
Vulnerability View
It would be convenient if security problems in software fell neatly into categories that we could dissect and
reason about. Unfortunately, almost any reliability bug can also be a security bug — if the circumstances
are right. Capturing the core of a risk sometimes requires understanding a broad architectural issue, and
sometimes it requires understanding a highly specific detail of coding.

In the CLASP Vulnerability Lexicon, we have attempted to catalog any themes that lead to security prob-
lems and to do this at all appropriate levels. As a result, there are a lot of things in the Lexicon that are
not often security concerns, or more precisely are only security concerns when some — potentially rare
— condition is met.

Version Date: 31 March 2006 2

CLASP Vulnerability View — Overview of CLASP Taxonomy

Overview of CLASP Taxonomy
The CLASP taxonomy is a high-level classification of the CLASP process, divided into the following
classes for better evaluation and resolution of security vulnerabilities in source code:

• Problem types (i.e., basic causes) underlying security-related vulnerabilities.

• Categories into which the problem types are divided for diagnostic and resolution purposes.

• Exposure periods (i.e., SDLC phases) in which vulnerabilities can be inadvertently introduced into
application source code.

• Consequences of exploited vulnerabilities for basic security services.

• Platforms which may be affected by a vulnerability.

• Resources required for attack against vulnerabilities.

• Risk assessment of exploitable/exploited vulnerabilities.

• Avoidance and mitigation periods (i.e., SDLC phases) in which preventative measures and coun-
termeasures can be applied.

Version Date: 31 March 2006 3

CLASP Vulnerability View — Diagram of Taxonomy

Diagram of Taxonomy
The following figure shows the interaction of the evaluation and resolution classes within the CLASP
taxonomy:

Version Date: 31 March 2006 4

CLASP Vulnerability View — Classes in CLASP Taxonomy

Classes in CLASP Taxonomy
The CLASP taxonomy is a high-level classification of the CLASP process, divided into classes. These
classes enable the software development team to better evaluate and resolve security-related problems.
The CLASP classes are:

• CLASP Problem Types

• Categories of Problem Types

• Exposure Periods

• Consequences of Vulnerabilities

• Platforms

• Resources for Attack

• Risk Assessment

• Avoidance and Mitigation Periods

• Other Recorded Information

CLASP Problem Types
We find that individual types of security flaws can — at the highest levels — be introduced for many rea-
sons, including: poor or misunderstood requirements; improper specification; sloppy implementation;
flawed components; malicious introduction, etc. Such a breakout — although it is not conducive to
organizing software-security problems in an easily understandable way — accurately reflects how, where,
and why flaws occur.

Since this taxonomy does not classify individual instances of problems, it really is, to some degree, a
catalogue of potential basic causes (or contributing causes).

CLASP identifies 104 underlying problem types — i.e., basic causes — that form the basis of security vul-
nerabilities in application source code. An individual problem type in itself is often not a security
vulnerability; frequently it is a combination of problems that create a security condition leading to a
vulnerability in the source code.

Our notion of problem type matches to the notion of “basic cause” — except that we note that individual
vulnerabilities are often composed of multiple problems that combine to create a security condition. The
individual problems are often not security flaws in and of themselves.

Categories of Problem Types
The problem types in CLASP are individually documented within a very broad set of “categories” but inter-
relate in a way that is mostly hierarchical. The breakout categories was chosen to be as natural as
possible to practitioners in the space, making it somewhat ad hoc. In particular, there are many implicit
categories. For example, we define top-level categories, most of which could be considered
subcategories of “generic logical flaws,” yet this category does little to advance understanding about
actual security issues.

CLASP divides the 104 problem types — i.e., basic causes of vulnerabilities — into five high-level catego-
ries. Each problem type may have more than one parent category. These categories are:

Version Date: 31 March 2006 5

CLASP Vulnerability View — Classes in CLASP Taxonomy

• Range and Type Errors

• Environmental Problems

• Synchronization & Timing Errors

• Protocol Errors

• General Logic Errors

These top-level categories each have their own entries. Subcategories (i.e., problem types) are largely
hierarchical (i.e., one problem type relates to one “parent” category), although there are some cases
where a specific problem type has multiple parents.

Exposure Periods
Another means for evaluating problems is the “exposure period.” In CLASP, exposure period refers to the
times in the software development lifecycle when the bug can be introduced into a system. This will
generally be one or more of the following: requirements specification; architecture and design;
implementation; and deployment.

Failures introduced late in the lifecycle can often be avoided by making different decisions earlier in the
lifecycle. For example, deployment problems are generally misconfigurations — and as such can often be
explicitly avoided with different up-front decisions.

Consequences of Vulnerabilities
Another class for evaluating problems is the consequence of the flaw. A vulnerability in the source code
can lead to a failure of a security service. This is a high-level view of the security services that can fail due
to vulnerabilities in source code:

• Authorization (resource access control)

• Confidentiality (of data or other resources)

• Authentication (identity establishment and integrity)

• Availability (denial of service)

• Accountability

• Non-repudiation

This is a more structured way of thinking about security issues than typically used. For example, buffer
overflow conditions are usually availability problems because they tend to cause crashes, but often an
attacker can escalate privileges or otherwise perform operations under a given privilege that were
implicitly not allowed (e.g., overwriting sensitive data), which is ultimately a failure in authorization. In
many circumstances, the failure in authorization may be used to thwart other security services, but that is
not the direct consequence.

Whether a problem is considered “real” or exploitable is dependent on a security policy that is often
implicit. For example, users might consider a system that leaks their personal data to be broken (a lack of
privacy, a confidentiality failure). Yet the system designer may not consider this an issue. When
evaluating a system, the evaluator should consider the specified requirements and also consider likely
implicit requirements of the system users.

Version Date: 31 March 2006 6

CLASP Vulnerability View — Classes in CLASP Taxonomy

Similarly, an important aspect to evaluate about the consequence is “severity.” While we give some
indication of Severity ranges, the ultimate determination can only be made on the basis of a set of
requirements — and different participants may have different requirements.

Platform
An indication of what platforms may be affected. Here, we use the term in a broad sense. It may mean
programming language (e.g., some vulnerabilities common in C and C++ are not possible in other
languages), or it may mean operating system, etc.

Resources for Attack
Which resources must the attacker have to exploit an issue? For example, does the attack require local
access to the machine running the application? This information can be used to determine whether a par-
ticular risk may apply to a given system.

Risk Assessment
There are two categories under Risk Assessment:

• Severity — A relative indication of how critical the problem tends to be in a system, when
exploitable.

• Likelihood of exploit — If a particular problem exists in code, what is the likelihood that it will result
in an exploitable security condition, given common system requirements?

Avoidance and Mitigation Periods
We provide a high-level overview of some of the more important techniques — and the SDLC periods
where they can occur — for avoiding or mitigating a problem, broken down by where in the development
lifecycle the technique is generally applied.

Further Recorded Information
CLASP currently records the following additional information about vulnerability classes:

• Overview — A brief summary of the problem.

• Discussion — A discussion of key points that can help understand the issue.

• Examples — For many problems, we give simple examples to better illustrate the problem. We also
try to note real-world instances of the vulnerability (i.e., real software that has fallen victim to the
problem).

Version Date: 31 March 2006 7

CLASP Vulnerability View — Classes in CLASP Taxonomy

• Related problems — Beyond the obvious, sometimes multiple entries refer to the same basic kind
of problem but are specific instances. For example, “buffer overflow” gets its own entry, but we also
have entries for many specific kinds of buffer overflow that are subject to different exploitation tech-
niques (e.g., heap overflow and stack overflow), and we have entries for many reliability problems
that can cause a logic error resulting in a buffer overflow.

Version Date: 31 March 2006 8

CLASP Vulnerability View — Category 1: Range & Type Errors

Category 1: Range & Type Errors
This section introduces the vulnerability Problem Types organized under the problem type “range and
type errors.“

Buffer overflow

Overview
A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold or
when a program attempts to put data in a memory area past a buffer. In this case, a buffer is a sequential
section of memory allocated to contain anything from a character string to an array of integers.

Consequences
• Availability: Buffer overflows generally lead to crashes. Other attacks leading to lack of availability

are possible, including putting the program into an infinite loop.

• Access control (instruction processing): Buffer overflows often can be used to execute arbitrary
code, which is usually outside the scope of a program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can often be used to subvert any
other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Mitigating technologies such as safe-string libraries and container abstractions could be
introduced.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed, depending on
environment.

Required resources
Any

Severity
Very High

Likelihood of exploit
High to Very High

Version Date: 31 March 2006 9

CLASP Vulnerability View — Category 1: Range & Type Errors

Avoidance and mitigation

• Pre-design: Use a language or compiler that performs automatic bounds checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete solution.

• Pre-design through Build: Compiler-based canary mechanisms such as StackGuard, ProPolice and
the Microsoft Visual Studio / GS flag. Unless this provides automatic bounds checking, it is not a
complete solution.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
Buffer overflows are one of the best known types of security problem. The best solution is enforced run-
time bounds checking of array access, but many C/C++ programmers assume this is too costly or do not
have the technology available to them. Even this problem only addresses failures in access control — as
an out-of-bounds access is still an exception condition and can lead to an availability problem if not
addressed.

Some platforms are introducing mitigating technologies at the compiler or OS level. All such technologies
to date address only a subset of buffer overflow problems and rarely provide complete protection against
even that subset. It is more common to make the workload of an attacker much higher — for example, by
leaving the attacker to guess an unknown value that changes every program execution.

Examples
There are many real-world examples of buffer overflows, including many popular “industrial” applications,
such as e-mail servers (Sendmail) and web servers (Microsoft IIS Server).

In code, here is a simple, if contrived example:

void example(char *s) {
 char buf[1024];
 strcpy(buf, s);
}
int main(int argc, char **argv) {
 example(argv[1]);
}

Since argv[1] can be of any length, more than 1024 characters can be copied into the variable buf.

Related problems
• Stack overflow

• Heap overflow

• Integer overflow

Version Date: 31 March 2006 10

CLASP Vulnerability View — Category 1: Range & Type Errors

“Write-what-where” condition

Overview
Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location, often as
the result of a buffer overflow.

Consequences
• Access control (memory and instruction processing): Clearly, write-what-where conditions can be

used to write data to areas of memory outside the scope of a policy. Also, they almost invariably can
be used to execute arbitrary code, which is usually outside the scope of a program’s implicit security
policy.

• Availability: Many memory accesses can lead to program termination, such as when writing to
addresses that are invalid for the current process.

• Other: When the consequence is arbitrary code execution, this can often be used to subvert any
other security service.

Exposure period
• Requirements: At this stage, one could specify an environment that abstracts memory access,

instead of providing a single, flat address space.

• Design: Many write-what-where problems are buffer overflows, and mitigating technologies for this
subset of problems can be chosen at this time.

• Implementation: Any number of simple implementation flaws may result in a write-what-where
condition.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed depending on
environment.

