant descriptors in the specification,
we used several techniques to make our problem specification more complete.
For example, to find some of the missing source methods, we instrumented the
applications to find places where application code is called by the application
server.

We also used a static analysis to identify tainted objects that have no other
objects derived from them, and examined methods into which these objects are
passed. In our experience, some of these methods turned out to be obscure
derivation and sink methods missing from our initial specification, which we
subsequently added.

3.3 Static Analysis

Our approach is to use a sound static analysis to find all potential violations
matching a vulnerability specification given by its source, sink, and derivation
descriptors. To find security violations statically, it is necessary to know what
objects these descriptors may refer to, a general problem known as pointer or
points-to analysis.

3.3.1 Role of Pointer Information

To illustrate the need for points-to information, we consider the task of auditing
a piece of Java code for SQL injections caused by parameter tampering, as
described in Example 1.

Example 9. In the code below, string param is tainted because it is returned
from a source method getParameter. So is buf1, because it is derived from

Static Analysis 22

param in the call to append on line 6. Finally, string query is passed to sink
method executeQuery.

1 String param = req.getParameter("user");

2

3 StringBuffer buf1;

4 StringBuffer buf2;

5 ...

6 buf1.append(param);

7 String query = buf2.toString();

8 con.executeQuery(query);

Unless we know that variables buf1 and buf2 may never refer to the same object,
we would have to conservatively assume that they may. Since buf1 is tainted,
variable query may also refer to a tainted object. Thus a conservative tool that
lacks additional information about pointers will flag the call to executeQuery
on line 8 as potentially unsafe. �

An unbounded number of objects may be allocated by the program at run
time, so, to compute a finite answer, the pointer analysis statically approximates
dynamic program objects with a finite set of static object “names”. A common
approximation approach is to name an object by its allocation site, which is the
line of code that allocates the object.

3.3.2 Finding Violations Statically

Points-to information enables us to find security violations statically. Points-
to analysis results are represented as the relation pointsto(v, h), where v is a
program variable and h is an allocation site in the program.

Definition 3.6 A static security violation is a sequence of heap allocation sites
h1 . . . hk such that

1. There exists a variable v1 such that pointsto(v1, h1), where v1 corresponds
to access path p applied to argument n of a call to method m for a source
descriptor 〈m,n, p〉.

2. There exists a variable vk such that pointsto(vk, hk), where vk corresponds
to applying access path p to argument n in a call to method m for a sink
descriptor 〈m,n, p〉.

3. There exist variables v1, . . . , vk such that

∀
1≤i<k

: pointsto(vi, hi) ∧ pointsto(vi+1, hi+1),

where variable vi corresponds to applying ps to argument ns and vi+1

corresponds applying pd to argument nd in a call to method m for a
derivation descriptor 〈m,ns, ps, nd, pd〉.

Our static analysis is based on a context-sensitive Java points-to analysis de-
veloped by Whaley and Lam [WL04]. Their algorithm uses binary decision

Static Analysis 23

diagrams (BDDs) to efficiently represent and manipulate points-to results for
exponentially many contexts in a program. They have developed a tool called
bddbddb (BDD-Based Deductive DataBase) that automatically translates pro-
gram analyses expressed in terms of Datalog [Ull89] (a language used in deduc-
tive databases) into highly efficient BDD-based implementations. The results of
their points-to analysis can also be accessed easily using Datalog queries. Notice
that in the absence of derived objects, finding security violations can be easily
done with pointer analysis alone, because pointer analysis tracks objects as they
are passed into or returned from methods.

However, it is relatively easy to implement the tainted object propagation
analysis using bddbddb. Constraints of a specification as given by Definition 3.6
can be translated into Datalog queries straightforwardly. Facts such as “variable
v is parameter n of a call to method m” map directly into Datalog relations
representing the internal representation of the Java program. The points-to
results used by the constraints are also readily available as Datalog relations
after pointer analysis has been run.

The static analysis is fully interprocedural: calls to source, sink, and deriva-
tion methods may be located in different methods. It is important to point out
that what violations are detected depends the portion of the call graph that is
statically analyzed; however, determining classes that may be used at runtime
is statically undecidable. Because Java supports dynamic loading and classes
can be dynamically generated on the fly and called reflectively, we can find vul-
nerabilities only in the code available to the static analysis. For reflective calls,
we use a simple analysis that handles common uses of reflection to increase the
size of the analyzed call graph.

3.3.3 Role of Pointer Analysis Precision

Pointer analysis has been the subject of much compiler research over the last
two decades. Because determining what heap objects a given program vari-
able may point to during program execution is undecidable, sound analyses
compute conservative approximations of the solution. Previous points-to ap-
proaches typically trade scalability for precision, ranging from highly scalable
but imprecise techniques [Ste96] to precise approaches that have not been shown
to scale [SRW99].

In the absence of precise information about pointers, a sound tool would
conclude that many objects are tainted and hence report many false positives.
Therefore, many practical tools use an unsound approach to pointers, assuming
that pointers are unaliased unless proven otherwise [BPS00, HCXE02]. Such an
approach, however, may miss important vulnerabilities.

Having precise points-to information can significantly reduce the number
of false positives. Context sensitivity refers to the ability of an analysis to
keep information from different invocation contexts of a method separate and
is known to be an important feature contributing to precision. The effect of
context sensitivity on analysis precision is illustrated by the example below.

Specifying Taint Problems in PQL 24

1 class DataSource {

2 String url;

3 DataSource(String url) {

4 this.url = url;

5 }

6 String getUrl(){

7 return this.url;

8 }

9 ...

10 }

11 String passedUrl = request.getParameter("...");

12 DataSource ds1 = new DataSource(passedUrl);

13 String localUrl = "http://localhost/";

14 DataSource ds2 = new DataSource(localUrl);

15

16 String s1 = ds1.getUrl();

17 String s2 = ds2.getUrl();

Figure 4: Example showing the importance of context sensitivity.

Example 10. Consider the code snippet in Figure 4. The class DataSource
acts as a wrapper for a URL string. The code creates two DataSource ob-
jects and calls getUrl on both objects. A context-insensitive analysis would
merge information for calls of getUrl on lines 16 and 17. The reference this,
which is considered to be argument 0 of the call, points to the object on
line 12 and 14, so this.url points to either the object returned on line 11
or "http : //localhost/" on line 13. As a result, both s1 and s2 will be
considered tainted if we rely on context-insensitive points-to results. With a
context-sensitive analysis, however, only s2 will be considered tainted. �

While many points-to analysis approaches exist, until recently, we did not
have a scalable analysis that gives a conservative yet precise answer. The
context-sensitive, inclusion-based points-to analysis by Whaley and Lam is both
precise and scalable [WL04]. It achieves scalability by using BDDs to exploit
the similarities across the exponentially many calling contexts.

A call graph is a static approximation of what methods may be invoked at
all method calls in the program. While there are exponentially many acyclic
call paths through the call graph of a program, the compression achieved by
BDDs makes it possible to efficiently represent as many as 1014 contexts. The
framework we propose in this paper is the first practical static analysis tool for
security to leverage the BDD-based approach. The use of BDDs has allowed us
to scale our framework to programs consisting of almost 1,000 classes.

3.4 Specifying Taint Problems in PQL

While a useful formalism, source, sink, and derivation descriptors as defined in
Section 3.1 are not a user-friendly way to describe security vulnerabilities. Dat-
alog queries, while giving the user complete control, expose too much of the pro-
gram’s internal representation to be practical. Instead, we use PQL, a program

Specifying Taint Problems in PQL 25

query main()

returns
object Object sourceObj, sinkObj;

matches {
sourceObj := source();

sinkObj := derived*(sourceObj);

sinkObj := sink();

}

Figure 5: Main query for finding source-sink pairs.

query language. PQL serves as syntactic sugar for Datalog queries, allowing
users to express vulnerability patterns in a familiar Java-like syntax; translation
of tainted object propagation queries from PQL into Datalog is straightforward.
PQL is a general query language capable of expressing a variety of questions
about program execution. However, we only use a limited form of PQL queries
to formulate tainted object propagation problems.

We summarize only the most important features of PQL here; interested
readers are referred to [MLL05] for a detailed description. In general, PQL can
express many queries beyond tainted object propagation problems.

A PQL query is a pattern describing a sequence of dynamic events that
involves variables referring to dynamic object instances. The uses clause de-
clares all object variables the query refers to. The matches clause specifies the
sequence of events on object variables that must occur for a match. Finally,
the return clause specifies the objects returned by the query whenever a set of
object instances participating in the events in the matches clause is found.

An important advantage of using PQL is that it automatically generates a
pointer analysis-based Datalog query that can be used as a static checker for
the properties of interest; these checkers are subsequently run to find potential
vulnerabilities. PQL queries are first translated into queries in Datalog. Next,
resolution of the resulting Datalog queries is performed using bddbddb [WL04],
an efficient BDD-based solver which incorporates important optimizations that
make query resolution fast.

PQL queries refer to dynamic objects, and points-to results provide a static
approximation of what those objects might be. Pointer analysis is also per-

query derived*(object Object x)

returns
object Object y;

uses
object Object temp;

matches {
y := x |

temp := derived(x); y := derived*(temp);

}

Figure 6: Transitive derived relation derived?.

Specifying Taint Problems in PQL 26

query source()

returns
object Object sourceObj;

uses
object String[] sourceArray;

object HttpServletRequest req;

matches {
sourceObj = req.getParameter(_)

| sourceObj = req.getHeader(_)

| sourceArray = req.getParameterValues(_);

sourceObj = sourceArray[]

| ...

}

query sink()

returns
object Object sinkObj;

uses
object java.sql.Statement stmt;

object java.sql.Connection con;

matches {
stmt.executeQuery(sinkObj)

| stmt.execute(sinkObj)

| con.prepareStatement(sinkObj)

| ...

}

query derived(object Object x)

returns
object Object y;

matches {
y.append(x)

| y = _.append(x)

| y = new String(x)

| y = new StringBuffer(x)

| y = x.toString()

| y = x.substring(_ ,_)

| y = x.toString(_)

| ...

