
Secure programmer: Keep an eye on inputs

Find and secure the gateways into your program

David Wheeler (dwheelerNOSPAM@dwheeler.com), Research Staff Member, Institute for

Defense Analyses

Summary: This article discusses various ways data gets into your program, emphasizing

how to deal appropriately with them; you might not even know about them all! It first

discusses how to design your program to limit the ways data can get into your program, and

how your design influences what is an input. It then discusses various input channels and

what to do about them, including environment variables, files, file descriptors, the command

line, the graphical user interface (GUI), network data, and miscellaneous inputs.

Date: 19 Dec 2003

Level: Intermediate

Also available in: Japanese

Activity: 2020 views

Comments: (View | Add comment - Sign in)

Rate this article

In early 2001, many large companies installed the application "SAP R/3 Web Application

Server demo," unaware that it included a dangerous vulnerability. The application included a

program named saposcol, which failed to protect itself against malicious input values. An

attacker could set the PATH environment variable to change where saposcol looked for other

programs, and then create a malicious "expand" program for saposcol to run. Since saposcol

had setuid root privileges, this meant that local users could quickly gain control over the

entire computer system (as root), because of a single programming mistake (see Resources for

a link to more on this and other incidents mentioned in this article).

The previous installment in this column identified some common input data types and how to

check them. But knowing how to check data types isn't enough if you don't know where all of

your data comes from. This article discusses various ways that data gets into your program --

some of which aren't obvious -- and emphasizes how to deal appropriately with them.

If you're not in control, your attacker is

The first line of defense in a secure program is to check every untrusted input. But what does

that mean? It comes down to three things:

1. Limit the portions of your program that are exposed. If your program is subdivided

into pieces -- and this is often a good idea -- try to design it so that an attacker can't

communicate at all to most pieces. That includes being unable to exploit the

communication paths between the pieces. It's best if attackers cannot view, modify, or

insert their own data into those communication paths (including slipping in as a

middleman between the pieces). If that's not possible -- such as when the pieces

http://www.ibm.com/developerworks/security/library/l-sp3/index.html#author1
mailto:dwheelerNOSPAM@dwheeler.com?subject=Secure%20programmer:%20Keep%20an%20eye%20on%20inputs&cc=youngt01@us.ibm.com
http://www.ibm.com/developerworks/jp/linux/library/l-sp3/
http://www.ibm.com/developerworks/security/library/l-sp3/index.html#icomments
http://www.ibm.com/developerworks/security/library/l-sp3/index.html
http://www.ibm.com/developerworks/security/library/l-sp3/index.html#iratings
http://www.ibm.com/developerworks/security/library/l-sp3/index.html#resources
http://www.ibm.com/developerworks/library/l-sp2.html

communicate using a network -- use mechanisms such as encryption to counter

attackers. Later articles will discuss this in more detail.

2. Limit the types of inputs allowed by the exposed portions. Sometimes you can change

your design so that only a few inputs are even possible -- if you can, do so.

3. Ruthlessly check the untrusted inputs. A truly "secure" program would have no inputs,

but that program would be useless. Thus, you need to ruthlessly check data on all input

paths into your program from untrusted sources. The previous installment discussed

how to check different types of data; this article will help you identify where that data

comes from. That doesn't mean you only check data just entering into your program.

It's often wise to check data in multiple places, but you must check all data at least

once, and it's often wise at least to have a check when the data first comes in.

Back to top

It all depends on the type of your program

You must check all untrusted inputs -- but what are they? Some of them depend on what your

program does. If your program is a viewer or editor of data -- such as a word processor or

image displayer -- that data might be from an attacker, so it's an untrusted input. If your

program responds to requests over a network, those requests might very well come from an

attacker -- so the network connection is an untrusted input.

Another important factor is how your program is designed. If parts of your program run as

"root" or some other privileged user, or have privileged access to data (such as the data in a

database), then inputs to those parts from the unprivileged parts and programs are untrusted.

An especially important case is any program that is "setuid" or "setgid." Just running a

setuid/setgid program turns on special privileges, and these programs are especially hard to

make secure. Why? Because setuid/setgid programs have an especially large set of inputs --

many of them surprising -- that can be controlled by an attacker.

Back to top

Common input sources

The following sections discuss some of the common inputs and what to do about them. You

should consider each of these inputs when you're writing your program, and if they are

untrusted, carefully filter them.