Required resources
Any

Severity
Very High

Likelihood of exploit
High

Avoidance and mitigation
• Pre-design: Use a language that provides appropriate memory abstractions.

• Design: Integrate technologies that try to prevent the consequences of this problems.

Version Date: 31 March 2006 11

CLASP Vulnerability View — Category 1: Range & Type Errors

• Implementation: Take note of mitigations provided for other flaws in this taxonomy that lead to write-
what-where conditions.

• Operational: Use OS-level preventative functionality integrated after the fact. Not a complete solu-
tion.

Discussion
When the attacker has the ability to write arbitrary data to an arbitrary location in memory, the conse-
quences are often arbitrary code execution. If the attacker can overwrite a pointer’s worth of memory
(usually 32 or 64 bits), he can redirect a function pointer to his own malicious code.

Even when the attacker can only modify a single byte using a write-what-where problem, arbitrary code
execution can be possible. Sometimes this is because the same problem can be exploited repeatedly to
the same effect. Other times it is because the attacker can overwrite security-critical application-specific
data — such as a flag indicating whether the user is an administrator.

Examples
The classic example of a write-what-where condition occurs when the accounting information for memory
allocations is overwritten in a particular fashion.

Here is an example of potentially vulnerable code:

#define BUFSIZE 256

int main(int argc, char **argv) {
 char *buf1 = (char *) malloc(BUFSIZE);
 char *buf2 = (char *) malloc(BUFSIZE);

 strcpy(buf1, argv[1]);
 free(buf2);
}

Vulnerability in this case is dependent on memory layout. The call to strcpy() can be used to write past
the end of buf1, and, with a typical layout, can overwrite the accounting information that the system keeps
for buf2 when it is allocated. This information is usually kept before the allocated memory. Note that — if
the allocation header for buf2 can be overwritten — buf2 itself can be overwritten as well.

The allocation header will generally keep a linked list of memory “chunks”. Particularly, there may be a
“previous” chunk and a “next” chunk. Here, the previous chunk for buf2 will probably be buf1, and the next
chunk may be null. When the free() occurs, most memory allocators will rewrite the linked list using data
from buf2. Particularly, the “next” chunk for buf1 will be updated and the “previous” chunk for any subse-
quent chunk will be updated. The attacker can insert a memory address for the “next” chunk and a value
to write into that memory address for the “previous” chunk.

This could be used to overwrite a function pointer that gets dereferenced later, replacing it with a memory
address that the attacker has legitimate access to, where he has placed malicious code, resulting in arbi-
trary code execution.

There are some significant restrictions that will generally apply to avoid causing a crash in updating head-
ers, but this kind of condition generally results in an exploit.

Related problems
• Buffer overflow

• Format string vulnerabilities

Version Date: 31 March 2006 12

CLASP Vulnerability View — Category 1: Range & Type Errors

Stack overflow

Overview
A stack overflow condition is a buffer overflow condition, where the buffer being overwritten is allocated
on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Consequences
• Availability: Buffer overflows generally lead to crashes. Other attacks leading to lack of availability

are possible, including putting the program into an infinite loop.

• Access control (memory and instruction processing): Buffer overflows often can be used to execute
arbitrary code, which is usually outside the scope of a program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can often be used to subvert any
other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Mitigating technologies such as safe string libraries and container abstractions could be
introduced.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed depending on
environment.

Required resources
Any

Severity
Very high

Likelihood of exploit
Very high

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete solution.

• Pre-design through Build: Compiler-based canary mechanisms such as StackGuard, ProPolice and
the Microsoft Visual Studio / GS flag. Unless this provides automatic bounds checking, it is not a
complete solution.

Version Date: 31 March 2006 13

CLASP Vulnerability View — Category 1: Range & Type Errors

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
There are generally several security-critical data on an execution stack that can lead to arbitrary code
execution. The most prominent is the stored return address, the memory address at which execution
should continue once the current function is finished executing. The attacker can overwrite this value with
some memory address to which the attacker also has write access, into which he places arbitrary code to
be run with the full privileges of the vulnerable program.

Alternately, the attacker can supply the address of an important call, for instance the POSIX system() call,
leaving arguments to the call on the stack. This is often called a return into libc exploit, since the attacker
generally forces the program to jump at return time into an interesting routine in the C standard library
(libc).

Other important data commonly on the stack include the stack pointer and frame pointer, two values that
indicate offsets for computing memory addresses. Modifying those values can often be leveraged into a
“write-what-where” condition.

Examples
While the buffer overflow example above counts as a stack overflow, it is possible to have even simpler,
yet still exploitable, stack based buffer overflows:

#define BUFSIZE 256

int main(int argc, char **argv) {
 char buf[BUFSIZE];

 strcpy(buf, argv[1]);
}

Related problems
• Parent categories: Buffer overflow

• Subcategories: return address overwrite, stack pointer overwrite, frame pointer overwrite.

• Can be: Function pointer overwrite, array indexer overwrite, write-what-where condition, etc.

Version Date: 31 March 2006 14

CLASP Vulnerability View — Category 1: Range & Type Errors

Heap overflow

Overview
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the
heap portion of memory, generally meaning that the buffer was allocated using a routine such as the
POSIX malloc() call.

Consequences
• Availability: Buffer overflows generally lead to crashes. Other attacks leading to lack of availability

are possible, including putting the program into an infinite loop.

• Access control (memory and instruction processing): Buffer overflows often can be used to execute
arbitrary code, which is usually outside the scope of a program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can often be used to subvert any
other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Mitigating technologies such as safe string libraries and container abstractions could be
introduced.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed depending on
environment.

Required resources
Any

Severity
Very High

Likelihood of exploit
• Availability: Very High

• Access control (instruction processing): High

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete solution.

Version Date: 31 March 2006 15

CLASP Vulnerability View — Category 1: Range & Type Errors

• Pre-design through Build: Canary style bounds checking, library changes which ensure the validity
of chunk data, and other such fixes are possible, but should not be relied upon.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
Heap overflows are usually just as dangerous as stack overflows. Besides important user data, heap
overflows can be used to overwrite function pointers that may be living in memory, pointing it to the
attacker’s code.

Even in applications that do not explicitly use function pointers, the run-time will usually leave many in
memory. For example, object methods in C++ are generally implemented using function pointers. Even in
C programs, there is often a global offset table used by the underlying runtime.

Examples
While the buffer overflow example above counts as a stack overflow, it is possible to have even simpler,
yet still exploitable, stack-based buffer overflows:

#define BUFSIZE 256

int main(int argc, char **argv) {
 char *buf;

 buf = (char *)malloc(BUFSIZE);
 strcpy(buf, argv[1]);
}

Related problems
• Write-what-where

Version Date: 31 March 2006 16

CLASP Vulnerability View — Category 1: Range & Type Errors

Buffer underwrite

Overview
A buffer underwrite condition occurs when a buffer is indexed with a negative number, or pointer
arithmetic with a negative value results in a position before the beginning of the valid memory location.

Consequences
• Availability: Buffer underwrites will very likely result in the corruption of relevant memory, and per-

haps instructions, leading to a crash.

• Access Control (memory and instruction processing): If the memory corrupted memory can be
effectively controlled, it may be possible to execute arbitrary code. If the memory corrupted is data
rather than instructions, the system will continue to function with improper changes, ones made in
violation of a policy, whether explicit or implicit.

• Other: When the consequence is arbitrary code execution, this can often be used to subvert any
other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Assembly

• Operating Platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Sanity checks should be performed on all calculated values used as index or for
pointer arithmetic.

Version Date: 31 March 2006 17

CLASP Vulnerability View — Category 1: Range & Type Errors

Examples
The following is an example of code that may result in a buffer underwrite, should find() returns a negative
value to indicate that ch is not found in srcBuf:

int main() {
 ...
 strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
 ...
}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.

Related problems
• Buffer Overflow (and related issues)

• Integer Overflow

• Signed-to-unsigned Conversion Error

• Unchecked Array Indexing

Version Date: 31 March 2006 18

CLASP Vulnerability View — Category 1: Range & Type Errors

Wrap-around error

Overview
Wrap around errors occur whenever a value is incriminated past the maximum value for its type and
therefore “wraps around” to a very small, negative, or undefined value.

Consequences
• Availability: Wrap-around errors generally lead to undefined behavior, infinite loops, and therefore

crashes.

• Integrity: If the value in question is important to data (as opposed to flow), simple data corruption
has occurred. Also, if the wrap around results in other conditions such as buffer overflows, further
memory corruption may occur.

• Access control (instruction processing): A wrap around can sometimes trigger buffer overflows
which can be used to execute arbitrary code. This is usually outside the scope of a program’s
implicit security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: If the flow of the system, or the protocols used, are not well defined, it may make the possi-
bility of wrap-around errors more likely.

• Implementation: Many logic errors can lead to this condition.

Platform
• Language: C, C++, Fortran, Assembly

• Operating System: Any

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Provide clear upper and lower bounds on the scale of any protocols designed.

• Implementation: Place sanity checks on all incremented variables to ensure that they remain within
reasonable bounds.

Version Date: 31 March 2006 19

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
Due to how addition is performed by computers, if a primitive is incremented past the maximum value
possible for its storage space, the system will fail to recognize this, and therefore increment each bit as if
it still had extra space.

Because of how negative numbers are represented in binary, primitives interpreted as signed may “wrap”
to very large negative values.

Examples
See the Examples section of the problem type Integer overflow for an example of wrap-around errors.

Related problems
• Integer overflow

• Unchecked array indexing

Version Date: 31 March 2006 20

CLASP Vulnerability View — Category 1: Range & Type Errors

Integer overflow

Overview
An integer overflow condition exists when an integer, which has not been properly sanity checked is used
in the determination of an offset or size for memory allocation, copying, concatenation, or similarly. If the
integer in question is incremented past the maximum possible value, it may wrap to become a very small,
or negative number, therefore providing a very incorrect value.

Consequences
• Availability: Integer overflows generally lead to undefined behavior and therefore crashes. In the

case of overflows involving loop index variables, the likelihood of infinite loops is also high.

• Integrity: If the value in question is important to data (as opposed to flow), simple data corruption
has occurred. Also, if the integer overflow has resulted in a buffer overflow condition, data
corruption will most likely take place.

• Access control (instruction processing): Integer overflows can sometimes trigger buffer overflows
which can be used to execute arbitrary code. This is usually outside the scope of a program’s
implicit security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Mitigating technologies such as safe string libraries and container abstractions could be
introduced. (This will only prevent the transition from integer overflow to buffer overflow, and only in
some cases.)

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds checking.

Version Date: 31 March 2006 21

CLASP Vulnerability View — Category 1: Range & Type Errors

• Design: Use of sanity checks and assertions at the object level. Ensure that all protocols are strictly
defined, such that all out of bounds behavior can be identified simply.