}

Figure 7: PQL sub-queries for finding SQL injections.

formed within the bddbddb framework, and points-to results are used in PQL
query translation as a link between dynamic objects and heap allocation sites
in the program. However, using PQL allows us to largely hide the details of
translation into Datalog and Datalog query resolution from the user.

3.4.1 Simple SQL Injection Query

Example 11. Figure 8 shows a PQL query for the SQL injection vulnerability
in Example 1. This is a relatively simple query example that only addresses
some SQL injections. The uses clause of a PQL query declares all objects used

Specifying Taint Problems in PQL 27

query simpleSQLInjection()

returns
object String param, derived;

uses
object HttpServletRequest req;

object Connection con;

object StringBuffer temp;

matches {
param = req.getParameter(_);

temp.append(param);

derived = temp.toString();

con.execute(derived);

}

Figure 8: The PQL query for finding simple SQL injections.

in the query. The matches clause specifies the sequence of events that must
occur for a match to be found. Semicolons are used in PQL queries to indicate a
sequence of events. The wildcard character _ is used instead of a variable name
if the identity of the object to be matched is irrelevant. Finally, the return
clause specifies source-sink pairs 〈param, derived〉 returned by the query.

The matches clause is interpreted as follows: (1) object param must
be obtained by calling HttpServletRequest.getParameter, (2) method
StringBuffer.append must be called on object temp with param as the first ar-
gument, (3) method StringBuffer.toString must be called on temp to obtain
object derived, and (4) method execute must be called with object derived
passed in as the first parameter. These operations must be performed in order;
however, the invocations need not be consecutive and may be scattered across
different methods. Query simpleSQLInjection matches the code in Example 1
with query variables param and derived matching the objects in userName
and query. Query variable temp corresponds to the temporary StringBuffer
created for string concatenation in Example 1. �

PQL queries are automatically translated into Datalog queries, which are
in turn interpreted by bddbddb. As can be seen from the example below, the
resulting Datalog is quite involved even for a relative simple query and is there-
fore not a very good specification language for describing vulnerabilities. The
translation process is syntax-directed and is further described in [MLL05].

Example 12. The result of translating simpleSQLInjection into Datalog is
shown below. Object x in PQL is approximated by allocated site hx in Datalog.
In addition to this, the following relations are used as part of translation:

• pointsto(c, i,m) means that in context c, variable v points to heap alloca-
tion site h.

• actual(i, v, n) means that variable v is the actual argument number n of
call site i.

Specifying Taint Problems in PQL 28

• ret(i, v) means that variable v is returned at invocation site i.
• call(c, i,m) means that m may be called at invocation site i in context c.

simpleSQLInjection(hparam , hderived) : –
ret(i1, v1),
call(c1, i2, "HttpServletRequest.getParameter"),
pointsto(c1, v1, h

param),

actual(i2, v2, 0), actual(i2, v3, 1),
call(c2, i2, "StringBuffer.append"),
pointsto(c2, v2, h

temp),
pointsto(c2, v3, h

param),

actual(i3, v4, 0), ret(i3, v5),
call(c3, i3, "StringBuffer.toString"),
pointsto(c3, v4, h

temp),
pointsto(c3, v5, h

derived),

actual(i4, v6, 0), actual(i4, v7, 1),
call(c4, i4, "Connection.execute"),
pointsto(c4, v6, h

con),
pointsto(c4, v7, h

derived) .

The same Datalog query modulo variable names may be obtained directly from
the descriptors in Example 8. �

3.4.2 Queries for a Taint Problem

We illustrate the task of creating a taint problem by demonstrating what is in-
volved in specifying SQL injection vulnerabilities caused by a variety of sources.
Source-sink object pairs corresponding to static security violations for a given
tainted object propagation problem are computed by query main in Figure 5.
This query uses auxiliary queries source and sink used to define source and
sink objects as well as query derived∗ shown in Figure 6 that captures a tran-
sitive derivation relation. Object sourceObj in main is returned by sub-query
source. Object sinkObj is the result of sub-query derived? with sourceObj
used as a sub-query parameter and is also the result of sub-query sink. There-
fore, sinkObj returned by query main matches all tainted objects that are also
sink objects.

Semicolons are used in PQL to indicate a sequence of events that must occur
in order. Sub-query derived∗ defines a transitive derived relation: object y is
transitively derived from object x by applying sub-query derived zero or more
times. This query takes advantage of PQL’s sub-query mechanism to define
a transitive closure recursively. Sub-queries source, sink, and derived are
specific to a particular tainted object propagation problem, as shown in the
example below.

Specifying Taint Problems in PQL 29

Example 13. This example describes sub-queries source, sink, and derived
shown in Figure 7 that can be used to match SQL injections, such as the one
described in Example 1. Usually these sub-queries are structured as a series
of alternatives separated by |. The wildcard character _ is used instead of a
variable name if the identity of the object to be matched is irrelevant.

Query source is structured as an alternation: sourceObj can be re-
turned from a call to req.getParameter or req.getHeader for an object
req of type HttpServletRequest; sourceObj may also be obtained by in-
dexing into an array returned by a call to req.getParameterValues, etc.
Query sink defines sink objects used as parameters of sink methods such as
java.sql.Connection.executeQuery, etc. Query derived determines when
data propagates from object x to object y. It consists of the ways in which
Java strings can be derived from one another, including string concatenation,
substring computation, etc. �

As can be seen from this example, sub-queries source, sink, and derived
map to source, sink, and derivation descriptors for the tainted object propaga-
tion problem. However, instead of descriptor notation for method parameters
and return values, natural Java-like method invocation syntax is used.

30

SECTION 4

Precision and Coverage
Improvements

This section describes improvements we made to the object-naming scheme
used in the original points-to analysis [WL04]. These improvements greatly
increase the precision of the points-to results and reduce the number of false
positives produced by our analysis and are further described in Section 4.1.1.
In addition to difficulties involved in getting a low rate of false positives, which
is a common issue with static analysis tools, Web applications present a unique
set of challenges. In particular, it is not obvious what code needs to be analyzed.
In Section 4.2.1 we present techniques designed to increase the coverage our our
static technique.

4.1 Precision Improvements

The lack of precision is a common reason for why static analysis tools do not
enjoy a wide adoption in practice. This is justified by the fact that a developer
is rarely willing to examine tens or hundreds of false alarms to find a few “true”
positives. In our work, we have focused on precision and identified two areas of
our analysis where imprecise static treatment was responsible for a multitude of
false positives. Below we describe our more precise handling of containers and
string routines that allows us to achieve a significant increase in precision.

1 class Vector {

2 Object[] table = new Object[1024];

3

4 void add(Object value){

5 int i = ...;

6 // optional resizing ...

7 table[i] = value;

8 }

9

10 Object getFirst(){

11 Object value = table[0];

12 return value;

13 }

14 }

15 String s1 = "...";

16 Vector v1 = new Vector();

17 v1.add(s1);

18 Vector v2 = new Vector();

19 String s2 = v2.getFirst();

Figure 9: Typical container definition and usage.

Precision Improvements 31

Figure 10: Tracking a SQL injection vulnerability in the Eclipse GUI plugin. Objects
involved in the vulnerability trace are shown at the bottom.

4.1.1 Handling of Containers

Containers such as hash maps, vectors, lists, and others are a common source
of imprecision in the original pointer analysis algorithm. The imprecision is due
to the fact that objects are often stored in a data structure allocated inside the
container class definition. As a result, the analysis cannot statically distinguish
between objects stored in different containers.

Example 14. The abbreviated vector class in Figure 9 allocates an array
called table on line 2 and vectors v1 and v2 share that array. As a result, the
original analysis will conclude that the String object referred to by s2 retrieved
from vector v2 may be the same as the String object s1 deposited in vector
v1. �

To alleviate this problem and improve the precision of the results, we create
a new object name for the internally allocated data structure for every allocation
site of the external container. This new name is associated with the allocation
site of the underlying container object. As a result, the type of imprecision
described above is eliminated and objects deposited in a container can only be
retrieved from a container created at the same allocation site. In our implemen-
tation, we have applied this improved object naming to standard Java container
classes including HashMap, HashTable, and LinkedList.

4.1.2 Handling of String Routines

Another set of methods that requires better object naming is Java string ma-
nipulation routines. Methods such as String.toLowerCase() allocate String
objects that are subsequently returned. With the default object-naming scheme,

Coverage Improvements 32

all the allocated strings are considered tainted if such a method is ever invoked
on a tainted string.

We alleviate this problem by giving unique names to results returned by
string manipulation routines at different call sites. We currently apply this
object naming improvement to Java standard libraries only. As explained in
Section 6.4, imprecise object naming was responsible for all the 12 false positives
produced by our analysis.

4.2 Coverage Improvements

In this section we describe changes to the static analysis that allow us to increase
the amount of code that is analyzed statically.

4.2.1 Finding Root Methods in Web Applications

Our focus is Web applications, which are designed to be deployed within an
application server. While analyzing the server together with the application is
possible, in practice it is prohibitively expensive because of the size of a typical
application server. Instead we chose to analyze the Web application in a stand-
alone manner by providing a stub that emulates the environment in which the
application is supposed to execute. This is similar to modeling the environment
in model checking [TDP03] or using mock objects for testing [MFC00].

While finding all possible root methods in an application is generally a prob-
lem, Web applications present a somewhat unique challenge. J2EE-based ap-
plications are designed to run within a J2EE application server such as Apache
Tomcat or IBM Websphere. A typical Web application we analyzed defines a set
of servlets and Struts actions that are listed in a deployment descriptor parsed
by the application server to determine what code to invoke. To include all the
necessary servlets and actions in our analysis, we generate an invocation stub, a
small driver program that invokes each servlet and action in the application in
turn.

Methods of servlets and actions called from the invocation stub expect ob-
jects implementing interfaces HttpServletRequest and HttpServletResponse
to be passed in as parameters. These interfaces are implemented by classes
defined inside the application server that cannot be easily instantiated from a
standalone program. In order to have concrete objects to pass to these methods
in the invocation stub, we create our own “mock” versions of classes implement-
ing these interfaces for the purpose of analysis [MFC00]. While this approach
allows us to scale to large applications, we may miss some vulnerabilities con-
tained in application server sources, which are not analyzed.