Environment variables

Environment variables can be incredibly dangerous, especially for setuid/setgid programs and

the programs they call. Three factors make them so dangerous:

1. Many libraries and programs are controlled by environment variables in ways that are

incredibly obscure -- in fact, many are completely undocumented. The command shell

/bin/sh uses environment variables such as PATH and IFS, the program loader ld.so

(/lib/ld-linux.so.2) uses environment variables such as LD_LIBRARY_PATH and

LD_PRELOAD, lots of programs use the environment variables TERM, HOME, and SHELL --

and all of these environment variables have been used to exploit programs. There are a

http://www.ibm.com/developerworks/library/l-sp2.html
http://www.ibm.com/developerworks/security/library/l-sp3/index.html#ibm-pcon
http://www.ibm.com/developerworks/security/library/l-sp3/index.html#ibm-pcon

huge number of these environment variables; many of them are recondite variables

intended for debugging, and it's pointless to try to list them all. In fact, you can't know

them all, since some aren't even documented.

2. Environment variables are inherited. If program A calls B, which calls C, which calls

D, then D will receive the environment variables that A received unless some program

changes things along the way. This means that if A is a secure program, and the

developer of D adds an undocumented environment variable that helps in debugging,

that addition to D might create a vulnerability in A! This inheritance isn't accidental --

it's what makes environment variables useful -- but it also makes them a serious

security problem.

3. Environment variables can be completely controlled by locally running attackers, and

attackers can exploit this in surprising ways. As described by the environ(5) man page

(see Resources), environment variables are internally stored as an array of character

pointers (the array is terminated by a NULL pointer), and each character pointer points

to a NIL-terminated string value of the form NAME=value (where NAME is the name of

the environment variable). Why is this detail important? It's because attackers can do

weird things such as create multiple values for the same environment variable name

(like two different LD_LIBRARY_PATH values). This can easily lead libraries using the

environment variables to do unexpected things, which may be exploitable. The GNU

glibc library has routines that work to counter this, but other libraries and any routines

that walk the environment variable list can get into trouble in a hurry.

In some cases, programs have been modified to make it harder to exploit them using

environment variables. Historically, many attacks exploited the way the command shell

handled the IFS environment variable, but most of today's shells (including GNU bash) have

been modified to make IFS harder to exploit.

What's the IFS problem?

Although it's not as serious a problem today, the IFS environment variable once caused many

security problems in older Unix shells. IFS was used to determine what separated words in

commands sent to the original Unix Bourne shell, and was passed down like any other

environment variable. Normally the IFS variable would have the value of a space, a tab, and a

newline -- any of those characters would be treated like a space character. But attackers could

then set IFS to sneaky values, for example, they might add a "/" to IFS. Then, when the shell

tried to run /bin/ls, the old shell would interpret "/" just like a space character -- meaning

that the shell would run the "bin" program (wherever it could find one) with the "ls" option!

The attacker would then provide a "bin" program that the program could find.

Thankfully, most of today's shells counter this by at least automatically resetting the IFS

variable when they start -- and that includes GNU bash, the usual shell for GNU/Linux

systems. GNU bash also limits the use of IFS so it's only used on the results of expansions.

This means that IFS is used less often, and, thus, it's much less dangerous (the original sh split

all words using IFS, even commands). Unfortunately, not all shells protect themselves

(Practical Unix & Internet Security -- see Resources for a link -- has sample code to test this).

And although this particular problem has been (for the most part) countered, it exemplifies the

subtle problems that can occur from unchecked environment variables.

http://www.ibm.com/developerworks/security/library/l-sp3/index.html#resources
http://www.ibm.com/developerworks/security/library/l-sp3/index.html#resources

Unfortunately, while this hardening is a good idea, it's not enough -- you still need to deal

with environment variables carefully. An extremely important (though complicated) example

involves how all programs are run on Unix-like systems. Unix-like systems (including

GNU/Linux) run programs by first running a system loader (it's /lib/ld-linux.so.2 on most

GNU/Linux systems), which then locates and loads the necessary shared libraries. The loader

is normally controlled by -- you guessed it -- environment variables.

On most Unix-like systems, the loader's search for libraries normally begins with any

directories listed in the environment variable LD_LIBRARY_PATH. I should note that

LD_LIBRARY_PATH works on many Unix-like systems, but not all; HP-UX uses the

environment variable SHLIB_PATH, and AIX uses LIBPATH instead. Also, in GNU-based

systems (including GNU/Linux), the list of libraries specified in the environment variable

LD_PRELOAD is loaded first and overrides everything else.