• Pre-design through Build: Canary style bounds checking, library changes which ensure the validity
of chunk data, and other such fixes are possible but should not be relied upon.

Discussion
Integer overflows are for the most part only problematic in that they lead to issues of availability. Common
instances of this can be found when primitives subject to overflow are used as a loop index variable.

In some situations, however, it is possible that an integer overflow may lead to an exploitable buffer over-
flow condition. In these circumstances, it may be possible for the attacker to control the size of the buffer
as well as the execution of the program.

Recently, a number of integer overflow-based, buffer-overflow conditions have surfaced in prominent soft-
ware packages. Due to this fact, the relatively difficult to exploit condition is now more well known and
therefore more likely to be attacked. The best strategy for mitigation includes: a multi-level strategy includ-
ing the strict definition of proper behavior (to restrict scale, and therefore prevent integer overflows long
before they occur); frequent sanity checks; preferably at the object level; and standard buffer overflow
mitigation techniques.

Examples
Integer overflows can be complicated and difficult to detect. The following example is an attempt to show
how an integer overflow may lead to undefined looping behavior:

short int bytesRec = 0;
char buf[SOMEBIGNUM];

while(bytesRec < MAXGET) {
 bytesRec += getFromInput(buf+bytesRec);
}

In the above case, it is entirely possible that bytesRec may overflow, continuously creating a lower
number than MAXGET and also overwriting the first MAXGET-1 bytes of buf.

Related problems
• Buffer overflow (and related vulnerabilities): Integer overflows are often exploited only by creating

buffer overflow conditions to take advantage of.

Version Date: 31 March 2006 22

CLASP Vulnerability View — Category 1: Range & Type Errors

Integer coercion error

Overview
Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of primitive
data types.

Consequences
• Availability: Integer coercion often leads to undefined states of execution resulting in infinite loops or

crashes.

• Access Control: In some cases, integer coercion errors can lead to exploitable buffer overflow
conditions, resulting in the execution of arbitrary code.

• Integrity: Integer coercion errors result in an incorrect value being stored for the variable in question.

Exposure period
• Requirements specification: A language which throws exceptions on ambiguous data casts might be

chosen.

• Design: Unnecessary casts are brought about through poor design of function interaction

• Implementation: Lack of knowledge on the effects of data casts is the primary cause of this flaw

Platform
• Language: C, C++, Assembly

• Platform: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: A language which throws exceptions on ambiguous data casts might be

chosen.

• Design: Design objects and program flow such that multiple or complex casts are unnecessary

• Implementation: Ensure that any data type casting that you must used is entirely understood in
order to reduce the plausibility of error in use.

Version Date: 31 March 2006 23

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
Several flaws fall under the category of integer coercion errors. For the most part, these errors in and of
themselves result only in availability and data integrity issues. However, in some circumstances, they may
result in other, more complicated security related flaws, such as buffer overflow conditions.

Examples
See the Examples section of the problem type Unsigned to signed conversion error for an example of
integer coercion errors.

Related problems
• Signed to unsigned conversion error

• Unsigned to signed conversion error

• Truncation error

• Sign-extension error

Version Date: 31 March 2006 24

CLASP Vulnerability View — Category 1: Range & Type Errors

Truncation error

Overview
Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the con-
version.

Consequences
• Integrity: The true value of the data is lost and corrupted data is used.

Exposure period
• Implementation: Truncation errors almost exclusively occur at implementation time.

Platform
• Languages: C, C++, Assembly

• Operating platforms: All

Required resources
Any

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Implementation: Ensure that no casts, implicit or explicit, take place that move from a larger size

primitive or a smaller size primitive.

Discussion
When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in the conver-
sion, resulting in a non-sense value with no relation to the original value. This value may be required as
an index into a buffer, a loop iterator, or simply necessary state data. In any case, the value cannot be
trusted and the system will be in an undefined state.

While this method may be employed viably to isolate the low bits of a value, this usage is rare, and
truncation usually implies that an implementation error has occurred.

Examples
This example, while not exploitable, shows the possible mangling of values associated with truncation
errors:

#include <stdio.h>

int main() {
 int intPrimitive;

Version Date: 31 March 2006 25

CLASP Vulnerability View — Category 1: Range & Type Errors

 short shortPrimitive;

 intPrimitive = (int)(~((int)0) ^ (1 << (sizeof(int)*8-1)));
 shortPrimitive = intPrimitive;

 printf("Int MAXINT: %d\nShort MAXINT: %d\n",
 intPrimitive, shortPrimitive);
 return (0);
}

The above code, when compiled and run, returns the following output:

Int MAXINT: 2147483647
Short MAXINT: -1

A frequent paradigm for such a problem being exploitable is when the truncated value is used as an array
index, which can happen implicitly when 64-bit values are used as indexes, as they are truncated to 32
bits.

Related problems
• Signed to unsigned conversion error

• Unsigned to signed conversion error

• Integer coercion error

• Sign extension error

Version Date: 31 March 2006 26

CLASP Vulnerability View — Category 1: Range & Type Errors

Sign extension error

Overview
If one extends a signed number incorrectly, if negative numbers are used, an incorrect extension may
result.

Consequences
• Integrity: If one attempts to sign extend a negative variable with an unsigned extension algorithm, it

will produce an incorrect result.

• Authorization: Sign extension errors — if they are used to collect information from smaller signed
sources — can often create buffer overflows and other memory based problems.

Exposure period
• Requirements section: The choice to use a language which provides a framework to deal with this

could be used.

• Implementation: A logical flaw of this kind might lead to any number of other flaws.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Use a sign extension library or standard function to extend signed numbers.

• Implementation: When extending signed numbers fill in the new bits with 0 if the sign bit is 0 or fill
the new bits with 1 if the sign bit is 1.

Discussion
Sign extension errors — if they are used to collect information from smaller signed sources — can often
create buffer overflows and other memory based problems.

Examples
In C:

struct fakeint {

Version Date: 31 March 2006 27

CLASP Vulnerability View — Category 1: Range & Type Errors

 short f0;
 short zeros;
};
struct fakeint strange;
struct fakeint strange2;

strange.f0=-240;
strange2.f0=240;

strange2.zeros=0;
strange.zeros=0;

printf("%d %d\n",strange.f0,strange);
printf("%d %d\n",strange2.f0,strange2);

Related problems
Not available.

Version Date: 31 March 2006 28

CLASP Vulnerability View — Category 1: Range & Type Errors

Signed to unsigned conversion error

Overview
A signed-to-unsigned conversion error takes place when a signed primitive is used as an unsigned value,
usually as a size variable.

Consequences
• Availability: Incorrect sign conversions generally lead to undefined behavior, and therefore crashes.

• Integrity: If a poor cast lead to a buffer overflow or similar condition, data integrity may be affected.

• Access control (instruction processing): Improper signed-to-unsigned conversions without proper
checking can sometimes trigger buffer overflows which can be used to execute arbitrary code. This
is usually outside the scope of a program’s implicit security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Accessor functions may be designed to mitigate some of these logical issues.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack, or mis-
use, of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: Choose a language which is not subject to these casting flaws.

• Design: Design object accessor functions to implicitly check values for valid sizes. Ensure that all
functions which will be used as a size are checked previous to use as a size. If the language
permits, throw exceptions rather than using in-band errors.

• Implementation: Error check the return values of all functions. Be aware of implicit casts made, and
use unsigned variables for sizes if at all possible.

Version Date: 31 March 2006 29

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
Often, functions will return negative values to indicate a failure state. In the case of functions which return
values which are meant to be used as sizes, negative return values can have unexpected results. If these
values are passed to the standard memory copy or allocation functions, they will implicitly cast the
negative error-indicating value to a large unsigned value.

In the case of allocation, this may not be an issue; however, in the case of memory and string copy func-
tions, this can lead to a buffer overflow condition which may be exploitable.

Also, if the variables in question are used as indexes into a buffer, it may result in a buffer underflow
condition.

Examples
In the following example, it is possible to request that memcpy move a much larger segment of memory
than assumed:

int returnChunkSize(void *) {
 /* if chunk info is valid, return the size of usable memory,
 * else, return -1 to indicate an error
 */

}

int main() {
 ...
 memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
 ...
}

If returnChunkSize() happens to encounter an error, and returns -1, memcpy will assume that the value is
unsigned and therefore interpret it as MAXINT-1, therefore copying far more memory than is likely avail-
able in the destination buffer.

Related problems
• Buffer overflow (and related conditions)

• Buffer underwrite

Version Date: 31 March 2006 30

CLASP Vulnerability View — Category 1: Range & Type Errors

Unsigned to signed conversion error

Overview
An unsigned-to-signed conversion error takes place when a large unsigned primitive is used as an signed
value — usually as a size variable.

Consequences
• Availability: Incorrect sign conversions generally lead to undefined behavior, and therefore crashes.

• Integrity: If a poor cast lead to a buffer underwrite, data integrity may be affected.

• Access control (instruction processing): Improper unsigned-to-signed conversions, often create
buffer underwrite conditions which can be used to execute arbitrary code. This is usually outside the
scope of a program’s implicit security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Accessor functions may be designed to mitigate some of these logical issues.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Low to Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Ensure that interacting functions retain the same types and that only safe type casts must
occur. If possible, use intelligent marshalling routines to translate between objects.

• Implementation: Use out-of-data band channels for transmitting error messages if unsigned size val-
ues must be transmitted. Check all errors.

• Build: Pay attention to compiler warnings which may alert you to improper type casting.

Version Date: 31 March 2006 31

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
Although less frequent an issue than signed-to-unsigned casting, unsigned-to-signed casting can be the
perfect precursor to dangerous buffer underwrite conditions that allow attackers to move down the stack
where they otherwise might not have access in a normal buffer overflow condition.

Buffer underwrites occur frequently when large unsigned values are cast to signed values, and then used
as indexes into a buffer or for pointer arithmetic.

Examples
While not exploitable, the following program is an excellent example of how implicit casts, while not
changing the value stored, significantly changes its use:

#include <stdio.h>

int main() {
 int value;
 value = (int)(~((int)0) ^ (1 << (sizeof(int)*8)));

 printf("Max unsigned int: %u %1$x\nNow signed: %1$d %1$x\n",
 value);
 return (0);
}
The above code produces the following output:
Max unsigned int: 4294967295 ffffffff
Now signed: -1 ffffffff

Note how the hex value remains unchanged.

Related problems
• Buffer underwrite

Version Date: 31 March 2006 32

CLASP Vulnerability View — Category 1: Range & Type Errors

Unchecked array indexing

Overview
Unchecked array indexing occurs when an unchecked value is used as an index into a buffer.

Consequences
• Availability: Unchecked array indexing will very likely result in the corruption of relevant memory and

perhaps instructions, leading to a crash, if the values are outside of the valid memory area

• Integrity: If the memory corrupted is data, rather than instructions, the system will continue to
function with improper values.