To generate an invocation stub, web application descriptors contained in
file web.xml are parsed to find all servlets, filters, and listeners contained in the
application. Similarly, calls are generated for Struts actions. An example of such
a stub generated for blueblog is shown in Figure 11. Method processServlets
constructs a mock MyHttpServletRequest and MyHttpServletResponse and
passes them to method service of a newly constructed BBServlet.

Coverage Improvements 33

package se.bluefish.blueblog;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpServlet;

import MyMockLib.MyHttpServletRequest;

import MyMockLib.MyHttpServletResponse;

import java.io.IOException;

class InvokeServlets {

public static void main(String[] args) throws IOException {

processServlets();

}

public static void processServlets() {

try {

HttpServletRequest request = new MyHttpServletRequest();

HttpServletResponse response = new MyHttpServletResponse();

se.bluefish.blueblog.servlet.BBServlet servlet =

new se.bluefish.blueblog.servlet.BBServlet();

servlet.service(request, response);

} catch (Exception e) {

e.printStackTrace();

}

try {

HttpServletRequest request = new MyHttpServletRequest();

HttpServletResponse response = new MyHttpServletResponse();

se.bluefish.blueblog.servlet.ForwardingServlet servlet =

new se.bluefish.blueblog.servlet.ForwardingServlet();

servlet.service(request, response);

} catch (Exception e) {

e.printStackTrace();

}

}

}

Figure 11: Invocation stub program generated for blueblog.

Soundness and Completeness 34

4.2.2 Treatment of Reflection

The presence of reflection in Java complicates the analysis of Java programs
considerably. Reflection is used to create new objects or call methods, given
their names. The most common use of reflection is to dynamically create objects
by name, following the coding idiom below:

String className = ...;

Class c = Class.forName(className);

Object o = c.newInstance();

T t = (T) o;

The call to Class.forInstance retrieves a class, whose name is specified by
string className. The call to newInstance creates a new object of that class.
However, not statically knowing what className is prevents the analysis from
knowing what object may be instantiated at the call to newInstance.

While a full treatment of reflection is beyond this work, we augment the
class construction process to find targets for newInstance calls. Statically de-
termining what className may be is complicated by the presence of pointers.
For each call to Class.newInstance, we

1. use pointer information to find all calls to Class.forName that may return
className;

2. for each call to Class.forName(s), find all constant class name strings that
s may refer to;

3. for each constant string representing a class name S obtained in step 2,
augment the call graph to include an edge from a call site of c.newInstance
to new S().

4.3 Soundness and Completeness

Our approach finds all vulnerabilities in the statically analyzed portion of the
code. To find all potential security vulnerabilities, the user-supplied problem
specification must be complete. Making sure that the sets of sources, derivation,
and sink descriptors are complete is a difficult problem, however. Furthermore,
all code that may be executed at runtime needs to be analyzed for errors: it
is typical for Web-based Java applications to be shipped with a multitude of
libraries (or jars); however, only a small percentage of classes are used during
application execution. Therefore, analyzing all of the library classes is generally
not practical. In order to compute the set of methods reachable at runtime, as
described in Sections 4.2.1 and 4.2.2, all relevant root methods must be included
and call sites must have all their targets resolved.

35

SECTION 5

Auditing Environment

The static analysis described in the previous two sections forms the basis of our
security-auditing tool for Java applications. The tool allows a user to specify
security patterns to detect. User-provided specifications are expressed as PQL
queries, as described in Section 3.4. These queries are automatically translated
into Datalog queries, which are subsequently resolved using bddbddb.

To help the user with the task of examining violation reports, our provides
an intuitive GUI interface. The interface is built on top of Eclipse, a popular
open-source Java development environment. As a result, a Java programmer
can assess the security of his application, often without leaving the development
environment used to create the application in the first place.

A typical auditing session involves applying the analysis to the application
and then exporting the results into Eclipse for review. Our Eclipse plugin allows
the user to easily examine each vulnerability by navigating among the objects
involved in it. Clicking on each object allows the user to navigate through the
code displayed in the text editor in the top portion of the screen.

Example 15. An example of using the Eclipse GUI is shown in Figure 10. The
bottom portion of the screen lists all potential security vulnerabilities reported
by our analysis. One of them, a SQL injection caused by non-Web input is
expanded to show all the objects involved in the vulnerability. The source
object on line 76 of JDBCDatabaseExport.java is passed to derived objects
using derivation methods StringBuffer.append and StringBuffer.toString
until it reaches the sink object constructed and used on line 170 of the same file.
Line 170, which contains a call to Connection.prepareStatement, is highlighted
in the Java text editor shown on top of the screen. �

36

SECTION 6

Experimental Results

In this section we summarize the experiments we performed and described the
security violations we found. We start out by describing our benchmark ap-
plications and experimental setup, describe some representative vulnerabilities
found by our analysis, and analyze the impact of analysis features on precision.

6.1 Benchmark Applications

While there is a fair number of commercial and open-source tools available for
testing Web application security, there are no established benchmarks for com-
paring tools’ effectiveness. The task of finding suitable benchmarks for our
experiments was especially complicated by the fact that most Web-based appli-
cations are proprietary software, whose vendors are understandably reluctant to
reveal their code, not to mention the vulnerabilities found. At the same time,
we did not want to focus on artificial micro-benchmarks or student projects that
lack the complexities inherent in real applications. While some attempts have
been made at constructing artificial benchmarks [Fou, Pro], we believe that real-
life programs are much better suited for testing security tools. We focused on a
set of large, representative open-source Web-based J2EE applications, most of
which are available on SourceForge.

In the course of our research in application security at Stanford, our group
has developed a suite of benchmarks called SecuriBench [Liv05]. Thus far it
consists of 8 real-life open-source Web-based applications written in Java and
developed on top of J2EE. Most programs are medium-sized, with the larger
ones consisting of almost 200,000 lines of code. We are making these benchmarks
publicly available in hopes of fostering collaboration between researchers. These
benchmarks can serve as test cases for researchers and industry practitioners
working in this area.

The benchmark applications we used are briefly described below. jboard,
blueblog, blojsom, personalblog, snipsnap, pebble, and roller are Web-
based bulletin board and blogging applications. webgoat is a J2EE applica-
tion designed by the Open Web Application Security Project [Ope04a, Ope04b]
as a test case and a teaching tool for Web application security. Finally,
road2hibernate is a test program developed for hibernate, a popular object
persistence library, which is not a Web application and is not therefore part of
SecuriBench.

Applications were selected from among J2EE-based open-source projects on
SourceForge solely on the basis of their size and popularity. Other than webgoat,
which we knew had intentional security flaws, we had no prior knowledge as to
whether the applications had security vulnerabilities. Most of our benchmark
applications are used widely: roller is used on dozens of sites including promi-
nent ones such as blogs.sun.com. snipsnap has more than 50,000 downloads

Experimental Setup 37

Version File Line Analyzed
Benchmark number count count classes

jboard 0.30 90 17,542 264
blueblog 1.0 32 4,191 306
webgoat 0.9 77 19,440 349
blojsom 1.9.6 61 14,448 428
personalblog 1.2.6 39 5,591 611
snipsnap 1.0-BETA-1 445 36,745 653
road2hibernate 2.1.4 2 140 867
pebble 1.6-beta1 333 36,544 889
roller 0.9.9 276 52,089 989
Total 1,355 186,730 5,356

Figure 12: Summary of information about the benchmarks. Applications are sorted by the
total number of analyzed classes.

according to its authors. road2hibernate is a wrapper around hibernate, a
highly popular object persistence library that is used by multiple large projects,
including a news aggregator and a portal. personalblog has more than 3,000
downloads according to SourceForge statistics. Finally, blojsom was adopted
as a blogging solution for the Apple Tiger Weblog Server.

Figure 12 summarizes information about our benchmark applications. No-
tice that the traditional lines-of-code metric is somewhat misleading in the
case of applications that use large libraries. Many of these benchmarks de-
pend on massive libraries, so, while the application code may be small, the full
size of the application executed at runtime is quite large. An extreme case is
road2hibernate, which is a small 140-line stub program designed to exercise
the hibernate object persistence library; however, the total number of ana-
lyzed classes for road2hibernate exceeded 800. A better measure is given in
the last column of Figure 12, which shows the total number of classes in each
application’s call graph.

6.2 Experimental Setup

The implementation of our system is based on the joeq Java compiler and analy-
sis framework. In our system we use a translator from PQL to Datalog [MLL05]
and the bddbddb program analysis tool [WL04] to find security violations. We ap-
plied static analysis to look for all tainted object propagation problems described
in this report, and we used a total of 28 source, 18 sink, and 29 derivation de-
scriptors in our experiments. The derivation descriptors correspond to methods
in classes such as String, StringBuffer, StringTokenizer, etc. Source and
sink descriptors correspond to methods declared in 19 different J2EE classes, as
is further described in Appendix A.

We used four different variations of our static analysis, obtained by either
enabling or disabling context sensitivity and improved object naming. Analysis
times for the variations are listed in Figure 13. Running times shown in the table

Vulnerabilities Discovered 38

Pre- Points-to analysis Taint analysis
Context sensitivity proces- X X X X
Improved naming sing X X X X

jboard 37 8 7 12 10 14 12 16 14
blueblog 39 13 8 15 10 17 14 21 16
webgoat 57 45 30 118 90 69 66 106 101
blojsom 60 18 13 25 16 24 21 30 27
personalblog 173 107 28 303 32 62 50 19 59
snipsnap 193 58 33 142 47 194 154 160 105
road2hibernate 247 186 40 268 43 73 44 161 58
pebble 177 58 35 117 49 150 140 136 100
roller 362 226 55 733 103 196 83 338 129

Figure 13: Summary of times, in seconds, it takes to perform preprocessing, points-to, and
taint analysis for each analysis variation. Analysis variations have either context sensitivity
or improved object naming enabled, as indicated by X signs in the header row.

are obtained on an Opteron 150 machine with 4 GB of memory running Linux.
The first section of the table shows the times to pre-process the application
to create relations accepted by the pointer analysis; the second shows points-
to analysis times; the last presents times for the tainted object propagation
analysis.