The problem is that if an attacker can control the underlying libraries used by a program, the

attacker can completely control the program. For example, imagine that the attacker could run

/usr/bin/passwd (a privileged program that lets you change your password), but uses the

environment variables to change the libraries used by the program. An attacker could write

their own version of crypt(3), the password encryption function, and when the privileged

program tries to call the library, the attacker can make the program do anything -- including

allowing permanent, unlimited control over the system. Today's loaders counter this problem

by detecting if the program is setuid/setgid, and if it is, they ignore environment variables

such as LD_PRELOAD and LD_LIBRARY_PATH.

So, are we safe? No. If that malicious LD_PRELOAD or LD_LIBRARY_PATH value isn't erased by

the setuid/setgid program, it will be passed down to other programs and cause the very

problem the loader is trying to counter. Thus, the loader makes it possible to write secure

programs, but you still have to protect against malicious environment variables. And that still

doesn't deal with the problem of undocumented environment variables.

For secure setuid/setgid programs, the only safe thing to do is to always "extract and erase"

environment variables at the beginning of the program:

 Extract the environment variables that you actually need (if any).

 Erase the entire environment. In C/C++, erasing the environment can be done by

including <unistd.h> and then setting the environ variable to NULL (do this very

early, in particular before creating any threads).

 Set just the environment variables you need to safe values. One environment value

you'll almost certainly re-add is PATH, the list of directories to search for programs.

Typically PATH should just be set to /bin:/usr/bin or some similar value. Don't include

the current directory in PATH, which can be written as "." or even as a blank entry (so a

colon at the beginning or end would probably be exploitable). Typically you'll also set

IFS (to its default of " \t\n" -- space, tab, and newline) and TZ (timezone). Others you

might set are HOME and SHELL. Your application might need a few more, but limit them

-- don't accept data from a potential attacker unless it's critically needed.

Files

As mentioned in my previous installment, don't trust filenames that can be set by an attacker.

Linux and Unix allow just about any series of characters to be a filename, so if you're

traversing a directory or accepting a filename from an attacker, be prepared. Attackers can

create filenames with leading "-", filenames with special characters such as "&", and so on.

Don't trust file contents that can be controlled by untrusted users. That includes files viewed

or edited by a program if they might be mailed by an attacker. For example, the popular text

editor vim version 5.7, when asked to edit a file, would look for an embedded statusline

command to set information on its status line, and that command could in turn execute an

arbitrary shell program. An attacker could e-mail a specially rigged file to the victim, and if

the victim used vim to read or edit it, the victim would run whatever program the attacker

wanted. Oops.

Avoid getting configuration information from the current directory, because a user might view

a directory controlled by an attacker who has created a malicious configuration file (for

example, the attacker may have sent a compressed directory with the data and a malicious

configuration file). Instead, get configuration information from /etc, the user's home directory,

and/or the desktop environment's library for getting configuration information. It's a common

convention to store configuration information and other information in "~/.program-name";

the period means it won't clutter normal displays. If you really must get configuration

information from the current directory, aggressively check all data from it.

Don't let attackers control any temporary files. I suggest placing temporary directories inside a

user's home directory if the user is trusted. If that isn't acceptable, use secure methods to

create and use temporary files (I'll discuss how to securely create temporary files in a later

article).

File descriptors

Sneaky attackers may start a program but do strange things to its standard input, standard

output, or standard error. For example, an attacker might close one or more of them so that the

next file you open is also where normal output goes. This is especially a problem for

setuid/setgid programs. Some of today's Unix-like systems counter this, but not all.

One way a setuid/setgid program can counter this attack is to repeatedly open up /dev/null

using open() until the file descriptor's value is more than 2 (you must do this before opening

files, preferably early in the program initialization). Then, if the first call to open() returns 2

or less, exit without printing any messages. By first repeatedly opening up /dev/null, you

protect yourself from yourself -- bad things won't happen if you accidentally try to open files

and then print an error message. There's no need to print error messages for this case since file

descriptors 0 through 2 are only closed if an attacker is trying to subvert your program.

Command line

Programs can be started up with data from the command line -- but can you trust that data?

Setuid/setgid programs in particular cannot. If you can't trust the data, be prepared for

anything -- large arguments, a huge number of arguments, improbable characters, and so on.

Note that the name of the program is just argument number 0 in the command line values --

don't trust the program name, since an attacker can change it.

Also, try to design your command-line syntax so that it's easier to use securely. For example,

support the standard "--" (double-dash) option that means "no more options," so that scripts

can use the option to foil attackers who create filenames (like "-fr") that begin with dash.