• Access Control: If the memory corrupted memory can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Assembly

• Operating Platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Include sanity checks to ensure the validity of any values used as index variables.
In loops, use greater-than-or-equal-to, or less-than-or-equal-to, as opposed to simply greater-than,
or less-than compare statements.

Discussion
Unchecked array indexing, depending on its instantiation, can be responsible for any number of related
issues. Most prominent of these possible flaws is the buffer overflow condition. Due to this fact, conse-
quences range from denial of service, and data corruption, to full blown arbitrary code execution

Version Date: 31 March 2006 33

CLASP Vulnerability View — Category 1: Range & Type Errors

The most common condition situation leading to unchecked array indexing is the use of loop index vari-
ables as buffer indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink
unbounded, therefore causing a buffer overflow or underflow. Another common situation leading to this
condition is the use of a function’s return value, or the resulting value of a calculation directly as an index
in to a buffer.

Examples
Not available.

Related problems
• Buffer Overflow (and related issues)

• Buffer Underwrite

• Signed-to-Unsigned Conversion Error

• Write-What-Where

Version Date: 31 March 2006 34

CLASP Vulnerability View — Category 1: Range & Type Errors

Miscalculated null termination

Overview
Miscalculated null termination occurs when the placement of a null character at the end of a buffer of
characters (or string) is misplaced or omitted.

Consequences
• Confidentiality: Information disclosure may occur if strings with misplaced or omitted null characters

are printed.

• Availability: A randomly placed null character may put the system into an undefined state, and
therefore make it prone to crashing.

• Integrity: A misplaced null character may corrupt other data in memory

• Access Control: Should the null character corrupt the process flow, or effect a flag controlling
access, it may lead to logical errors which allow for the execution of arbitrary code.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Precise knowledge of string manipulation functions may prevent this issue

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Ensure that all string functions used are understood fully as to how they append
null characters. Also, be wary of off-by-one errors when appending nulls to the end of strings.

Discussion
Miscalculated null termination is a common issue, and often difficult to detect. The most common symp-
toms occur infrequently (in the case of problems resulting from “safe” string functions), or in odd ways
characterized by data corruption (when caused by off-by-one errors).

The case of an omitted null character is the most dangerous of the possible issues. This will almost cer-
tainly result in information disclosure, and possibly a buffer overflow condition, which may be exploited to
execute arbitrary code.

Version Date: 31 March 2006 35

CLASP Vulnerability View — Category 1: Range & Type Errors

As for misplaced null characters, the biggest issue is a subset of buffer overflow, and write-what-where
conditions, where data corruption occurs from the writing of a null character over valid data, or even
instructions. These logic issues may result in any number of security flaws.

Examples
While the following example is not exploitable, it provides a good example of how nulls can be omitted or
misplaced, even when “safe” functions are used:

#include <stdio.h>
#include <string.h>

int main() {
 char longString[] = "Cellular bananular phone";
 char shortString[16];

 strncpy(shortString, longString, 16);
 printf("The last character in shortString is: %c %1$x\n",
 shortString[15]);
 return (0);
}

The above code gives the following output:

The last character in shortString is: l 6c

So, the shortString array does not end in a NULL character, even though the “safe” string function
strncpy() was used.

Related problems
• Buffer overflow (and related issues)

• Write-what-where: A subset of the problem in some cases, in which an attacker may write a null
character to a small range of possible addresses.

Version Date: 31 March 2006 36

CLASP Vulnerability View — Category 1: Range & Type Errors

Improper string length checking

Overview
Improper string length checking takes place when wide or multi-byte character strings are mistaken for
standard character strings.

Consequences
• Access control: This flaw is exploited most frequently when it results in a buffer overflow condition,

which leads to arbitrary code execution.

• Availability: Even if the flaw remains unexploded, the probability that the process will crash due to
the writing of data over arbitrary memory may result in a crash.

Exposure period
• Requirements specification: A language which is not subject to this flaw may be chosen.

• Implementation: Misuse of string functions at implementation time is the most common cause of this
problem.

• Build: Compile-time mitigation techniques may serve to complicate exploitation.

Platform
• Language: C, C++, Assembly

• Platform: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Requirements specification: A language which is not subject to this flaw may be chosen.

• Implementation: Ensure that if wide or multi-byte strings are in use that all functions which interact
with these strings are wide and multi-byte character compatible, and that the maximum character
size is taken into account when memory is allocated.

• Build: Use of canary-style overflow prevention techniques at compile time may serve to complicate
exploitation but cannot mitigate it fully; nor will this technique have any effect on process stability.
This is not a complete mitigation technique.

Version Date: 31 March 2006 37

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
There are several ways in which improper string length checking may result in an exploitable condition.
All of these however involve the introduction of buffer overflow conditions in order to reach an exploitable
state.

The first of these issues takes place when the output of a wide or multi-byte character string, string-length
function is used as a size for the allocation of memory. While this will result in an output of the number of
characters in the string, note that the characters are most likely not a single byte, as they are with
standard character strings. So, using the size returned as the size sent to new or malloc and copying the
string to this newly allocated memory will result in a buffer overflow.

Another common way these strings are misused involves the mixing of standard string and wide or multi-
byte string functions on a single string. Invariably, this mismatched information will result in the creation of
a possibly exploitable buffer overflow condition.

Again, if a language subject to these flaws must be used, the most effective mitigation technique is to pay
careful attention to the code at implementation time and ensure that these flaws do not occur.

Examples
The following example would be exploitable if any of the commented incorrect malloc calls were used.

#include <stdio.h>
#include <strings.h>
#include <wchar.h>

int main() {
 wchar_t wideString[] = L"The spazzy orange tiger jumped ” \
 “over the tawny jaguar.";
 wchar_t *newString;

 printf("Strlen() output: %d\nWcslen() output: %d\n",
 strlen(wideString), wcslen(wideString));

 /* Very wrong for obvious reasons //
 newString = (wchar_t *) malloc(strlen(wideString));
 */

 /* Wrong because wide characters aren't 1 byte long! //
 newString = (wchar_t *) malloc(wcslen(wideString));
 */

 /* correct! */
 newString = (wchar_t *) malloc(wcslen(wideString) *
 sizeof(wchar_t));

 /* ... */
}

The output from the printf() statement would be:

Strlen() output: 0
Wcslen() output: 53

Related problems
• Buffer overflow (and related issues)

Version Date: 31 March 2006 38

CLASP Vulnerability View — Category 1: Range & Type Errors

Covert storage channel

Overview
The existence of a covert storage channel in a communications channel may release information which
can be of significant use to attackers.

Consequences
• Confidentiality: Covert storage channels may provide attackers with important information about the

system in question.

Exposure period
• Implementation: The existence of data in a covert storage channel is largely a flaw caused by imple-

menters.

Platform
• Languages: All

• Operating platforms: All

Required resources
Network proximity: Some ability to sniff network traffic would be required to capitalize on this flaw.

Severity
Medium

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Ensure that all reserved fields are set to zero before messages are sent and that

no unnecessary information is included.

Discussion
Covert storage channels occur when out-of-band data is stored in messages for the purpose of memory
reuse. If these messages or packets are sent with the unnecessary data still contained within, it may tip
off malicious listeners as to the process that created the message.

With this information, attackers may learn any number of things, including the hardware platform,
operating system, or algorithms used by the sender. This information can be of significant value to the
user in launching further attacks.

Examples
An excellent example of covert storage channels in a well known application is the ICMP error message
echoing functionality. Due to ambiguities in the ICMP RFC, many IP implementations use the memory
within the packet for storage or calculation.

Version Date: 31 March 2006 39

CLASP Vulnerability View — Category 1: Range & Type Errors

For this reason, certain fields of certain packets — such as ICMP error packets which echo back parts of
received messages — may contain flaws or extra information which betrays information about the identity
of the target operating system.

This information is then used to build up evidence to decide the environment of the target. This is the first
crucial step in determining if a given system is vulnerable to a particular flaw and what changes must be
made to malicious code to mount a successful attack.

Related problems
Not available.

Version Date: 31 March 2006 40

CLASP Vulnerability View — Category 1: Range & Type Errors

Failure to account for default case in switch

Overview
The failure to account for the default case in switch statements may lead to complex logical errors and
may aid in other, unexpected security-related conditions.

Consequences
• Undefined: Depending on the logical circumstances involved, any consequences may result: e.g.,

issues of confidentiality, authentication, authorization, availability, integrity, accountability, or non-
repudiation.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
• Language: Any

• Platform: Any

Required resources
Any

Severity
Undefined.

Likelihood of exploit
Undefined.

Avoidance and mitigation
• Implementation: Ensure that there are no unaccounted for cases, when adjusting flow or values

based on the value of a given variable. In switch statements, this can be accomplished through the
use of the default label.

Discussion
This flaw represents a common problem in software development, in which not all possible values for a
variable are considered or handled by a given process. Because of this, further decisions are made
based on poor information, and cascading failure results.

This cascading failure may result in any number of security issues, and constitutes a significant failure in
the system. In the case of switch style statements, the very simple act of creating a default case can miti-
gate this situation, if done correctly.

Often however, the default cause is used simply to represent an assumed option, as opposed to working
as a sanity check. This is poor practice and in some cases is as bad as omitting a default case entirely.

Version Date: 31 March 2006 41

CLASP Vulnerability View — Category 1: Range & Type Errors

Examples
In general, a safe switch statement has this form:

switch (value) {
 case 'A':
 printf("A!\n");
 break;
 case 'B':
 printf("B!\n");
 break;
 default:
 printf("Neither A nor B\n");
}

This is because the assumption cannot be made that all possible cases are accounted for. A good
practice is to reserve the default case for error handling.

Related problems
• Undefined: A logical flaw of this kind might lead to any number of other flaws.

Version Date: 31 March 2006 42

CLASP Vulnerability View — Category 1: Range & Type Errors

Null-pointer dereference

Overview
A null-pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to
a valid memory area.

Consequences
• Availability: Null-pointer dereferences invariably result in the failure of the process.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Proper sanity checks at implementation time can serve to prevent null-pointer
dereferences

Platform
• Languages: C, C++, Assembly

• Platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: If all pointers that could have been modified are sanity-checked previous to use,
nearly all null-pointer dereferences can be prevented.

Discussion
Null-pointer dereferences, while common, can generally be found and corrected in a simply way. They will
always result in the crash of the process — unless exception handling (on some platforms) in invoked,
and even then, little can be done to salvage the process.

Examples
Null-pointer dereference issue can occur through a number of flaws, including race conditions, and simple
programming omissions. While there are no complete fixes aside from contentious programming, the fol-
lowing steps will go a long way to ensure that null-pointer dereferences do not occur.