It should be noted that the taint analysis times often decrease as the anal-
ysis precision increases. Contrary to intuition, we actually pay less for a more
precise analysis. Imprecise answers are big and therefore take a long time to
compute and represent. In fact, the context-insensitive analysis with default ob-
ject naming runs significantly slower on the largest benchmarks than the most
precise analysis. The most precise analysis version takes a total of less than 10
minutes on the largest application; we believe that this is acceptable given the
quality of the results the analysis produces.

6.3 Vulnerabilities Discovered

The static analysis described in this report reports a total of 41 potential security
violations in our nine benchmarks, out of which 29 turn out to be security errors,
while 12 are false positives. All but one of the benchmarks had at least one
security vulnerability. Moreover, except for errors in webgoat and one HTTP
splitting vulnerability in snipsnap [Gen04], none of these security errors had
been reported before.

6.3.1 Validating the Errors We Found

Not all security errors found by static analysis or code reviews are necessarily
exploitable in practice. The error may not correspond to a path that can be
taken dynamically, or it may not be possible to construct meaningful malicious
input. Exploits may also be ruled out because of the particular configuration
of the application, but configurations may change over time, potentially mak-
ing exploits possible. For example, a SQL injection that may not work on

Vulnerabilities Discovered 39

one database may become exploitable when the application is deployed with a
database system that does not perform sufficient input checking. Furthermore,
virtually all static errors we found can be fixed easily by modifying several lines
of Java source code, so there is generally no reason not to fix them in practice.

After we ran our analysis, we manually examined all the errors reported to
make sure they represent security errors. Since our knowledge of the applications
was not sufficient to ascertain that the errors we found were exploitable, to gain
additional assurance, we reported the errors to program maintainers. We only
reported to application maintainers only those errors found in the application
code rather than general libraries over which the maintainer had no control.
Almost all errors we reported to program maintainers were confirmed, resulting
in more that a dozen code fixes.

Because webgoat is an artificial application designed to contain bugs, we did
not report the errors we found in it. Instead, we dynamically confirmed some
of the statically detected errors by running webgoat, as well as a few other
benchmarks, on a local server and creating actual exploits.

It is important to point out that our current analysis ignores control flow.
Without analyzing the predicates, our analysis may not realize that a program
has checked its input, so some of the reported vulnerabilities may turn out to be
false positives. However, our analysis shows all the steps involved in propagating
taint from a source to a sink, thus allowing the user to check if the vulnerabilities
found are exploitable.

Many Web-based application perform some form of input checking. How-
ever, as in the case of the vulnerabilities we found in snipsnap, it is common
that some checks are missed. It is surprising that our analysis did not generate
any false warnings due to the lack of predicate analysis, even though many of
the applications we analyze include checks on user input. Two security errors
in blojsom flagged by our analysis deserve special mention. The user-provided
input was in fact checked, but the validation checks were too lax, leaving room
for exploits. Since the sanitization routine in blojsom was implemented us-
ing string operations as opposed to direct character manipulation, our analysis
detected the flow of taint from the routine’s input to its output. To prove
the vulnerability to the application maintainer, we created an exploit that cir-
cumvented all the checks in the validation routine, thus making path-traversal
vulnerabilities possible. Note that if the sanitation was properly implemented,
our analysis would have generated some false positives in this case.

6.3.2 Classification of Errors

This section presents a classification of all the errors we found. A summary of
our experimental results is presented in Figure 14(a). Columns 2 and 3 list the
number of source and sink objects for each benchmark. It should be noted that
the number of sources and sinks for all of these applications is quite large, which
suggests that security auditing these applications is time-consuming, because the
time a manual security code review takes is roughly proportional to the number
of sources and sinks that need to be considered. The table also shows the

Vulnerabilities Discovered 40

number of vulnerability reports, the number of false positives, and the number
of errors for each analysis version.

Figure 15 presents a classification of the 29 security vulnerabilities we found
grouped by the type of the source in the table rows and the sink in table columns.
For example, the cell in row 4, column 1 indicates that there were 2 potential
SQL injection attacks caused by non-Web sources, one in snipsnap and another
in road2hibernate.

Overall, parameter manipulation was the most common technique to inject
malicious data (13 cases) and HTTP splitting was the most popular exploita-
tion technique (11 cases). Many HTTP splitting vulnerabilities are due to an
unsafe programming idiom where the application redirects the user’s browser
to a page whose URL is user-provided as the following example from snipsnap
demonstrates:

response.sendRedirect(request.getParameter("referer"));

Most of the vulnerabilities we discovered are in application code as opposed
to libraries. While errors in application code may result from simple coding
mistakes made by programmers unaware of security issues, one would expect
library code to generally be better tested and more secure. Errors in libraries
expose all applications using the library to attack. Despite this fact, we have
managed to find two attack vectors in libraries: one in a commonly used Java
library hibernate and another in the J2EE implementation. While a total
of 29 security errors were found, because the same vulnerability vector in J2EE
is present in four different benchmarks, they actually corresponded to 26 unique
vulnerabilities.

6.3.3 SQL Injection Vector in hibernate

We start by describing a vulnerability vector found in hibernate, an open-
source object-persistence library commonly used in Java applications as a
lightweight back-end database. hibernate provides the functionality of sav-
ing program data structures to disk and loading them at a later time. It also
allows applications to search through the data stored in a hibernate database.
Three programs in our benchmark suite, personalblog, road2hibernate, and
snipsnap, use hibernate to store user data.

We have discovered an attack vector in code pertaining to the search
functionality in hibernate, version 2.1.4. The implementation of method
Session.find retrieves objects from a hibernate database by passing its input
string argument through a sequence of calls to a SQL execute statement. As a
result, all invocations of Session.find with unsafe data, such as the two errors
we found in personalblog, may suffer from SQL injections. A few other public
methods such as iterate and delete also turn out to be attack vectors.

This situation illustrates a more general pattern: an attack vector in a com-
monly used software component can lead to vulnerabilities in all of the clients of
that component. Our findings highlight the importance of securing commonly
used software components in order to protect their clients.

Analysis Features and False Positives 41

6.3.4 Cross-site Tracing Attacks

Analysis of webgoat and several other applications revealed a previously un-
known vulnerability in core J2EE libraries, which are used by thousands of Java
applications. This vulnerability pertains to the TRACE method specified in the
HTTP protocol. TRACE is used to echo the contents of an HTTP request back
to the client for debugging purposes. However, the contents of user-provided
headers are sent back verbatim, thus enabling cross-site scripting attacks.

In fact, this variation of cross-site scripting caused by a vulnerability in
HTTP protocol specification was discovered before, although the fact that it
was present in J2EE was not previously announced. This type of attack has
been dubbed cross-site tracing and it is responsible for CERT vulnerabilities
244729, 711843, and 728563. Because this behavior is specified by the HTTP
protocol, there is no easy way to fix this problem at the source level. General
recommendations for avoiding cross-site tracing include disabling TRACE func-
tionality on the server or disabling client-side scripting [Gro03].

6.4 Analysis Features and False Positives

The version of our analysis that employs both context sensitivity and improved
object naming described in Section 4 achieves very precise results, as measured
by the number of false positives. In this section we examine the contribution of
each feature of our static analysis approach to the precision of our results. We
also explain the causes of the remaining 12 false positives reported by the most
precise analysis version. To analyze the importance of each analysis feature, we
examined the number of false positives as well as the number of tainted objects
reported by each variation of the analysis. Just like false positives, tainted
objects provide a useful metric for analysis precision: as the analysis becomes
more precise, the number of objects deemed to be tainted decreases.

Figure 14(a) summarizes the results for the four different analysis versions.
The first part of the table shows the number of tainted objects reported by the
analysis. The second part of the table shows the number of reported security
violations. The third part of the table summarizes the number of false positives.
Finally, the last column provides the number of real errors detected for each
benchmark. Figure 14(b) provides a graphical representation of the number
of tainted objects for different analysis variations. Below we summarize our
observations.

Context sensitivity combined with improved object naming achieves a very
low number of false positives. In fact, the number of false positives was 0 for
all applications but snipsnap. For snipsnap, the number of false positives was
reduced more than 50-fold compared to the context-insensitive analysis ver-
sion with no naming improvements. Similarly, not counting the small program
jboard, the most precise version on average reported 5 times fewer tainted ob-
jects than the least precise. Moreover, the number of tainted objects dropped
more that 15-fold in the case of roller, our largest benchmark.

To achieve a low false-positive rate, both context sensitivity and improved

Analysis Features and False Positives 42

object naming are necessary. The number of false positives remains high for
most programs when only one of these analysis features is used. One way to
interpret the importance of context sensitivity is that the right selection of
object “names” in pointer analysis allows context sensitivity to produce precise
results. While it is widely recognized in the compiler community that special
treatment of containers is necessary for precision, improved object naming alone
is not generally sufficient to completely eliminate the false positives.

All 12 of the false positives reported by the most precise version for our an-
alysis were located in snipsnap and were caused by insufficient precision of the
default allocation site-based object-naming scheme. The default naming caused
an allocation site in snipsnap to be conservatively considered tainted because
a tainted object could propagate to that allocation site. The allocation site in
question is located within StringWriter.toString(), a JDK function similar
to String.toLowerCase() that returns a tainted String only if the underlying
StringWriter is constructed from a tainted string. Our analysis conservatively
concluded that the return result of this method may be tainted, causing a vul-
nerability to be reported, where none can occur at runtime. We should mention
that all the false positives in snipsnap are eliminated by creating a new ob-
ject name at every call to, StringWriter.toString(), which is achieved with a
one-line change to the pointer analysis specification.