Otherwise, an attacker can create "-fr" as a file and try to talk users into running

"yourcommand *"; your program may then misinterpret the filename ("-fr") as an option.

Graphical user interface (GUI)

Here's a recipe for disaster: a process has special privileges (for instance, if it's setuid/setgid),

it uses the operating system's graphical user interface (GUI) libraries, and the GUI user isn't

totally trusted. The problem is that GUI libraries (including those on Unix, Linux, and

Windows) simply aren't designed to be used that way. Nor would it make sense to try to do so

-- GUI libraries are huge and depend on large substructures, so it would be difficult to fully

analyze all that code for their security properties. The GTK+ GUI library even halts if it

detects that it's running in a setuid program, because it's not supposed to be used that way

(kudos to the GTK+ developers for proactively preventing this security problem).

Does that mean that you're doomed to the command line? No. Break your program into

smaller parts, have an unprivileged part implement the GUI, and have a separate part

implement the privileged operations. Here are some common ways to do this:

 It's often easiest to implement the privileged operations as a command-line program

that's called by the GUI -- that way you get both a GUI and command-line interface

(CLI) "for free," simplifying scripting and debugging. Typically the CLI privileged

program is a setuid/setgid program. The privileged program, of course, must defend

itself from all attacks, but this approach usually means that the part of the program that

must be secured is much smaller and easier to defend.

 If you need high-speed communication, start up the program as a privileged program,

split it into separate processes that can securely communicate, and then have one

process permanently drop its privileges and run the GUI.

 Another approach is to implement a privileged server that responds to requests, and

then create the GUI as a client.

 Use a Web interface; create a privileged server and use a Web browser as the client.

This is really a special case of the previous method, but it's so flexible that it's often

worth considering. You'll need to secure it just like any other Web application, which

brings us to the problem of network data.

Network data

If data comes from a network, you should usually treat it as highly untrusted. Don't trust the

"source IP" address, the HTTP "Referrer" header value, or similar data to tell you where the

data really came from; those values come from the sender and can be forged. Be careful of

values from the domain name system (DNS); DNS implements a distributed database, and

some of those values may be supplied by the attacker.

If you have a client/server system, the server should never trust the client. The client data

could be manipulated before reaching the server, the client program might have been

modified, or attackers could have created their own client (many have!). If you're getting data

from a Web browser, remember that Web cookies, HTML form data, URLs, and so on can be

set by the user to arbitrary values. This is a common problem in Web shopping-cart

applications; many of these applications use hidden HTML form fields to store product

information (such as price) and related information (such as shipping costs), and blindly

accept these values when users send them. Not only can users set product prices to low values

or zero, in some cases they can even set negative prices to receive the merchandise and an

additional cash bonus. Remember that you have to check all data; some Web shopping carts

check the product data but forget to check the shipping price.

If you're writing a Web application, limit GET requests to queries for data. Don't let GET

requests actually change data (such as transferring money) or other activities. Users can be

easily fooled into clicking on malicious hyperlinks in their Web browsers, which then send

GET requests. Instead, if you get a GET request for some action other than a query, send back a

confirmation message of the form "you asked me to do X, is that okay? (Ok, Cancel)" Note

that limiting GET queries won't help you with the problem of incorrect client data (as

discussed in the previous paragraph) -- servers still need to check data from their clients!

Miscellaneous

Programs have many other inputs, such as the current directory, signals, memory maps,

System V IPC, the umask, and the state of the filesystem. Armed with the information you've

gained here, the important thing is to not overlook these things as inputs, even though they

don't always smell like inputs.

Back to top

Conclusions

Secure programs must check every untrusted input channel, and doing so can eliminate a lot

of problems. But that's not enough. Sometimes, even just reading data can be a security

vulnerability -- before the data is even checked! And processing the data can cause the

program to fail in horrific ways. We're talking about the #1 security vulnerability today -- the

buffer overflow. My next installment will discuss what this vulnerability is, how to counter it,

and why there's hope that this will become less of a problem in the future.

Resources

 Read all of the installments in David's Secure programmer column. "Developing

secure programs" covers terminology and other basics, and "Validating input discusses

checking various data types.

 David's book Secure Programming for Linux and Unix HOWTO (Wheeler, March

2003) gives a detailed account of how to develop secure software. Chapter 7 discusses

setuid and limiting privileges in detail.

 "SAP R/3 Web Application Server Demo for Linux: root exploit" by Jochen Hein

(Bugtraq, 29 April 2001) discusses the SAP vulnerability. This vulnerability is

Bugtraq id 2662 and CVE vulnerability CVE-2001-0366. Run chmod u-s as a

workaround to disable it.