Version Date: 31 March 2006 43

CLASP Vulnerability View — Category 1: Range & Type Errors

Before using a pointer, ensure that it is not equal to NULL:

if (pointer1 != NULL) {
 /* make use of pointer1 */
 /* ... */
}

When freeing pointers, ensure they are not set to NULL, and be sure to set them to NULL once they are
freed:

if (pointer1 != NULL) {
 free(pointer1);
 pointer1 = NULL;
}

If you are working with a multi-threaded or otherwise asynchronous environment, ensure that proper lock-
ing APIs are used to lock before the if statement; and unlock when it has finished.

Related problems
• Miscalculated null termination

• State synchronization error

Version Date: 31 March 2006 44

CLASP Vulnerability View — Category 1: Range & Type Errors

Using freed memory

Overview
The use of heap allocated memory after it has been freed or deleted leads to undefined system behavior
and, in many cases, to a write-what-where condition.

Consequences
• Integrity: The use of previously freed memory may corrupt valid data, if the memory area in question

has been allocated and used properly elsewhere.

• Availability: If chunk consolidation occur after the use of previously freed data, the process may
crash when invalid data is used as chunk information.

• Access Control (instruction processing): If malicious data is entered before chunk consolidation can
take place, it may be possible to take advantage of a write-what-where primitive to execute arbitrary
code.

Exposure period
• Implementation: Use of previously freed memory errors occur largely at implementation time.

Platform
• Languages: C, C++, Assembly

• Operating Platforms: All

Required resources
Any

Severity
Very High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Ensuring that all pointers are set to NULL, once the memory they point to has been

freed, can be effective strategy. The utilization of multiple or complex data structures may lower the
usefulness of this strategy.

Discussion
The use of previously freed memory can have any number of adverse consequences — ranging from the
corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the
flaw.

The simplest way data corruption may occur involves the system’s reuse of the freed memory. In this sce-
nario, the memory in question is allocated to another pointer validly at some point after it has been freed.
The original pointer to the freed memory is used again and points to somewhere within the new

Version Date: 31 March 2006 45

CLASP Vulnerability View — Category 1: Range & Type Errors

allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in
the process.

If the newly allocated data chances to hold a class, in C++ for example, various function pointers may be
scattered within the heap data. If one of these function pointers is overwritten with an address to valid
shellcode, execution of arbitrary code can be achieved.

Examples
The following example

#include <stdio.h>
#include <unistd.h>

#define BUFSIZER1 512
#define BUFSIZER2 ((BUFSIZER1/2) - 8)

int main(int argc, char **argv) {
 char *buf1R1;
 char *buf2R1;
 char *buf2R2;
 char *buf3R2;

 buf1R1 = (char *) malloc(BUFSIZER1);
 buf2R1 = (char *) malloc(BUFSIZER1);

 free(buf2R1);

 buf2R2 = (char *) malloc(BUFSIZER2);
 buf3R2 = (char *) malloc(BUFSIZER2);

 strncpy(buf2R1, argv[1], BUFSIZER1-1);
 free(buf1R1);
 free(buf2R2);
 free(buf3R2);
}

Related problems
• Buffer overflow (in particular, heap overflows): The method of exploitation is often the same, as both

constitute the unauthorized writing to heap memory.

• Write-what-where condition: The use of previously freed memory can result in a write-what-where in
several ways.

Version Date: 31 March 2006 46

CLASP Vulnerability View — Category 1: Range & Type Errors

Doubly freeing memory

Overview
Freeing or deleting the same memory chunk twice may — when combined with other flaws — result in a
write-what-where condition.

Consequences
• Access control: Doubly freeing memory may result in a write-what-where condition, allowing an

attacker to execute arbitrary code.

Exposure period
• Requirements specification: A language which handles memory allocation and garbage collection

automatically might be chosen.

• Implementation: Double frees are caused most often by lower-level logical errors.

Platform
• Language: C, C++, Assembly

• Operating system: All

Required resources
Any

Severity
High

Likelihood of exploit
Low to Medium

Avoidance and mitigation
• Implementation: Ensure that each allocation is freed only once. After freeing a chunk, set the pointer

to NULL to ensure the pointer cannot be freed again. In complicated error conditions, be sure that
clean-up routines respect the state of allocation properly. If the language is object oriented, ensure
that object destructors delete each chunk of memory only once.

Discussion
Doubly freeing memory can result in roughly the same write-what-where condition that the use of previ-
ously freed memory will.

Examples
While contrived, this code should be exploitable on Linux distributions which do not ship with heap-chunk
check summing turned on.

#include <stdio.h>
#include <unistd.h>

Version Date: 31 March 2006 47

CLASP Vulnerability View — Category 1: Range & Type Errors

#define BUFSIZE1 512
#define BUFSIZE2 ((BUFSIZE1/2) - 8)

int main(int argc, char **argv) {
 char *buf1R1;
 char *buf2R1;
 char *buf1R2;

 buf1R1 = (char *) malloc(BUFSIZE2);
 buf2R1 = (char *) malloc(BUFSIZE2);

 free(buf1R1);
 free(buf2R1);

 buf1R2 = (char *) malloc(BUFSIZE1);
 strncpy(buf1R2, argv[1], BUFSIZE1-1);

 free(buf2R1);
 free(buf1R2);
}

Related problems
• Using freed memory

• Write-what-where

Version Date: 31 March 2006 48

CLASP Vulnerability View — Category 1: Range & Type Errors

Invoking untrusted mobile code

Overview
This process will download external source or binaries and execute it.

Consequences
Unspecified.

Exposure period
Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
Languages: Java and C++

Operating platform: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Avoid doing this without proper cryptographic safeguards.

Discussion
This is an unsafe practice and should not be performed unless one can use some type of cryptographic
protection to assure that the mobile code has not been altered.

Examples
In Java:

URL[] classURLs= new URL[]{new URL(“file:subdir/”)};
URLClassLoader loader = nwe URLClassLoader(classURLs);
Class loadedClass = Class.forName(“loadMe”, true, loader);

Related problems
• Cross-site scripting

Version Date: 31 March 2006 49

CLASP Vulnerability View — Category 1: Range & Type Errors

Cross-site scripting

Overview
Cross-site scripting attacks are an instantiation of injection problems, in which malicious scripts are
injected into the otherwise benign and trusted web sites.

Consequences
• Confidentiality: The most common attack performed with cross-site scripting involves the disclosure

of information stored in user cookies.

• Access control: In some circumstances it may be possible to run arbitrary code on a victim’s com-
puter when cross-site scripting is combined with other flaws

Exposure period
• Implementation: If bulletin-board style functionality is present, cross-site scripting may only be

deterred at implementation time.

Platform
• Language: Any

• Platform: All (requires interaction with a web server supporting dynamic content)

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Use a white-list style parsing routine to ensure that no posted content contains

scripting tags.

Discussion
Cross-site scripting attacks can occur wherever an untrusted user has the ability to publish content to a
trusted web site. Typically, a malicious user will craft a client-side script, which — when parsed by a web
browser — performs some activity (such as sending all site cookies to a given E-mail address).

If the input is unchecked, this script will be loaded and run by each user visiting the web site. Since the
site requesting to run the script has access to the cookies in question, the malicious script does also.

There are several other possible attacks, such as running “Active X” controls (under Microsoft Internet
Explorer) from sites that a user perceives as trustworthy; cookie theft is however by far the most common.

All of these attacks are easily prevented by ensuring that no script tags — or for good measure, HTML
tags at all — are allowed in data to be posted publicly.

Version Date: 31 March 2006 50

CLASP Vulnerability View — Category 1: Range & Type Errors

Examples
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted web site for the consumption of other valid users.

The most common example can be found in bulletin-board web sites which provide web based mailing
list-style functionality.

Related problems
• Injection problems

• Invoking untrusted mobile code

Version Date: 31 March 2006 51

CLASP Vulnerability View — Category 1: Range & Type Errors

Format string problem

Overview
Format string problems occur when a user has the ability to control or write completely the format string
used to format data in the printf style family of C/C++ functions.

Consequences
• Confidentially: Format string problems allow for information disclosure which can severely simplify

exploitation of the program.

• Access Control: Format string problems can result in the execution of arbitrary code.

Exposure period
• Requirements specification: A language might be chosen that is not subject to this issue.

• Implementation: Format string problems are largely introduced at implementation time.

• Build: Several format string problems are discovered by compilers

Platform
• Language: C, C++, Assembly

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: Choose a language which is not subject to this flaw.

• Implementation: Ensure that all format string functions are passed a static string which cannot be
controlled by the user and that the proper number of arguments are always sent to that function as
well. If at all possible, do not use the %n operator in format strings.

• Build: Heed the warnings of compilers and linkers, since they may alert you to improper usage.

Discussion
Format string problems are a classic C/C++ issue that are now rare due to the ease of discovery. The
reason format string vulnerabilities can be exploited is due to the %n operator. The %n operator will write
the number of characters, which have been printed by the format string therefore far, to the memory
pointed to by its argument.

Version Date: 31 March 2006 52

CLASP Vulnerability View — Category 1: Range & Type Errors

Through skilled creation of a format string, a malicious user may use values on the stack to create a write-
what-where condition. Once this is achieved, he can execute arbitrary code.

Examples
The following example is exploitable, due to the printf() call in the printWrapper() function. Note: The stack
buffer was added to make exploitation more simple.

#include <stdio.h>

void printWrapper(char *string) {
 printf(string);
}

int main(int argc, char **argv) {
 char buf[5012];
 memcpy(buf, argv[1], 5012);
 printWrapper(argv[1]);
 return (0);
}

Related problems
• Injection problem

• Write-what-where

Version Date: 31 March 2006 53

CLASP Vulnerability View — Category 1: Range & Type Errors

Injection problem (“data” used as something else)

Overview
Injection problems span a wide range of instantiations. The basic form of this flaw involves the injection of
control-plane data into the data-plane in order to alter the control flow of the process.

Consequences
• Confidentiality: Many injection attacks involve the disclosure of important information — in terms of

both data sensitivity and usefulness in further exploitation

• Authentication: In some cases injectable code controls authentication; this may lead to remote vul-
nerability

• Access Control: Injection attacks are characterized by the ability to significantly change the flow of a
given process, and in some cases, to the execution of arbitrary code.

• Integrity: Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane
data injected is always incidental to data recall or writing.

• Accountability: Often the actions performed by injected control code are unlogged.

Exposure period
• Requirements specification: A language might be chosen which is not subject to these issues.

• Implementation: Many logic errors can contribute to these issues.

Platform
• Languages: C, C++, Assembly, SQL

• Platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: A language might be chosen which is not subject to these issues.

• Implementation: As so many possible implementations of this flaw exist, it is best to simply be
aware of the flaw and work to ensure that all control characters entered in data are subject to black-
list style parsing.

Version Date: 31 March 2006 54

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
Injection problems encompass a wide variety of issues — all mitigated in very different ways. For this rea-
son, the most effective way to discuss these flaws is to note the distinct features which classify them as
injection flaws.