Analysis Features and False Positives 43

S
o
u
r
c
e
s

S
in

k
s

T
a
in

t
e
d

o
b
je

c
t
s

R
e
p
o
r
t
e
d

w
a
r
n
in

g
s

F
a
ls

e
p
o
s
it

iv
e
s

E
r
r
o
r
s

C
o
n
t
e
x
t

s
e
n
s
it

iv
it
y

X
X

X
X

X
X

Im
p
r
o
v
e
d

o
b
je

c
t

n
a
m

in
g

X
X

X
X

X
X

j
b
o
a
r
d

1
6

2
6
8

2
3

2
2

0
0

0
0

0
0

0
0

0

b
l
u
e
b
l
o
g

6
1
2

1
7

1
7

1
7

1
7

1
1

1
1

0
0

0
0

1

w
e
b
g
o
a
t

1
3

5
9

1
,1

6
6

2
0
1

9
0
3

1
5
7

5
1

7
5
1

6
4
5

1
4
5

0
6

b
l
o
j
s
o
m

2
7

1
8

3
6
8

2
0
3

1
9
7

1
1
2

4
8

4
2
6

2
4
6

2
2
4

0
2

p
e
r
s
o
n
a
l
b
l
o
g

2
5

3
1

2
,0

6
6

1
,0

2
3

1
,6

8
5

4
2
6

4
6
0

2
7
5

3
7
0

2
4
5
8

2
7
3

3
6
8

0
2

s
n
i
p
s
n
a
p

1
5
5

1
0
0

1
,1

6
8

7
9
1

8
9
7

4
5
6

7
3
2

9
3

5
1
3

2
7

7
1
7

7
8

4
9
8

1
2

1
5

r
o
a
d
2
h
i
b
e
r
n
a
t
e

1
3
3

2
,1

5
0

8
4
3

1
,6

4
1

3
8
5

1
8

1
2

1
6

1
1
7

1
1

1
5

0
1

p
e
b
b
l
e

1
3
2

7
0

1
,4

0
3

6
2
1

9
5
7

2
5
5

4
2
7

2
1
1

1
9
3

1
4
2
6

2
1
0

1
9
2

0
1

r
o
l
l
e
r

3
2

6
4

2
,3

6
7

5
0
4

1
,9

2
3

1
5
1

3
7
8

1
2

2
6
1

1
3
7
7

1
1

2
6
0

0
1

T
o
t
a
l

3
9
2

3
9
3

1
0
,9

7
3

4
,2

2
6

8
,2

2
2

1
,9

6
1

2
,1

1
5

6
1
5

1
,4

3
1

4
1

2
,0

8
6

5
8
6

1
,4

0
2

1
2

2
9

jb
oa

rd
bl

ue
bl

og
w

eb
go

at
bl

oj
so

m
pe

rs
on

al
bl

og
sn

ip
sn

ap
ro

ad
2h

ib
er

na
te

pe
bb

le
ro

lle
r

B
en

ch
m

ar
k

ap
pl

ic
at

io
ns

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00
22

50
25

00

Number of tainted objects

C
on

te
xt

-in
se

ns
iti

ve
,

de
fa

ul
t n

am
in

g

C
on

te
xt

-in
se

ns
iti

ve
,

im
pr

ov
ed

 n
am

in
g

C
on

te
xt

-s
en

si
tiv

e,
de

fa
ul

t n
am

in
g

C
on

te
xt

-s
en

si
tiv

e,
im

pr
ov

ed
 n

am
in

g

F
ig

u
r
e

1
4
:
(a

)
S
u
m

m
a
ry

o
f
d
a
ta

o
n

th
e

n
u
m

b
er

o
f
ta

in
te

d
o
b
je

ct
s,

re
p
o
rt

ed
se

cu
ri

ty
v
io

la
ti
o
n
s,

a
n
d

fa
ls

e
p
o
si

ti
v
es

fo
r
ea

ch
a
n
a
ly

si
s
v
er

si
o
n
.

E
n
a
b
le

d
a
n
a
ly

si
s

fe
a
tu

re
s

a
re

in
d
ic

a
te

d
b
y

X
si

g
n
s

in
th

e
h
ea

d
er

ro
w

.
(b

)
C

o
m

p
a
ri

so
n

o
f
th

e
n
u
m

b
er

o
f
ta

in
te

d
o
b
je

ct
s

fo
r

ea
ch

v
er

si
o
n

o
f
th

e
a
n
a
ly

si
s.

Analysis Features and False Positives 44

S
Q

L
in

je
c
t
io

n
s

H
T

T
P

s
p
li
t
t
in

g
C

r
o
s
s
-s

it
e

s
c
r
ip

t
in

g
P
a
t
h

t
r
a
v
e
r
s
a
l

T
o
t
a
l

H
e
a
d
e
r

m
a
n
ip

.
0

s
n
i
p
s
n
a
p

=
6

b
l
u
e
b
l
o
g
:

1
,
w
e
b
g
o
a
t
:

1
,
p
e
b
b
l
e
:

1
,
r
o
l
l
e
r
:

1
=

4
0

1
0

P
a
r
a
m

e
t
e
r

m
a
n
ip

.
w
e
b
g
o
a
t
:

4
,
p
e
r
s
o
n
a
l
b
l
o
g
:

2
=

6
s
n
i
p
s
n
a
p

=
5

0
b
l
o
j
s
o
m

=
2

1
3

C
o
o
k
ie

p
o
is

o
n
in

g
w
e
b
g
o
a
t

=
1

0
0

0
1

N
o
n
-W

e
b

in
p
u
t
s

s
n
i
p
s
n
a
p
:

1
,
r
o
a
d
2
h
i
b
e
r
n
a
t
e
:

1
=

2
0

0
s
n
i
p
s
n
a
p

=
3

5

T
o
t
a
l

9
1
1

4
5

2
9

F
ig

u
r
e

1
5
:

C
la

ss
ifi

ca
ti
o
n

o
f
v
u
ln

er
a
b
il
it
ie

s
w

e
fo

u
n
d
.

E
a
ch

ce
ll

co
rr

es
p
o
n
d
s

to
a

co
m

b
in

a
ti
o
n

o
f
a

so
u
rc

e
ty

p
e

(i
n

ro
w

s)
a
n
d

si
n
k

ty
p
e

(i
n

co
lu

m
n
s)

.

45

SECTION 7

Related Work

While much attention has been given to the topic of detecting security errors
in Web-based applications, applying powerful static analysis techniques to the
problem is new. In addition to manual code reviews, which are commonly
employed for finding vulnerabilities, the two most commonly used approaches
are penetration testing and runtime monitoring, described below in Sections 7.1
and 7.2. We also review the relevant literature on static analysis for security in
Section 7.3.

7.1 Penetration Testing

Current practical solutions for detecting Web application security problems gen-
erally fall into the realm of penetration testing [ASM05, BLT02, GH02, MJ03,
SS02]. Penetration testing involves attempting to exploit vulnerabilities in a
Web application or crashing it by coming up with a set of appropriate malicious
input values. Penetration reports usually include a list of identified vulnerabili-
ties [Imp]. However, this approach is incomplete. A penetration test can usually
reveal only a small sample of all possible security risks in a system without iden-
tifying the parts of the system that have not been adequately tested. Generally,
there are no standards that define which tests to run and which inputs to try.
In most cases this approach is not effective and considerable program knowledge
is needed to find application-level security errors successfully.

In order to increase coverage, some recent work has tried to automate finding
test cases for Web applications [OWDH04]. To simplify the job of a penetra-
tion tester, multiple fuzzing tools are available. Fuzzing is a testing technique
that generates and submits random or sequential data to various areas of an
application in order to uncover vulnerabilities [HM04, MFS90].

7.2 Runtime Monitoring

A variety of both free and commercial runtime monitoring tools for evaluating
Web application security are available. Proxies intercept HTTP and HTTPS
data between the server and the client, so that data, including cookies and
form fields, can be examined and modified, and resubmitted to the applica-
tion [Chi04, Ope04c]. Commercial application-level firewalls available from Net-
Continuum, Imperva, Watchfire, and other companies take this concept further
by creating a model of valid interactions between the user and the application
and warning about violations of this model. Some application-level firewalls
are based on signatures that guard against known types of attacks. The white-
listing approach specifies what the valid inputs are; however, maintaining the
rules for white-listing is challenging. In contrast, our technique can prevent
security errors before they have a chance to manifest themselves.

Static Analysis Approaches 46

7.3 Static Analysis Approaches

A good overview of static analysis approaches applied to security problems is
provided in [CM04]. Simple lexical approaches employed by scanning tools
such as ITS4 and RATS use a set of predefined patterns to identify potentially
dangerous areas of a program [WK02]. While a significant improvement on
Unix grep, these tools, however, have no knowledge of how data propagates
throughout the program and cannot be used to automatically and fully solve
taint-style problems.

A few projects use path-sensitive analysis to find errors in C and C++ pro-
grams [BPS00, HCXE02, LL03]. While capable of addressing taint-style prob-
lems, these tools rely on an unsound approach to pointers and may therefore
miss some errors. The WebSSARI project uses combined unsound static and
dynamic analysis in the context of analyzing PHP programs [HYH+04]. Web-
SSARI has successfully been applied to find many SQL injection and cross-site
scripting vulnerabilities in PHP code.

An analysis approach that uses type qualifiers has been proven successful in
finding security errors in C for the problems of detecting format string violations
and user/kernel bugs [JW04, STFW01]. Context sensitivity significantly reduces
the rate of false positives encountered with this technique; however, it is unclear
how scalable the context-sensitive approach is.

Much of the work in information-flow analysis uses a type-checking approach,
as exemplified by JFlow [Mye99]. Source annotations are required, and security
is enforced by type checking. The compiler reads a program containing labeled
types and, in checking the types, ensures that the program cannot contain
improper information flow at runtime. The security type system in such a
language enforces information-flow policies. The annotation effort, however,
may be prohibitively expensive in practice. In addition to explicit information
flows our approach addresses, JFlow also deals with implicit information flows.

Static analysis has been applied to analyzing SQL statements constructed in
Java programs that may lead to SQL injection vulnerabilities [GSD04, WS04].
That work analyzes strings that represent SQL statements to check for poten-
tial type violations and tautologies. This approach assumes that a flow graph
representing how string values can propagate through the program has been
constructed a priori from points-to analysis results. However, since accurate
pointer information is necessary to construct an accurate flow graph, it is un-
clear whether this technique can achieve the scalability and precision needed to
detect errors in large systems.

