

REVISION: 1.0 [2010-10-21]

Security modeling

Goals of this lab:

v Learn how to find information about known vulnerabilities

v Get experience with performing risk analysis and specifying security requirements.

v Get hands-on experience analyzing and modeling a vulnerability

v Learn how to identify possible attacks and misuse cases

v Get experience with determining how to prevent and mitigate vulnerabilities

Prerequisites: Theory on risk analysis and security modeling

MODEL

IDA/ADIT MODEL: SECURITY MODELING

Table of Contents
Part 1: Vulnerability repositories... 1

Exercise 1: Vulnerability repositories .. 1
Part 2: Risk analysis and Security Requirements .. 1

Exercise 2: Security requirements and misuse/abuse cases.. 2
Part 3: Security Modeling ... 2

Exercise 3: Security modeling ... 3
Exercise 4: Vulnerability mitigation and prevention... 3

Appendix A: VCG construction manual.. 3

IDA/ADIT MODEL: SECURITY MODELING

IDA/ADIT MODEL: SECURITY MODELING 1

MAIN LAB

This lab concerns certain aspects of addressing software security during software development. You
will work with security modeling techniques that can be used to elicit security requirements, design,
determine how to prevent attacks, and determine how to prevent vulnerabilities in the first place.
Although such techniques are not in widespread use in software development, all indicators point to
techniques like these being used more and more in the future.

Part 1: Vulnerability repositories

Information about known vulnerabilities can be found in several publicly available repositories
and databases. Some examples are:

• Security Focus (http://www.securityfocus.com/)

• Open source vulnerability database (http://osvdb.org/)

• National vulnerability database (http://nvd.nist.gov/)

• Common vulnerabilities and exposures list (http://cve.mitre.org/)

• Common weakness enumeration (http://cwe.mitre.org/)

Exercise 1: Vulnerability repositories

1-1 Spend at least ten minutes with each of the databases above to become familiar with
their goals, structures, and with the information they provide.

1-2 What are the 20 most recently reported security problems in these websites? Do you
see common problems? What type of problems are they?

1-3 Write a one-page report discussing the various repositories, the kind of information
they provide, and how they relate to secure software development.

Report: The reports produced in 1-2 and 1-3. You will be assessed on your understanding of
the repositories and their relationship to secure software development.

Part 2: Risk analysis and Security Requirements

Assume a ticket purchase and management system in a Cinema. The services provided by the
system, among others, are booking, buying and canceling tickets, remote login to personal pages for
frequent users to keep track of favorite movies, forums for movie rating and discussions. You will
perform risk analysis for this system and will identify the security requirements for the system. The
process of risk analysis using RMF is presented in G. McGraw. Risk Management Framework. Cigital.

IDA/ADIT MODEL: SECURITY MODELING 2

20051. You will also specify security requirements for the system and for this you need to create
misuse cases. Misuse cases and security requirements are described in “Capturing Security
Requirements through Misuse Cases” (Sindre, Opdahl, 2001). All papers are available in the labs
section of the course homepage.

Exercise 2: Security requirements and misuse/abuse cases

2-1 Using RMF, perform a risk analysis for the system. You are free to make assumptions
about the system. Document your assumptions clearly.

2-2 Write 10 security requirements considering the results of the risk analysis.

2-3 Draw misuse case models considering the security requirements you have identified.

Report: The results produced in 2-1 to 2-3.

Part 3: Security Modeling

You will learn about three modeling methods in this part of the lab: vulnerability modeling, attack
trees, and abuse/misuse cases. All these methods help developers to build an understanding of
vulnerabilities and possible attack scenarios. Such understanding is needed in order to
determine how to prevent or mitigate vulnerabilities. Vulnerability modeling is the process of
analyzing vulnerabilities and identifying what might have caused them. Attack trees model
attacks and threats against a system in a tree structure with the goal (a successful attack) as
the root and ways of achieving the goal as the leaf nodes. Abuse/misuse cases are negative
scenarios of each leaf node in an attack tree.

The objective of vulnerability modeling is to improve the development process, based on models
of vulnerabilities discovered at any point in the software lifecycle. Attack trees and
abuse/misuse cases are intended to be used in the requirements and the design phases of the
software development process.

Modeling vulnerabilities

You will apply vulnerability modeling, attack trees, and abuse/misuse cases to three buffer
overflow vulnerabilities. The process of vulnerability modeling is described in 02. Attack trees
are presented in “Attack trees: Modeling security threats” (Schneier, 1999). Abuse/misuse cases
are described in “An extended misuse case notation: Including vulnerabilities and the insider
threat” (Røstad, 2006). All papers are available in the labs section of the course homepage.

The vulnerabilities you will model are

• CVE-2006-5525, SQL injection vulnerability in PHP-Nuke 7.9 and earlier. The
vulnerability allows remote attackers to conduct SQL injection attacks via "/**/UNION "
or " UNION/**/" sequences.

• CVE-2008-0227, buffer overflow in yaSSL 1.7.5 and earlier, as used in MySQL allows
remote attackers to execute a denial of service attack.

• CVE-2001-0395 is a vulnerability in Lightwave Console Server 3200. This vulnerability
results in not disconnecting users after unsuccessful login attempts, which could allow
remote attackers to conduct brute force password guessing. (Note: the source code
for this vulnerability is not available. You need to model the vulnerability only based on
existing information on vulnerability databases.)

1 On-line: https://buildsecurityin.us-cert.gov/daisy/bsi/250-BSI.html
2 For further information see “Modeling Software Vulnerabilities With Vulnerability Cause Graphs” (Byers et al.,
2006).