The most important issue to note is that all injection problems share one thing in common — i.e., they
allow for the injection of control plane data into the user-controlled data plane. This means that the
execution of the process may be altered by sending code in through legitimate data channels, using no
other mechanism. While buffer overflows, and many other flaws, involve the use of some further issue to
gain execution, injection problems need only for the data to be parsed.

The most classing instantiations of this category of flaw are SQL injection and format string vulnerabilities.

Examples
Injection problems describe a large subset of problems with varied instantiations. For an example of one
of these problems, see the section Format string problem.

Related problems
• SQL injection

• Format String problem

• Command injection

• Log injection

• Reflection injection

Version Date: 31 March 2006 55

CLASP Vulnerability View — Category 1: Range & Type Errors

Command injection

Overview
Command injection problems are a subset of injection problem, in which the process is tricked into calling
external processes of the attackers choice through the injection of control-plane data into the data plane.

Consequences
• Access control: Command injection allows for the execution of arbitrary commands and code by the

attacker.

Exposure period
• Design: It may be possible to find alternate methods for satisfying functional requirements than call-

ing external processes. This is minimal.

• Implementation: Exposure for this issue is limited almost exclusively to implementation time. Any
language or platform is subject to this flaw.

Platform
• Language: Any

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: If at all possible, use library calls rather than external processes to recreate the desired

functionality

• Implementation: Ensure that all external commands called from the program are statically created,
or — if they must take input from a user — that the input and final line generated are vigorously
white-list checked.

• Run time: Run time policy enforcement may be used in a white-list fashion to prevent use of any
non-sanctioned commands.

Discussion
Command injection is a common problem with wrapper programs. Often, parts of the command to be run
are controllable by the end user. If a malicious user injects a character (such as a semi-colon) that
delimits the end of one command and the beginning of another, he may then be able to insert an entirely
new and unrelated command to do whatever he pleases.

Version Date: 31 March 2006 56

CLASP Vulnerability View — Category 1: Range & Type Errors

The most effective way to deter such an attack is to ensure that the input provided by the user adheres to
strict rules as to what characters are acceptable. As always, white-list style checking is far preferable to
black-list style checking.

Examples
The following code is wrapper around the UNIX command cat which prints the contents of a file to
standard out. It is also injectable:

#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {
 char cat[] = "cat ";
 char *command;
 size_t commandLength;

 commandLength = strlen(cat) + strlen(argv[1]) + 1;
 command = (char *) malloc(commandLength);
 strncpy(command, cat, commandLength);
 strncat(command, argv[1], (commandLength - strlen(cat)));

 system(command);
 return (0);
}

Used normally, the output is simply the contents of the file requested:

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is executed
by catWrapper with no complaint:

$./catWrapper Story.txt; ls
When last we left our heroes...
Story.txt doubFree.c nullpointer.c
unstosig.c www* a.out*
format.c strlen.c useFree*
catWrapper* misnull.c strlength.c useFree.c
commandinjection.c nodefault.c trunc.c
writeWhatWhere.c

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary commands
could be executed with that higher privilege.

Related problems
• Injection problem

Version Date: 31 March 2006 57

CLASP Vulnerability View — Category 1: Range & Type Errors

Log injection

Overview
Log injection problems are a subset of injection problem, in which invalid entries taken from user input are
inserted in logs or audit trails, allowing an attacker to mislead administrators or cover traces of attack. Log
injection can also sometimes be used to attack log monitoring systems indirectly by injecting data that
monitoring system will misinterpret.

Consequences
• Integrity: Logs susceptible to injection can not be trusted for diagnostic or evidentiary purposes in

the event of an attack on other parts of the system.

• Access control: Log injection may allow indirect attacks on systems monitoring the log.

Exposure period
• Design: It may be possible to find alternate methods for satisfying functional requirements than

allowing external input to be logged.

• Implementation: Exposure for this issue is limited almost exclusively to implementation time. Any
language or platform is subject to this flaw.

Platform
• Language: Any

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: If at all possible, avoid logging data that came from external inputs.

• Implementation: Ensure that all log entries are statically created, or — if they must record external
data — that the input is vigorously white-list checked.

• Run time: Avoid viewing logs with tools that may interpret control characters in the file, such as
command-line shells.

Discussion
Log injection attacks can be used to cover up log entries or insert misleading entries. Common attacks on
logs include inserting additional entries with fake information, truncating entries to cause information loss,
or using control characters to hide entries from certain file viewers.

Version Date: 31 March 2006 58

CLASP Vulnerability View — Category 1: Range & Type Errors

The most effective way to deter such an attack is to ensure that any external input being logged adheres
to strict rules as to what characters are acceptable. As always, white-list style checking is far preferable to
black-list style checking.

Examples
The following code is a simple Python snippet which writes a log entry to a file. It does not filter log con-
tents:

def log_failed_login(username)
 log = open(“access.log”, ‘a’)
 log.write(“User login failed for: %s\n“ % username)
 log.close()

Normal log file output looks like:

User login failed for: guest
User login failed for: admin

However, if we pass in the following as the username:

guest\nUser login succeeded for: admin

the log would instead have the misleading entries:

User login failed for: guest
User login succeeded for: admin

If it was expected that the log was going to be viewed from within a command shell (as is often the case
with server software) we could inject terminal control characters to cause the display to back up lines or
erase log entries from view. Doing this does not actually remove the entries from the file, but it can
prevent casual inspection from noticing security critical log entries.

Related problems
• Injection problem

Version Date: 31 March 2006 59

CLASP Vulnerability View — Category 1: Range & Type Errors

Reflection injection

Overview
Reflection injection problems are a subset of injection problem, in which external input is used to
construct a string value passed to class reflection APIs. By manipulating the value an attacker can cause
unexpected classes to be loaded, or change what method or fields are accessed on an object.

Consequences
• Access control: Reflection injection allows for the execution of arbitrary code by the attacker.

Exposure period
• Design: It may be possible to find alternate methods for satisfying functional requirements than

using reflection.

• Implementation: Avoid using external input to generate reflection string values.

Platform
• Language: Java, .NET, and other languages that support reflection

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: It may be possible to find alternate methods for satisfying functional requirements than

using reflection.

• Implementation: Avoid using external input to generate reflection string values.

Discussion
The most straightforward reflection injection attack is to provide the name of an alternate class available
to the target application which implements the same interfaces but operates in a less secure manner.
This can be used as leverage for more extensive attacks. More complex attacks depend upon the specific
deployment situation of the application.

If the classloader being used is capable of remote class fetching this becomes an extremely serious vul-
nerability, since attackers could supply arbitrary URLs that point at constructed attack classes. In this
case, the class doesn’t necessarily even need to implement methods that perform the same as the
replaced class, since a static initializer could be used to carry out the attack.

Version Date: 31 March 2006 60

CLASP Vulnerability View — Category 1: Range & Type Errors

If it is necessary to allow reflection utilizing external input, limit the possible values to a predefined list. For
example, reflection is commonly used for loading JDBC database connector classes. Most often, the
string class name is read from a configuration file. Injection problems can be avoided by embedding a list
of strings naming each of the supported database driver classes and requiring the class name read from
the file to be in the list before loading.

Examples
The following Java code dynamically loads a connection class to be used for transferring data:

// connType is a String read from an external source
Class connClass = Class.forName(connType);
HttpURLConnection conn = (HttpURLConnection)connClass.newInstance();
conn.connect();

Suppose this application normally passed “javax.net.ssl.HttpsUrlConnection”. This would provide an
HTTPS connection using SSL to protect the transferred data. If an attacker replaced the connType string
with “java.net.HttpURLConnection” then all data transfers performed by this code would happened over
an un-encrypted HTTP connection instead.

Related problems
• Injection problem

Version Date: 31 March 2006 61

CLASP Vulnerability View — Category 1: Range & Type Errors

SQL injection

Overview
SQL injection attacks are another instantiation of injection attack, in which SQL commands are injected
into data-plane input in order to effect the execution of predefined SQL commands.

Consequences
• Confidentiality: Since SQL databases generally hold sensitive data, loss of confidentiality is a fre-

quent problem with SQL injection vulnerabilities.

• Authentication: If poor SQL commands are used to check user names and passwords, it may be
possible to connect to a system as another user with no previous knowledge of the password.

• Authorization: If authorization information is held in an SQL database, it may be possible to change
this information through the successful exploitation of an SQL injection vulnerability.

• Integrity: Just as it may be possible to read sensitive information, it is also possible to make
changes or even delete this information with an SQL injection attack.

Exposure period
• Requirements specification: A non-SQL style database which is not subject to this flaw may be cho-

sen.

• Implementation: If SQL is used, all flaws resulting in SQL injection problems must be mitigated at
the implementation level.

Platform
• Language: SQL

• Platform: Any (requires interaction with an SQL database)

Required resources
Any

Severity
Medium to High

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: A non-SQL style database which is not subject to this flaw may be cho-

sen.

• Implementation: Use vigorous white-list style checking on any user input that may be used in an
SQL command. Rather than escape meta-characters, it is safest to disallow them entirely. Reason:
Later use of data that has been entered in the database may neglect to escape meta-characters
before use.

Version Date: 31 March 2006 62

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
SQL injection has become a common issue with database-driven web sites. The flaw is easily detected,
and easily exploited, and as such, any site or software package with even a minimal user base is likely to
be subject to an attempted attack of this kind.

Essentially, the attack is accomplished by placing a meta character into data input to then place SQL
commands in the control plane, which did not exist there before. This flaw depends on the fact that SQL
makes no real distinction between the control and data planes.

Examples
In SQL:

select id, firstname, lastname from writers

If one provided:

Firstname: evil’ex
Lastname: Newman

the query string becomes:

select id, firstname, lastname from authors where forename = ‘evil’ex’ and surname
=’newman’

which the database attempts to run as

Incorrect syntax near al’ as the database tried to execute evil.

The above SQL statement could be Coded in Java as:

String firstName = requests.getParameters(“firstName”);
String lasttName = requests.getParameters(“firstName”);
PreparedStatement writersAdd = conn.prepareStatement(“SELECT id FROM writers WHERE
firstname=firstName”);

In which some of the same problems exist.

Related problems
• Injection problems

Version Date: 31 March 2006 63

CLASP Vulnerability View — Category 1: Range & Type Errors

Deserialization of untrusted data

Overview
Data which is untrusted cannot be trusted to be well formed.

Consequences
• Availability: If a function is making an assumption on when to terminate, based on a sentry in a

string, it could easily never terminate.

• Authorization: Potentially code could make assumptions that information in the deserialized object
about the data is valid. Functions which make this dangerous assumption could be exploited.

Exposure period
• Requirements specification: A deserialization library could be used which provides a cryptographic

framework to seal serialized data.

• Implementation: Not using the safe deserialization/serializing data features of a language can create
data integrity problems.

• Implementation: Not using the protection accessor functions of an object can cause data integrity
problems

• Implementation: Not protecting your objects from default overloaded functions — which may provide
for raw output streams of objects — may cause data confidentiality problems.