47

SECTION 8

Future Work

The main claim of our approach is that we are able to find all vulnerabilities
captured by a user-provided specification in the statically analyzed portion of
the code. While this formulation provides guarantees that go beyond an unsound
approach, it also leaves room for improvement, which justifies much of our future
work. We are improving our framework in the following areas:

• Improving static coverage. As mentioned in Section 4.2, it is im-
portant to analyze all code that may be relevant at runtime statically.
We are working on a comprehensive solution to construct a call graph
in the presence of reflection. Methods such as Class.forName and
Class.newInstance used for object creation are not the only ones that
need to be analyzed. Java reflection APIs allow method invocation and
object field manipulation through reflective APIs as well.
Certain issues in call graph construction are specific to Web applications
only, though. For instance, classes that are generated by the application
server at runtime from Java Server Pages (JSPs). To obtain full coverage,
these classes need to be pre-compiled and available for analysis.

• Analysis of character-level manipulation. As mentioned in Sec-
tion 3.1, our framework stops tracking tainted data at the level of char-
acters. While this is considerably less common that in C, character-level
manipulation is still used in Java applications and some flows of tainted
data are lost because of omitting it. We are developing analyses that
would address common cases of character manipulation.

• Improving specification completeness. Our approach places the bur-
den of coming up with a specification for the vulnerabilities of interest on
the end-user.
While our basic approach is sound, when applied to a particular set of
taint problems, our analysis only find all application vulnerabilities as
long as the problem specification is complete. Namely, for a particular
taint problem, care must be taken to ensure that the sets of source, sink,
and derivation descriptors are complete. If a particular source is missing,
potential vulnerabilities caused by this source, if any, may be missed. If
a particular descriptor is omitted from the user-provided specification,
propagation of taint may be stopped prematurely thus potentially also
missing some vulnerabilities. While the problem of inferring specifications
in the general case is future work, we have applied some simple strategies
to find source, sink, and derivation descriptors.
We have created an analysis of what the sources are by following the
flow of information forward from data retrieve from primitive socket rou-
tines. This allows us to find some sources that were previously missing

48

in user-provided specification. In the process of solving the taint prob-
lem, we compute a set of “stuck” objects—objects that have no objects
derived from them. Next we examine all methods into which stuck ob-
jects are passed. Some of these methods turn out to be obscure derivation
methods missing in our initial specification, which we subsequently added.
However, other methods we discovered were sanitization methods, whose
purpose is to remove all characters leading to malicious exploits from the
user-provided input.

49

SECTION 9

Conclusions

We showed how a general class of security errors in Java applications can be
formulated as instances of the general tainted object propagation problem, which
involves finding all sink objects derivable from source objects via a set of given
derivation rules. We developed a precise and scalable analysis for this prob-
lem based on a precise context-sensitive pointer alias analysis and introduced
extensions to the handling of strings and containers to further improve the pre-
cision. Our approach finds all vulnerabilities matching the specification within
the statically analyzed code. Note, however, that errors may be missed if the
user-provided specification is incomplete.

We formulated a variety of widespread vulnerabilities including SQL injec-
tions, cross-site scripting, HTTP splitting attacks, and other types of vulnerabil-
ities as tainted object propagation problems. Our experimental results showed
that our analysis is an effective practical tool for finding security vulnerabili-
ties. We were able to find a total of 29 security errors, and all but one of our
nine large real-life benchmark applications were vulnerable. Two vulnerabilities
were located in commonly used libraries, thus subjecting applications using the
libraries to potential vulnerabilities. Most of the security errors we reported
were confirmed as exploitable vulnerabilities by their maintainers, resulting in
more than a dozen code fixes. The analysis reported false positives for only one
application. We determined that the false warnings reported can be eliminated
with improved object naming.

50

SECTION 10

Acknowledgements

We are grateful to Michael Martin for his help with PQL and dynamic validation
of some of the vulnerabilities we found and to John Whaley for his support with
the bddbddb tool and the joeq framework. We thank our Usenix paper shepherd
R. Sekar, whose insightful comments helped improve this paper considerably.

We thank the benchmark application maintainers for responding to our
bug reports. We thank Amit Klein for providing detailed clarifications about
Web application vulnerabilities and Ramesh Chandra, Chris Unkel, and Ted
Kremenek and the anonymous paper reviewers for providing additional helpful
comments. Finally, this material is based upon work supported by the National
Science Foundation under Grant No. 0326227.

REFERENCES 51

References

[Anl02a] Chris Anley. Advanced SQL injection in SQL Server ap-
plications. http://www.nextgenss.com/papers/advanced sql
injection.pdf, 2002.

[Anl02b] Chris Anley. (more) advanced SQL injection. http://www.
nextgenss.com/papers/more advanced sql injection.pdf, 2002.

[ASM05] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration
testing. IEEE Security and Privacy, 3(1):84–87, 2005.

[Bar03] Darrin Barrall. Automated cookie analysis. http://www.
spidynamics.com/support/whitepapers/SPIcookies.pdf, 2003.

[Bea03] Kevin Beaver. Achieving Sarbanes-Oxley compliance for Web ap-
plications through security testing. http://www.spidynamics.com/
support/whitepapers/WI SOXwhitepaper.pdf, 2003.

[BLT02] Brian Buege, Randy Layman, and Art Taylor. Hacking Exposed:
J2EE and Java: Developing Secure Applications with Java Technol-
ogy. McGraw-Hill/Osborne, 2002.

[BPS00] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for find-
ing dynamic programming errors. Software - Practice and Experience
(SPE), 30:775–802, 2000.

[CGI] CGI Security. The cross-site scripting FAQ. http://www.
cgisecurity.net/articles/xss-faq.shtml.

[Chi04] Chinotec Technologies. Paros—a tool for Web application security
assessment. http://www.parosproxy.org, 2004.

[CM04] Brian Chess and Gary McGraw. Static analysis for security. IEEE
Security and Privacy, 2(6):76–79, 2004.

[Com02] Computer Security Institute. Computer crime and security sur-
vey. http://www.gocsi.com/press/20020407.jhtml? requestid=
195148, 2002.

[Coo03] Steven Cook. A Web developers guide to cross-site scripting. http:
//www.giac.org/practical/GSEC/Steve Cook GSEC.pdf, 2003.

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and
Heather Hinton. StackGuard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Conference, pages 63–78, January 1998.

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.spidynamics.com/support/whitepapers/SPIcookies.pdf
http://www.spidynamics.com/support/whitepapers/SPIcookies.pdf
http://www.spidynamics.com/support/whitepapers/WI_SOXwhitepaper.pdf
http://www.spidynamics.com/support/whitepapers/WI_SOXwhitepaper.pdf
http://www.cgisecurity.net/articles/xss-faq.shtml
http://www.cgisecurity.net/articles/xss-faq.shtml
http://www.parosproxy.org
http://www.gocsi.com/press/20020407.jhtml?_requestid=195148
http://www.gocsi.com/press/20020407.jhtml?_requestid=195148
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC.pdf
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC.pdf

REFERENCES 52

[DFK+04] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and
Pat McCarthy. Java Developer’s Guide to Eclipse. Addison-Wesley
Professional, 2004.

[Fou] Foundstone, Inc. Hackme books, test application for Web security.
http://www.foundstone.com/index.htm?subnav=resources/
navigation.htm&subcontent=/resources/proddesc/hacmebooks.
htm.

[Fri04] Steve Friedl. SQL injection attacks by example. http://www.
unixwiz.net/techtips/sql-injection.html, 2004.

[Gen04] Gentoo Linux Security Advisory. SnipSnap: HTTP re-
sponse splitting. http://www.gentoo.org/security/en/glsa/
glsa-200409-23.xml, 2004.

[GH02] Daniel Geer and John Harthorne. Penetration testing: A duet. http:
//www.acsac.org/2002/papers/geer.pdf, 2002.

[Gro03] Jeremiah Grossman. Cross-site tracing (XST): The new tech-
niques and emerging threats to bypass current Web security mea-
sures using TRACE and XSS. http://www.cgisecurity.com/
whitehat-mirror/WhitePaper screen.pdf, 2003.

[Gro04] Jeremiah Grossman. WASC activities and U.S. Web application se-
curity trends. http://www.whitehatsec.com/presentations/WASC
WASF 1.02.pdf, 2004.

[GSD04] Carl Gould, Zhendong Su, and Premkumar Devanbu. Static checking
of dynamically generated queries in database applications. In Proceed-
ings of the 26th International Conference on Software Engineering,
pages 645–654, 2004.

[HCXE02] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language Design
and Implementation, pages 69–82, 2002.

[HL01] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft
Press, 2001.

[HM04] Greg Hoglund and Gary McGraw. Exploiting Software : How to Break
Code. Addison-Wesley Publishing, 2004.

[Hu04] Deyu Hu. Preventing cross-site scripting vulnerability. http://www.
giac.org/practical/GSEC/Deyu Hu GSEC.pdf, 2004.

[Hul01] George Hulme. New software may improve application security. http:
//www.informationweek.com/story/IWK20010209S0003, 2001.

http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/hacmebooks.htm
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/hacmebooks.htm
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/hacmebooks.htm
http://www.unixwiz.net/techtips/sql-injection.html
http://www.unixwiz.net/techtips/sql-injection.html
http://www.gentoo.org/security/en/glsa/glsa-200409-23.xml
http://www.gentoo.org/security/en/glsa/glsa-200409-23.xml
http://www.acsac.org/2002/papers/geer.pdf
http://www.acsac.org/2002/papers/geer.pdf
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf
http://www.whitehatsec.com/presentations/WASC_WASF_1.02.pdf
http://www.whitehatsec.com/presentations/WASC_WASF_1.02.pdf
http://www.giac.org/practical/GSEC/Deyu_Hu_GSEC.pdf
http://www.giac.org/practical/GSEC/Deyu_Hu_GSEC.pdf
http://www.informationweek.com/story/IWK20010209S0003
http://www.informationweek.com/story/IWK20010209S0003

REFERENCES 53

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-
Tsai Lee, and Sy-Yen Kuo. Securing Web application code by static
analysis and runtime protection. In Proceedings of the 13th conference
on World Wide Web, pages 40–52, 2004.