 "VIM statusline Text-Embedded Command Execution Vulnerability" (Bugtraq, 26

March 2001), Bugtraq id 2510, discusses the vim vulnerability. This vulnerability is

http://www.ibm.com/developerworks/security/library/l-sp3/index.html#ibm-pcon
http://www.ibm.com/developerworks/views/linux/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=secure+programmer%3A
http://www.ibm.com/developerworks/linux/library/l-sp1.html
http://www.ibm.com/developerworks/linux/library/l-sp1.html
http://www.ibm.com/developerworks/linux/library/l-sp2.html
http://en.tldp.org/HOWTO/Secure-Programs-HOWTO/
http://www.securityfocus.com/archive/1/180498
http://www.securityfocus.com/bid/2510

CVE vulnerability CVE-2001-0408 and was originally revealed as Red Hat RHSA-

2001:008-04. You can disable it by turning off the statusline or stl option in

.vimrc.

 "Multiple Vendor Web Shopping Cart Hidden Form Field Vulnerability" (Bugtraq, 1

Feb 2000), Bugtraq id 1237, discusses why blindly accepting product price values

from users is a bad idea and the large number of Web applications with this error.

 "Well Known Flaw in Web Cart Software Remains Wide Open" by Beyond-Security's

SecuriTeam.com notes that not only do some shopping carts fail to check product

prices, some check product prices but not shipping prices (so negative shipping prices

give an unjustified discount).

 David's article "Program Library HOWTO" (Wheeler, 11 April 2003) discusses how

libraries (including shared libraries) are handled in GNU/Linux.

 "Why GTK_MODULES is not a security hole" by Owen Taylor (GTK.org, 2 January

2000) explains why "writing setuid and setgid programs using GTK+ is bad idea and

will never be supported by the GTK+ team," and notes that current versions of GTK+

will not run setuid at all.

 Adam Shostack has posted a copy of the setuid(7) man page.

 A copy of the environ(5) man page is posted at Princeton's Computer Science

department.

 Some nice discussion is included in the classic Practical Unix & Internet Security, 3rd

Edition by Simson Garfinkel, Gene Spafford, and Alan Schwartz (O'Reilly &

Associates, 2003). Chapter 11 discusses the IFS environment variable.

 Cameron Laird discusses server security in "Server clinic: Practical Linux security" on

developerWorks.

 Gary McGraw and John Viega offer 10 points to keep in mind when building a secure

system in the "Software security principles" series on developerWorks. In "Building

secure software: Selecting technologies," Gary and John explore common choices

faced by designers and programmers.

 Read more about Linux in the IBM developerWorks Linux section.

 IBM Research Security group has a number of security-related projects, including

Internet security, Java security, cryptography, and data hiding.

 The IBM white paper "Secure Internet Applications on the AS/400 system" primarily

discusses the Secure Sockets Layer (SSL) protocol.

 The AS/400 Security pages on Internet Security are a good starting point for learning

more about network security.

About the author

http://www.securityfocus.com/bid/1237
http://www.securiteam.com/securitynews/6S00O1561M.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/
http://www.gtk.org/setuid.html
http://www.homeport.org/~adam/setuid.7.html
http://www.cs.princeton.edu/cgi-bin/man2html?environ:5
http://www.busan.edu/~nic/networking/puis/ch11_05.htm
http://www.ibm.com/developerworks/linux/library/l-sc7.html
http://www.ibm.com/developerworks/linux/library/s-link.html
http://www.ibm.com/developerworks/linux/library/s-build.html
http://www.ibm.com/developerworks/linux/library/s-build.html
http://www.ibm.com/developerworks/linux/
http://www.research.ibm.com/compsci/security/
http://www-1.ibm.com/servers/eserver/iseries/whpapr/secure_internet_apps.html
http://www.redbooks.ibm.com/tstudio/secure1/sdex_fr.htm

David A. Wheeler is an expert in computer security and has long worked in improving

development techniques for large and high-risk software systems. Mr. Wheeler is a validator

for the Common Criteria. Mr. Wheeler also wrote the Springer-Verlag book Ada95: The

Lovelace Tutorial, and is the co-author and lead editor of the IEEE book Software Inspection:

An Industry Best Practice. This article presents the opinions of the author and does not

necessarily represent the position of the Institute for Defense Analyses. You can contact

David at dwheelerNOSPAM@dwheeler.com.

mailto:dwheelerNOSPAM@dwheeler.com?cc=youngt01@us.ibm.com