• Implementation: Not making fields transient can often may cause data confidentiality problems.

Platform
• Languages: C, C++, Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: A deserialization library could be used which provides a cryptographic

framework to seal serialized data.

• Implementation: Use the signing features of a language to assure that deserialized data has not
been tainted.

• Implementation: When deserializing data populate a new object rather than just deserializing, the
result is that the data flows through safe input validation and that the functions are safe.

Version Date: 31 March 2006 64

CLASP Vulnerability View — Category 1: Range & Type Errors

• Implementation: Explicitly define final readObject() to prevent deserialization.

An example of this is:

private final void readObject(ObjectInputStream in)
throws java.io.IOException {
 throw new java.io.IOException("Cannot be deserialized");
}

• Implementation: Make fields transient to protect them from deserialization.

Discussion
It is often convenient to serialize objects for convenient communication or to save them for later use.
However, deserialized data or code can often be modified without using the provided accessor functions if
it does not use cryptography to protect itself. Furthermore, any cryptography would still be client-side
security — which is of course a dangerous security assumption.

An attempt to serialize and then deserialize a class containing transient fields will result in NULLs where
the non-transient data should be. This is an excellent way to prevent time, environment-based, or
sensitive variables from being carried over and used improperly.

Examples
In Java:

 try {
 File file = new File("object.obj");
 ObjectInputStream in = new ObjectInputStream(new
 FileInputStream(file));
 javax.swing.JButton button = (javax.swing.JButton)
 in.readObject();
 in.close();
 byte[] bytes = getBytesFromFile(file);
 in = new ObjectInputStream(new ByteArrayInputStream(bytes));
 button = (javax.swing.JButton) in.readObject();
 in.close();
 }

 Related problems
Not available.

Version Date: 31 March 2006 65

CLASP Vulnerability View — Category 2: Environmental Problems

Category 2: Environmental Problems
This section introduces the vulnerability Problem Types organized under the problem type “environmental
problems.”

Reliance on data layout

Overview
Assumptions about protocol data or data stored in memory can be invalid, resulting in using data in ways
that were unintended.

Consequences
Access control (including confidentiality and integrity): Can result in unintended modifications or informa-
tion leaks of data.

Exposure period
Design: This problem can arise when a protocol leaves room for interpretation and is implemented by
multiple parties that need to interoperate.

Implementation: This problem can arise by not understanding the subtleties either of writing portable code
or of changes between protocol versions.

Platform
Protocol errors of this nature can happen on any platform. Invalid memory layout assumptions are
possible in languages and environments with a single, flat memory space, such as C/C++ and Assembly.

Required resources
Any

Severity
Medium to High

Likelihood of exploit
Low

Avoidance and mitigation
• Design and Implementation: In flat address space situations, never allow computing memory

addresses as offsets from another memory address.

• Design: Fully specify protocol layout unambiguously, providing a structured grammar (e.g., a com-
pilable yacc grammar).

• Testing: Test that the implementation properly handles each case in the protocol grammar.

Version Date: 31 March 2006 66

CLASP Vulnerability View — Category 2: Environmental Problems

Discussion
When changing platforms or protocol versions, data may move in unintended ways. For example, some
architectures may place local variables a and b right next to each other with a on top; some may place
them next to each other with b on top; and others may add some padding to each. This ensured that each
variable is aligned to a proper word size.

In protocol implementations, it is common to offset relative to another field to pick out a specific piece of
data. Exceptional conditions — often involving new protocol versions — may add corner cases that lead
to the data layout changing in an unusual way. The result can be that an implementation accesses a
particular part of a packet, treating data of one type as data of another type.

Examples
In C:

void example() {
 char a;
 char b;
 *(&a + 1) = 0;
}

Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have three bytes
between them because they get aligned to 32-bit boundaries.

Related problems
Not available.

Version Date: 31 March 2006 67

CLASP Vulnerability View — Category 2: Environmental Problems

Relative path library search

Overview
Certain functions perform automatic path searching. The method and results of this path searching may
not be as expected. Example: WinExec will use the space character as a delimiter, finding “C:\Pro-
gram.exe” as an acceptable result for a search for “C:\Program Files\Foo\Bar.exe”.

Consequences
• Authorization: There is the potential for arbitrary code execution with privileges of the vulnerable

program.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Use other functions which require explicit paths. Making use of any of the other

readily available functions which require explicit paths is a safe way to avoid this problem.

Discussion
If a malicious individual has access to the file system, it is possible to elevate privileges by inserting such
a file as “C:\Program.exe” to be run by a privileged program making use of WinExec.

Examples
In C\C++:

UINT errCode = WinExec(
 "C:\\Program Files\\Foo\\Bar",
 SW_SHOW
);

Version Date: 31 March 2006 68

CLASP Vulnerability View — Category 2: Environmental Problems

Related problems
Not available.

Version Date: 31 March 2006 69

CLASP Vulnerability View — Category 2: Environmental Problems

Relying on package-level scope

Overview
Java packages are not inherently closed; therefore, relying on them for code security is not a good prac-
tice.

Consequences
• Confidentiality: Any data in a Java package can be accessed outside of the Java framework if the

package is distributed.

• Integrity: The data in a Java class can be modified by anyone outside of the Java framework if the
packages is distributed.

Exposure period
Design through Implementation: This flaw is a style issue, so it is important to not allow direct access to
variables and to protect objects.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design through Implementation: Data should be private static and final whenever possible. This will

assure that your code is protected by instantiating early, preventing access and tampering.

Discussion
The purpose of package scope is to prevent accidental access. However, this protection provides an
ease-of-software-development feature but not a security feature, unless it is sealed.

Examples
In Java:

package math;

public class Lebesgue implements Integration{

 public final Static String youAreHidingThisFunction(functionToIntegrate){

Version Date: 31 March 2006 70

CLASP Vulnerability View — Category 2: Environmental Problems

 return ...;
}

Related problems
Not available.

Version Date: 31 March 2006 71

CLASP Vulnerability View — Category 2: Environmental Problems

Insufficient entropy in PRNG

Overview
The lack of entropy available for, or used by, a PRNG can be a stability and security threat.

Consequences
• Availability: If a pseudo-random number generator is using a limited entropy source which runs out

(if the generator fails closed), the program may pause or crash.

• Authentication: If a PRNG is using a limited entropy source which runs out, and the generator fails
open, the generator could produce predictable random numbers. Potentially a weak source of ran-
dom numbers could weaken the encryption method used for authentication of users. In this case,
potentially a password could be discovered.

Exposure period
• Design through Implementation: It is important — if one is utilizing randomness for important

security — to use the best random numbers available.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Perform FIPS 140-1 tests on data to catch obvious entropy problems.

• Implementation: Consider a PRNG which re-seeds itself, as needed from a high quality pseudo-ran-
dom output, like hardware devices.

Discussion
When deciding which PRNG to use, look at its sources of entropy. Depending on what your security
needs are, you may need to use a random number generator which always uses strong random data —
i.e., a random number generator which attempts to be strong but will fail in a weak way or will always
provide some middle ground of protection through techniques like re-seeding. Generally something which
always provides a predictable amount of strength is preferable and should be used.

Version Date: 31 March 2006 72

CLASP Vulnerability View — Category 2: Environmental Problems

Examples
In C/C++ or Java:

while (1){
 if (OnConnection()){
 if (PRNG(...)){
 //use the random bytes
 }
 else (PRNG(...)) {
 //cancel the program
 }

Related problems
Not available.

Version Date: 31 March 2006 73

CLASP Vulnerability View — Category 2: Environmental Problems

Failure of TRNG

Overview
True random number generators generally have a limited source of entropy and therefore can fail or
block.

Consequences
• Availability: A program may crash or block if it runs out of random numbers.

Exposure period
• Requirements specification: Choose an operating system which is aggressive and effective at

generating true random numbers.

• Implementation: This type of failure is a logical flaw which can be exacerbated by a lack of or the
misuse of mitigating technologies.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low to Medium

Avoidance and mitigation
• Implementation: Rather than failing on a lack of random numbers, it is often preferable to wait for

more numbers to be created.

Discussion
The rate at which true random numbers can be generated is limited. It is important that one uses them
only when they are needed for security.

Examples
In C:

while (1){
 if (connection){
 if (hwRandom()){
 //use the random bytes
 }
 else (hwRandom()) {

Version Date: 31 March 2006 74

CLASP Vulnerability View — Category 2: Environmental Problems

 //cancel the program
 }
}

Related problems
Not available.

Version Date: 31 March 2006 75

CLASP Vulnerability View — Category 2: Environmental Problems

Publicizing of private data when using inner classes

Overview
Java byte code has no notion of an inner class; therefore inner classes provide only a package-level
security mechanism. Furthermore, the inner class gets access to the fields of its outer class even if that
class is declared private.

Consequences
• Confidentiality: “Inner Classes” data confidentiality aspects can often be overcome.

Exposure period
Implementation: This is a simple logical flaw created at implementation time.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Using sealed classes protects object-oriented encapsulation paradigms and there-

fore protects code from being extended in unforeseen ways.

• Implementation: Inner Classes do not provide security. Warning: Never reduce the security of the
object from an outer class, going to an inner class. If your outer class is final or private, ensure that
your inner class is private as well.

Discussion
A common misconception by Java programmers is that inner classes can only be accessed by outer
classes. Inner classes’ main function is to reduce the size and complexity of code. This can be trivially
broken by injecting byte code into the package. Furthermore, since an inner class has access to all fields
in the outer class — even if the outer class is private — potentially access to the outer classes fields
could be accidently compromised.

Examples
In Java:

private class Secure(){

Version Date: 31 March 2006 76

CLASP Vulnerability View — Category 2: Environmental Problems

 private password="mypassword"
 public class Insecure(){...}
}

Related problems
Not available.

Version Date: 31 March 2006 77

CLASP Vulnerability View — Category 2: Environmental Problems

Trust of system event data

Overview
Security based on event locations are insecure and can be spoofed.

Consequences
• Authorization: If one trusts the system-event information and executes commands based on it, one

could potentially take actions based on a spoofed identity.

Exposure period
• Design through Implementation: Trusting unauthenticated information for authentication is a design

flaw.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design through Implementation: Never trust or rely any of the information in an Event for security.

Discussion
Events are a messaging system which may provide control data to programs listening for events. Events
often do not have any type of authentication framework to allow them to be verified from a trusted source.

Any application, in Windows, on a given desktop can send a message to any window on the same desk-
top. There is no authentication framework for these messages. Therefore, any message can be used to
manipulate any process on the desktop if the process does not check the validity and safeness of those
messages.

Examples
In Java:

public void actionPerformed(ActionEvent e) {
 if (e.getSource()==button)
 System.out.println(“print out secret information”);
}

Version Date: 31 March 2006 78

CLASP Vulnerability View — Category 2: Environmental Problems

Related problems
Not available.