[Imp] Imperva, Inc. SuperVeda penetration test. http://www.imperva.
com/download.asp?id=3.

[JW04] Rob Johnson and David Wagner. Finding user/kernel pointer bugs
with type inference. In Proceedings of the 2004 Usenix Security Con-
ference, pages 119–134, 2004.

[Kle02a] Amit Klein. Cross site scripting explained. http://crypto.
stanford.edu/cs155/CSS.pdf, June 2002.

[Kle02b] Amit Klein. Hacking Web applications using cookie poisoning. http:
//www.cgisecurity.com/lib/CookiePoisoningByline.pdf, 2002.

[Kle04] Amit Klein. Divide and conquer: HTTP response split-
ting, Web cache poisoning attacks, and related topics.
http://www.packetstormsecurity.org/papers/general/
whitepaper httpresponse.pdf, 2004.

[Kos04] Stephen Kost. An introduction to SQL injection attacks for
Oracle developers. http://www.net-security.org/dl/articles/
IntegrigyIntrotoSQLInjectionAttacks.pdf, 2004.

[Kra05] Michael Krax. Mozilla foundation security advisory 2005-38. http://
www.mozilla.org/security/announce/mfsa2005-38.html, 2005.

[Lit03a] David Litchfield. Oracle multiple PL/SQL injection vulner-
abilities. http://www.securityfocus.com/archive/1/385333/
2004-12-20/2004-12-26/0, 2003.

[Lit03b] David Litchfield. SQL Server Security. McGraw-Hill Osborne Media,
2003.

[Liv05] Benjamin Livshits. Stanford SecuriBench. http://suif.stanford.
edu/∼livshits/securibench/, 2005.

[LL03] V. Benjamin Livshits and Monica S. Lam. Tracking pointers with
path and context sensitivity for bug detection in C programs. In
Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 317–326, September 2003.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security errors in
Java programs with static analysis. In Proceedings of the 14th Usenix
Security Symposium, pages 271 – 286, August 2005.

http://www.imperva.com/download.asp?id=3
http://www.imperva.com/download.asp?id=3
http://crypto.stanford.edu/cs155/CSS.pdf
http://crypto.stanford.edu/cs155/CSS.pdf
http://www.cgisecurity.com/lib/CookiePoisoningByline.pdf
http://www.cgisecurity.com/lib/CookiePoisoningByline.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
http://www.mozilla.org/security/announce/mfsa2005-38.html
http://www.mozilla.org/security/announce/mfsa2005-38.html
http://www.securityfocus.com/archive/1/385333/2004-12-20/2004-12-26/0
http://www.securityfocus.com/archive/1/385333/2004-12-20/2004-12-26/0
http://suif.stanford.edu/~livshits/securibench/
http://suif.stanford.edu/~livshits/securibench/

REFERENCES 54

[MFC00] T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: Unit test-
ing with mock objects. In Proceedings of eXtreme Programming and
Flexible Processes in Software Engineering, May 2000.

[MFS90] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study
of the reliability of UNIX utilities. Communications of the Association
for Computing Machinery, 33(12):32–44, 1990.

[MJ03] Jody Melbourne and David Jorm. Penetration testing for Web appli-
cations. http://www.securityfocus.com/infocus/1704, 2003.

[MLL05] Michael Martin, V. Benjamin Livshits, and Monica S. Lam. Finding
application errors using PQL: a program query language. In Pro-
ceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October 2005.

[MRM03] James S. Miller, Susann Ragsdale, and Jim Miller. The Common
Language Infrastructure Annotated Standard. Addison-Wesley Pro-
fessional, 2003.

[Mye99] Andrew C. Myers. JFlow: practical mostly-static information flow
control. In Proceedings of the 26th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 228–241, Jan-
uary 1999.

[Net04] NetContinuum, Inc. The 21 primary classes of Web applica-
tion threats. https://www.netcontinuum.com/securityCentral/
TopThreatTypes/index.cfm, 2004.

[Ope04a] Open Web Application Security Project. A guide to building
secure Web applications. http://voxel.dl.sourceforge.net/
sourceforge/owasp/OWASPGuideV1.1.pdf, 2004.

[Ope04b] Open Web Application Security Project. The ten most critical Web
application security vulnerabilities. http://umn.dl.sourceforge.
net/sourceforge/owasp/OWASPTopTen2004.pdf, 2004.

[Ope04c] Open Web Application Security Project. WebScarab. http://www.
owasp.org/software/webscarab.html, 2004.

[OWDH04] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Bypass test-
ing of Web applications. In Proceedings of the IEEE International
Symposium on Software Reliability Engineering, 2004.

[Pro] The Open Web Application Security Project. WebGoat Project.
http://www.owasp.org/software/webgoat.html.

[Spe02a] Kevin Spett. Cross-site scripting: are your Web applications
vulnerable. http://www.spidynamics.com/support/whitepapers/
SPIcross-sitescripting.pdf, 2002.

http://www.securityfocus.com/infocus/1704
https://www.netcontinuum.com/securityCentral/TopThreatTypes/index.cfm
https://www.netcontinuum.com/securityCentral/TopThreatTypes/index.cfm
http://voxel.dl.sourceforge.net/sourceforge/owasp/OWASPGuideV1.1.pdf
http://voxel.dl.sourceforge.net/sourceforge/owasp/OWASPGuideV1.1.pdf
http://umn.dl.sourceforge.net/sourceforge/owasp/OWASPTopTen2004.pdf
http://umn.dl.sourceforge.net/sourceforge/owasp/OWASPTopTen2004.pdf
http://www.owasp.org/software/webscarab.html
http://www.owasp.org/software/webscarab.html
http://www.owasp.org/software/webgoat.html
http://www.spidynamics.com/support/whitepapers/SPIcross-sitescripting.pdf
http://www.spidynamics.com/support/whitepapers/SPIcross-sitescripting.pdf

REFERENCES 55

[Spe02b] Kevin Spett. SQL injection: Are your Web applications
vulnerable? http://downloads.securityfocus.com/library/
SQLInjectionWhitePaper.pdf, 2002.

[SRW99] S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. In Proceedings of the 26th ACM Symposium on
Principles of Programming Languages, pages 105–118, January 1999.

[SS02] Joel Scambray and Mike Shema. Web Applications (Hacking Ex-
posed). Addison-Wesley Professional, 2002.

[SS04] Moran Surf and Amichai Shulman. How safe is it out there? http:
//www.imperva.com/download.asp?id=23, 2004.

[Ste96] B. Steensgaard. Points-to analysis in almost linear time. In Pro-
ceedings of the 23th ACM Symposium on Principles of Programming
Languages, pages 32–41, January 1996.

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wag-
ner. Detecting format string vulnerabilities with type qualifiers. In
Proceedings of the 2001 Usenix Security Conference, pages 201–220,
August 2001.

[TDP03] Oksana Tkachuk, Matthew B. Dwyer, and Corina S. Pasareanu. Au-
tomated environment generation for software model checking. In 18th
IEEE International Conference on Automated Software Engineering
(ASE’03), page 116, 2003.

[Ull89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems. Computer Science Press, Rockville, Md., volume II edition,
1989.

[WCS96] Larry Wall, Tom Christiansen, and Randal Schwartz. Programming
Perl. O’Reilly and Associates, Sebastopol, CA, 1996.

[Web04] WebCohort, Inc. Only 10% of Web applications are secured against
common hacking techniques. http://www.imperva.com/company/
news/2004-feb-02.html, 2004.

[WFBA00] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In Proceedings
of Network and Distributed Systems Security Symposium, pages 3–17,
February 2000.

[WK02] John Wilander and Mariam Kamkar. A comparison of publicly avail-
able tools for static intrusion prevention. In Proceedings of 7th Nordic
Workshop on Secure IT Systems, November 2002.

http://downloads.securityfocus.com/library/SQLInjectionWhitePaper.pdf
http://downloads.securityfocus.com/library/SQLInjectionWhitePaper.pdf
http://www.imperva.com/download.asp?id=23
http://www.imperva.com/download.asp?id=23
http://www.imperva.com/company/news/2004-feb-02.html
http://www.imperva.com/company/news/2004-feb-02.html

REFERENCES 56

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Proceedings
of the ACM SIGPLAN 2004 conference on Programming Language
Design and Implementation, pages 131–144, June 2004.

[WS04] Gary Wassermann and Zhendong Su. An analysis framework for se-
curity in Web applications. In Proceedings of the Specification and
Verification of Component-Based Systems Workshop, October 2004.

57

SECTION A

Source, Sink, and Derivation
Descriptors

In this Appendix we provide information about source, sink, and derivation
descriptors used in this paper. Source descriptors are presented in Figure 16,
sink descriptors in Figure 17, and derivation descriptors in Figure 18.