IDA/ADIT MODEL: SECURITY MODELING 3

Exercise 3: Security modeling

3-1 Examine the technical descriptions for the vulnerability that are available in the on-line
vulnerability databases to get an overview of the problem.

3-2 Use manual code inspection techniques, debuggers, and static analysis tools (of your
own choice) to analyze the vulnerability. You may also want to explore how the
vulnerability was fixed. The result of this analysis should be an in-depth understanding
about how the vulnerable code works and precisely what the vulnerability is.

3-3 Construct a VCG for the vulnerability using the method presented in Appendix A.

3-4 Determine how the each of vulnerabilities can be exploited and show your results
using attack trees. See “Attack trees: Modeling security threats” for details on attack
trees.

3-5 Model misuse cases for the leaf nodes of your attack tree. See “An extended misuse
case notation: Including vulnerabilities and the insider threat” for details on misuse
cases.

3-6 Based on your misuse case model, can you identify security requirements that could
have prevented vulnerabilities from being introduced into the corresponding products
in the first place?

3-7 Compare your answer to 3-6, 2-2 and 2-3?

Report: Hand in your analysis results, your VCG(s), attack tree(s) and the misuse cases, and
your answer to 3-7. You will be assessed on the quality and completeness of your
models.

Based on the models you have created, you should be able to determine how to mitigate
(prevent a successful attack) the three vulnerabilities, and how similar vulnerabilities can be
prevented in the future, through activities in the software lifecycle.

Exercise 4: Vulnerability mitigation and prevention

4-1 For every cause in the VCGs you created in Exercise 3, identify activities in the
software lifecycle that would address the cause.

4-2 Determine how these activities (or a subset of the activities) could be combined to
prevent the corresponding vulnerability.

4-3 Use your attack tree to determine how the vulnerability could be mitigated.

4-4 Submit your results from 4-1, 4-2, and 4-3. You will be assessed on the quality and
completeness of your answers (have you considered all alternatives for addressing
causes, identified a valid subset of activities, and used the attack tree appropriately).

4-5 Based on your results in exercise 2 and 3, write a one page reflection on how you
think vulnerabilities similar to those modeled in exercise 3 can be prevented in the
ticket purchase and management system.

Appendix A: VCG construction manual

Vulnerability Cause Graphs (VCG): model causes of vulnerabilities and are used as a starting point for
detecting and preventing security problems. VCG can be used to both model vulnerability classes and
particular vulnerability instances.

Notation:

Name of symbol Symbol Explanation

Cause No symbol Conditions or events that
may lead to vulnerabilities in
the software being developed

IDA/ADIT MODEL: SECURITY MODELING 4

Simple node

Represents simple causes,
not combinations or
sequences of causes

Exit node

Represents the vulnerability
modelled in VCG

Compound node

Refers to a VCG and
facilitates analysis reuse,
maintenance of models and
improves readability

Conjunction node

Represents the conjunction
of two or more nodes

Edge

Represents the relationships
between causes, and causes
and vulnerabilities

Step-by-step guide:

1. Initial analysis: Analyse the vulnerability in order to develop a thorough understanding of its
causes. This is done using code review, execution traces, and live debugging and developing
a working exploit if possible. Initial analysis is considered complete when you know what types
of conditions and/or input would expose the vulnerability.

2. Create VCG: Create a base VCG consisting of an exit node, with the name of the vulnerability.

3. Iteration: Through a process of iterative refinement analyse any node in the VCG that has not
been completely analysed. Analysis of a node consists of the following, which may be
performed repeatedly:

a. Determine node validity, splitting and conversion: For each new entered node,
determine node validity and analyse if it needs to be split or converted to a compound
node: Simple nodes entered into the VCG should always represent simple conditions,
not combinations or sequences of conditions. When a complex condition is identified it
should be split to several simple nodes and possibly converted to compound or
conjunction nodes.

b. Find predecessor candidates: For each of the new entered nodes find their direct
predecessors and enter them into the VCG. The predecessors of a node represent
conditions that, independently of any other conditions, might cause the condition the
node represents to be a concern. The predecessors of the exit node (representing the
vulnerability) are its immediate causes. Finding the predecessors of other nodes starts
with answering the question “under what circumstances is this cause a concern?”

c. Organise predecessor candidates: Organise the predecessors to present how they
are related and how they can lead to the vulnerability. Note that:

§ The predecessor-successor relationship between nodes models how certain
conditions cause other conditions to be a concern.

§ Sequences in the graph represent conditions that are ordered by some form
of causality.

§ Conjunctions represent conditions that lack any relationship of casual form,
but jointly cause some other condition to be a concern.

d. Repeat steps a, b, and c for all of the nodes in the VCG until no more additions to the
VCG can be found.

4. Optimise the VCG: When the VCG is complete, it is optimised for reuse and clarity.
Optimisation consists of applying graph transformations. For example:

IDA/ADIT MODEL: SECURITY MODELING 5

a. The order of every sequence in the graph is verified to ensure that it is a natural order
(e.g. cause-effect or temporal order). Sequences that lack natural order are
considered for conversion to conjunction nodes.

b. If part of the condition represented by one node is the same as part of the condition
represented by another node, this indicates that it should be converted to conjunctions
and combine identical nodes.

5. Validate the VCG: The VCG is validated by a second analyst or team of analysts.

6. Enter the VCG into SVRS and associate it with the vulnerability.

7. Model compound nodes: Perform steps 2 and 6 for all compound nodes that have been
introduced to the VCG.