58

S
ou

rc
e

d
es

cr
ip

to
rs

=
〈m

,n
,p
〉

V
u
ln

er
ab

il
it
y

ty
p
e

M
et

h
o
d

m
P
ar

am
et

er
n

A
cc

es
s

p
at

h
p

P
ar

am
et

er
ta

m
pe

ri
ng

at
ta

ck
s,

g
e
t
P
a
r
a
m
e
t
e
r

-1
ε

hi
dd

en
fie

ld
m

an
ip

ul
at

io
n,

g
e
t
P
a
r
a
m
e
t
e
r
s

-1
[]

U
R

L
ta

m
pe

ri
ng

g
e
t
P
a
r
a
m
e
t
e
r
M
a
p

-1
k
e
y
S
e
t
()

.i
t
e
r
a
t
o
r
()

.n
e
x
t
()

g
e
t
P
a
r
a
m
e
t
e
r
M
a
p

-1
v
a
l
u
e
s
()

.i
t
e
r
a
t
o
r
()

.n
e
x
t
()

g
e
t
P
a
r
a
m
e
t
e
r
V
a
l
u
e
s

-1
[]

g
e
t
Q
u
e
r
y
S
t
r
i
n
g

-1
ε

g
e
t
R
e
m
o
t
e
U
s
e
r

-1
ε

g
e
t
C
o
m
m
e
n
t

-1
ε

g
e
t
R
e
q
u
e
s
t
e
d
S
e
s
s
i
o
n
I
d

-1
ε

g
e
t
P
r
o
t
o
c
o
l

-1
ε

g
e
t
D
o
m
a
i
n

-1
ε

g
e
t
N
a
m
e

-1
ε

g
e
t
V
a
l
u
e

-1
ε

H
T

T
P

he
ad

er
m

an
ip

ul
at

io
n

g
e
t
H
e
a
d
e
r

-1
ε

g
e
t
H
e
a
d
e
r
s

-1
n
e
x
t
E
l
e
m
e
n
t
()

C
oo

ki
e

po
is

on
in

g
at

ta
ck

s
g
e
t
C
o
o
k
i
e
s

-1
[].
g
e
t
P
a
t
h
()

,[
].g

e
t
D
o
m
a
i
n
()

,
g
e
t
C
o
o
k
i
e
s

-1
[].
g
e
t
C
o
m
m
e
n
t
()

,[
].g

e
t
V
a
l
u
e
()

,
g
e
t
C
o
o
k
i
e
s

-1
[].
g
e
t
N
a
m
e
()

N
on

-W
eb

so
ur

ce
s

∗.
m
a
i
n
(S
t
r
i
n
g
[])

1
[]

F
ig

u
r
e

1
6
:

S
u
m

m
a
ry

o
f

so
u
rc

e
d
es

cr
ip

to
rs

fo
r

d
iff

er
en

t
ty

p
es

o
f

v
u
ln

er
a
b
il
it
ie

s.
A

ll
m

et
h
o
d
s

a
b
o
v
e

a
re

d
ec

la
re

d
in

cl
a
ss

j
a
v
a
x
.s
e
r
v
l
e
t
.S
e
r
v
l
e
t
R
e
q
u
e
s
t
.

59

V
u
ln

er
ab

il
it
y

ty
p
e

S
in

k
d
es

cr
ip

to
rs

=
〈m

,n
,p
〉

M
et

h
o
d

m
P
ar

am
et

er
n

A
cc

es
s

p
at

h
p

SQ
L

In
je

ct
io

n
In

pa
ck

ag
e
j
a
v
a
.s
q
l
:

S
t
a
t
e
m
e
n
t
.e
x
e
c
u
t
e
U
p
d
a
t
e
(S
t
r
i
n
g
,.

..
)

1
ε

S
t
a
t
e
m
e
n
t
.e
x
e
c
u
t
e
Q
u
e
r
y
(S
t
r
i
n
g
)

1
ε

S
t
a
t
e
m
e
n
t
.e
x
e
c
u
t
e
(S
t
r
i
n
g
,.

..
)

1
ε

S
t
a
t
e
m
e
n
t
.a
d
d
B
a
t
c
h
(S
t
r
i
n
g
)

1
ε

C
o
n
n
e
c
t
i
o
n
.p
r
e
p
a
r
e
S
t
a
t
e
m
e
n
t
(S
t
r
i
n
g
,.

..
)

1
ε

C
o
n
n
e
c
t
i
o
n
.p
r
e
p
a
r
e
C
a
l
l
(S
t
r
i
n
g
,.

..
)

1
ε

In
pa

ck
ag

e
j
a
v
a
x
.s
e
r
v
l
e
t
:

C
ro

ss
-s

it
e

sc
ri

pt
in

g,
h
t
t
p
.H
t
t
p
S
e
r
v
l
e
t
R
e
s
p
o
n
s
e
.s
e
n
d
E
r
r
o
r
(i
n
t
,S
t
r
i
n
g
)

1
ε

H
T

T
P

re
sp

on
se

sp
lit

ti
ng

S
e
r
v
l
e
t
O
u
t
p
u
t
S
t
r
e
a
m
.p
r
i
n
t
(S
t
r
i
n
g
)

1
ε

S
e
r
v
l
e
t
O
u
t
p
u
t
S
t
r
e
a
m
.p
r
i
n
t
l
n
(S
t
r
i
n
g
)

1
ε

j
s
p
.J
s
p
W
r
i
t
e
r
.p
r
i
n
t
(S
t
r
i
n
g
)

1
ε

j
s
p
.J
s
p
W
r
i
t
e
r
.p
r
i
n
t
l
n
(S
t
r
i
n
g
)

1
ε

H
T

T
P

re
sp

on
se

sp
lit

ti
ng

In
cl

as
s
j
a
v
a
x
.s
e
r
v
l
e
t
.h
t
t
p
.H
t
t
p
S
e
r
v
l
e
t
R
e
s
p
o
n
s
e
:

s
e
n
d
R
e
d
i
r
e
c
t
(S
t
r
i
n
g
)

1
ε

s
e
t
H
e
a
d
e
r
(S
t
r
i
n
g
,S
t
r
i
n
g
)

1
ε

C
om

m
an

d
in

je
ct

io
n

In
pa

ck
ag

e
j
a
v
a
.l
a
n
g
:

(s
te

al
th

co
m

m
an

di
ng

)
R
u
n
t
i
m
e
.e
x
e
c
(S
t
r
i
n
g
,.

..
)

1
ε

R
u
n
t
i
m
e
.e
x
e
c
(S
t
r
i
n
g
[],

..
.)

1
[]

S
y
s
t
e
m
.l
o
a
d
(S
t
r
i
n
g
)

1
ε

S
y
s
t
e
m
.l
o
a
d
L
i
b
r
a
r
y
(S
t
r
i
n
g
)

1
ε

P
at

h
tr

av
er

sa
l

In
pa

ck
ag

e
j
a
v
a
.i
o
:

F
i
l
e
R
e
a
d
e
r
(S
t
r
i
n
g
)

1
ε

F
i
l
e
W
r
i
t
e
r
(S
t
r
i
n
g
)

1
ε

F
i
l
e
I
n
p
u
t
S
t
r
e
a
m
(S
t
r
i
n
g
)

1
ε

F
i
l
e
O
u
t
p
u
t
S
t
r
e
a
m
(S
t
r
i
n
g
)

1
ε

F
i
l
e
(S
t
r
i
n
g
)

1
ε

F
ig

u
r
e

1
7
:

S
u
m

m
a
ry

o
f
si

n
k

d
es

cr
ip

to
rs

fo
r

d
iff

er
en

t
v
u
ln

er
a
b
il
it
y

ty
p
es

.

60

Derivation descriptor = 〈m,ns, ps, nd, pd〉
Method m ns ps nd pd

String(String) 1 ε -1 ε
String(StringBuffer) 1 ε -1 ε
String.toString() 0 ε -1 ε
String.toLowerCase() 0 ε -1 ε
String.toUpperCase() 0 ε -1 ε
String.replace(char, char) 0 ε -1 ε
String.replaceAll(String, String) 0, 2 ε -1 ε
String.replaceFirst(String, String) 0, 2 ε -1 ε
String.split(String) 0 ε -1 []
String.substring(int, ...) 0 ε -1 ε
String.trim() 0 ε -1 ε
String.concat(String) 0, 1 ε -1 ε

StringBuffer(String) 1 ε -1 ε
StringBuffer.toString() 0 ε -1 ε
StringBuffer.append(String) 0, 1 ε -1 ε
StringBuffer.append(StringBuffer) 0, 1 ε -1 ε
StringBuffer.append(...) 0 ε -1 ε
StringBuffer.delete(int, int) 0 ε -1 ε
StringBuffer.deleteCharAt(int) 0 ε -1 ε
StringBuffer.insert(int, String) 0, 2 ε -1 ε
StringBuffer.insert(int, Object) 0, 2 ε -1 ε
StringBuffer.insert(int, ...) 0 ε -1 ε
StringBuffer.insert(int, char[] 0 ε -1 ε
int, int)

StringBuffer.replace(int, int, String) 0, 3 ε -1 ε
StringBuffer.substring(int, ...) 0 ε -1 ε

StringTokenizer(String, ...) 0, 1 ε -1 ε
StringTokenizer.nextElement() 0 ε -1 ε
StringTokenizer.nextToken() 0 ε -1 ε

Figure 18: Summary of derivation descriptors in Java APIs. We abbreviate the signatures
by indicated immaterial parameters with “...”. To save space, we also list all possible values
of source argument number ns separated by commas.

	Introduction
	Causes of Vulnerabilities
	Code Auditing for Security
	Static Analysis
	Contributions
	Report Organization

	Overview of Vulnerabilities
	SQL Injection Example
	Injecting Malicious Data
	Parameter Tampering
	URL Tampering
	Hidden Field Manipulation
	HTTP Header Manipulation
	Cookie Poisoning
	Non-Web Input Sources

	Exploiting Unchecked Input
	SQL Injections
	Cross-site Scripting Vulnerabilities
	HTTP Response Splitting
	Path Traversal
	Command Injection

	Secure Coding Practices

	Static Analysis
	Tainted Object Propagation
	Specifications Completeness
	Static Analysis
	Role of Pointer Information
	Finding Violations Statically
	Role of Pointer Analysis Precision

	Specifying Taint Problems in PQL
	Simple SQL Injection Query
	Queries for a Taint Problem

	Precision and Coverage Improvements
	Precision Improvements
	Handling of Containers
	Handling of String Routines

	Coverage Improvements
	Finding Root Methods in Web Applications
	Treatment of Reflection

	Soundness and Completeness

	Auditing Environment
	Experimental Results
	Benchmark Applications
	Experimental Setup
	Vulnerabilities Discovered
	Validating the Errors We Found
	Classification of Errors
	SQL Injection Vector in hibernate
	Cross-site Tracing Attacks

	Analysis Features and False Positives

	Related Work
	Penetration Testing
	Runtime Monitoring
	Static Analysis Approaches

	Future Work
	Conclusions
	Acknowledgements
	Source, Sink, and Derivation Descriptors