Version Date: 31 March 2006 79

CLASP Vulnerability View — Category 2: Environmental Problems

Resource exhaustion (file descriptor, disk space, sockets, ...)

Overview
Resource exhaustion is a simple denial of service condition which occurs when the resources necessary
to perform an action are entirely consumed, therefore preventing that action from taking place.

Consequences
• Availability: The most common result of resource exhaustion is denial-of-service.

• Access control: In some cases it may be possible to force a system to “fail open” in the event of
resource exhaustion.

Exposure period
• Design: Issues in system architecture and protocol design may make systems more subject to

resource-exhaustion attacks.

• Implementation: Lack of low level consideration often contributes to the problem.

Platform
• Languages: All

• Platforms: All

Required resources
Any

Severity
Low to medium

Likelihood of exploit
Very high

Avoidance and mitigation
• Design: Design throttling mechanisms into the system architecture.

• Design: Ensure that protocols have specific limits of scale placed on them.

• Implementation: Ensure that all failures in resource allocation place the system into a safe posture.

• Implementation: Fail safely when a resource exhaustion occurs.

Discussion
Resource exhaustion issues are generally understood but are far more difficult to successfully prevent.
Resources can be exploited simply by ensuring that the target machine must do much more work and
consume more resources in order to service a request than the attacker must do to initiate a request.

Prevention of these attacks requires either that the target system:

• either recognizes the attack and denies that user further access for a given amount of time;

Version Date: 31 March 2006 80

CLASP Vulnerability View — Category 2: Environmental Problems

• or uniformly throttles all requests in order to make it more difficult to consume resources more
quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of
the system by a particular valid user. If the attacker impersonates the valid user, he may be able to
prevent the user from accessing the server in question.

The second solution is simply difficult to effectively institute — and even when properly done, it does not
provide a full solution. It simply makes the attack require more resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is that of systems which
“fail open.” This means that in the event of resource consumption, the system fails in such a way that the
state of the system — and possibly the security functionality of the system — is compromised. A prime
example of this can be found in old switches that were vulnerable to “macof” attacks (so named for a tool
developed by Dugsong). These attacks flooded a switch with random IP and MAC address combinations,
therefore exhausting the switch’s cache, which held the information of which port corresponded to which
MAC addresses. Once this cache was exhausted, the switch would fail in an insecure way and would
begin to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks.

Examples
In Java:

class Worker implements Executor {
 ...
 public void execute(Runnable r) {
 try {
 ...
 }
 catch (InterruptedException ie) { // postpone response
 Thread.currentThread().interrupt();
 }
 }

 public Worker(Channel ch, int nworkers) {
 ...
 }

 protected void activate() {
 Runnable loop = new Runnable() {
 public void run() {
 try {
 for (;;) {
 Runnable r = ...
 r.run();
 }
 }
 catch (InterruptedException ie) {...}
 }
 };
 new Thread(loop).start();
 }
In C/C++:

int main(int argc, char *argv[]) {
 sock=socket(AF_INET, SOCK_STREAM, 0);
 while (1) {
 newsock=accept(sock, ...);
 printf("A connection has been accepted\n");
 pid = fork();
 }

Version Date: 31 March 2006 81

CLASP Vulnerability View — Category 2: Environmental Problems

There are no limits to runnables/forks. Potentially an attacker could cause resource problems very
quickly.

Related problems
Not available.

Version Date: 31 March 2006 82

CLASP Vulnerability View — Category 2: Environmental Problems

Information leak through class cloning

Overview
Cloneable classes are effectively open classes since data cannot be hidden in them.

Consequences
• Confidentiality: A class which can be cloned can be produced without executing the constructor.

Exposure period
• Implementation: This is a style issue which needs to be adopted throughout the implementation of

each class.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Make classes uncloneable by defining a clone function like:

public final void clone() throws java.lang.CloneNotSupportedException {
 throw new java.lang.CloneNotSupportedException();
}

• Implementation: If you do make your classes cloneable, ensure that your clone method is final and
throw super.clone().

Discussion
Classes which do no explicitly deny cloning can be cloned by any other class without running the
constructor. This is, of course, dangerous since numerous checks and security aspects of an object are
often taken care of in the constructor.

Examples
public class CloneClient
{
 public CloneClient()
//throws java.lang.CloneNotSupportedException
 {

Version Date: 31 March 2006 83

CLASP Vulnerability View — Category 2: Environmental Problems

 Teacher t1 = new Teacher("guddu","22,nagar road");
 //...// Due some stuff to remove the teacher.
 Teacher t2 = (Teacher)t1.clone();
 System.out.println(t2.name);
 }
 public static void main(String args[])
 {
 new CloneClient();
 }
}

class Teacher implements Cloneable
{
 public Object clone() {
 try { return super.clone();
 } catch (java.lang.CloneNotSupportedException e) {
 throw new RuntimeException(e.toString());
 }
 }
 public String name;
 public String clas;
 public Teacher(String name,String clas)
 {
 this.name = name;
 this.clas = clas;

 }
}

Related problems
Not available.

Version Date: 31 March 2006 84

CLASP Vulnerability View — Category 2: Environmental Problems

Information leak through serialization

Overview
Serializable classes are effectively open classes since data cannot be hidden in them.

Consequences
• Confidentiality: Attacker can write out the class to a byte stream in which they can extract the impor-

tant data from it.

Exposure period
• Implementation: This is a style issue which needs to be adopted throughout the implementation of

each class.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: In Java, explicitly define final writeObject() to prevent serialization. This is the rec-

ommended solution. Define the writeObject() function to throw an exception explicitly denying serial-
ization.

• Implementation: Make sure to prevent serialization of your objects.

Discussion
Classes which do no explicitly deny serialization can be serialized by any other class which can then in
turn use the data stored inside it.

Examples
class Teacher
{

 private String name;
 private String clas;
 public Teacher(String name,String clas)
 {
 //...//Check the database for the name and address
 this.SetName() = name;

Version Date: 31 March 2006 85

CLASP Vulnerability View — Category 2: Environmental Problems

 this.Setclas() = clas;

 }
}

Related problems
Not available.

Version Date: 31 March 2006 86

CLASP Vulnerability View — Category 2: Environmental Problems

Overflow of static internal buffer

Overview
A non-final static field can be viewed and edited in dangerous ways.

Consequences
• Integrity: The object could potentially be tampered with.

• Confidentiality: The object could potentially allow the object to be read.

Exposure period
• Design through Implementation: This is a simple logical issue which can be easily remedied through

simple protections.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
High

Avoidance and mitigation
• Design through Implementation: Make any static fields private and final.

Discussion
Non-final fields, which are not public can be read and written to by arbitrary Java code.

Examples
In C++:

public int password r = 45;

In Java:

static public String r;

This is a uninitiated static class which can be accessed without a get-accessor and changed without a
set-accessor.

Version Date: 31 March 2006 87

CLASP Vulnerability View — Category 2: Environmental Problems

Related problems
Not available.

Version Date: 31 March 2006 88

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Category 3: Synchronization & Timing Errors
This section introduces the vulnerability Problem Types organized under the problem type “synchroniza-
tion and timing errors.”

State synchronization error

Overview
State synchronization refers to a set of flaws involving contradictory states of execution in a process
which result in undefined behavior.

Consequences
• Undefined: Depending on the nature of the state of corruption, any of the listed consequences may

result.

Exposure period
• Design: Design flaws may be to blame for out-of-sync states, but this is the rarest method.

• Implementation: Most likely, state-synchronization errors occur due to logical flaws and race condi-
tions introduced at implementation time.

• Run time: Hardware, operating system, or interaction with other programs may lead to this error.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium to High

Avoidance and mitigation
• Implementation: Pay attention to asynchronous actions in processes; and make copious use of san-

ity checks in systems that may be subject to synchronization errors.

Discussion
The class of synchronization errors is large and varied, but all rely on the same essential flaw. The state
of the system is not what the process expects it to be at a given time.

Version Date: 31 March 2006 89

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Obviously, the range of possible symptoms is enormous, as is the range of possible solutions. The flaws
presented in this section are some of the most difficult to diagnose and fix. It is more important to know
how to characterize specific flaws than to gain information about them.

Examples
In C/C++:

static void print(char * string) {
 char * word;
 int counter;
 fflush(stdout);
 for(word = string; counter = *word++;) putc(counter, stdout);
}

int main(void) {
 pid_t pid;
 if((pid = fork()) < 0) exit(-2);
 else if(pid == 0) print("child");
 else print("parent\n");
 exit(0);
}

In Java:

class read{
 private int lcount;
 private int rcount;
 private int wcount;

 public void getRead(){
 while ((lcount == -1) || (wcount !=0));
 lcount++;

 public void getWrite(){
 while ((lcount == -0);
 lcount--;
 lcount=-1;

 public void killLocks(){
 if (lcount==0) return;
 else if (lcount == -1) lcount++;
 else lcount--;
 }
}

Related problems
Not available.

Version Date: 31 March 2006 90

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Covert timing channel

Overview
Unintended information about data gets leaked through observing the timing of events.

Consequences
• Confidentiality: Information leakage.

Exposure period
• Design: Protocols usually have timing difficulties implicit in their design.

• Implementation: Sometimes a timing covert channel can be dependent on implementation strategy.
Example: Using conditionals may leak information, but using table lookup will not.

Platform
Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Whenever possible, specify implementation strategies that do not introduce time variances

in operations.

• Implementation: Often one can artificially manipulate the time which operations take or — when
operations occur — can remove information from the attacker.

Discussion
Sometimes simply knowing when data is sent between parties can provide a malicious user with informa-
tion that should be unauthorized.

Other times, externally monitoring the timing of operations can reveal sensitive data. For example, some
cryptographic operations can leak their internal state if the time it takes to perform the operation changes,
based on the state. In such cases, it is good to switch algorithms or implementation techniques. It is also
reasonable to add artificial stalls to make the operation take the same amount of raw CPU time in all
cases.

Examples
In Python:

def validate_password(actual_pw, typed_pw):

Version Date: 31 March 2006 91

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

 if len(actual_pw) <> len(typed_pw):
 return 0
 for i in len(actual_pw):
 if actual_pw[i] <> typed_pw[i]:
 return 0
 return 1

In this example, the attacker can observe how long an authentication takes when the user types in the
correct password. When the attacker tries his own values, he can first try strings of various length. When
he finds a string of the right length, the computation will take a bit longer because the for loop will run at
least once.

Additionally, with this code, the attacker can possibly learn one character of the password at a time,
because when he guesses the first character right, the computation will take longer than when he
guesses wrong. Such an attack can break even the most sophisticated password with a few hundred
guesses.

Note that, in this example, the actual password must be handled in constant time, as far as the attacker is
concerned, even if the actual password is of an unusual length. This is one reason why it is good to use
an algorithm that, among other things, stores a seeded cryptographic one-way hash of the password,
then compare the hashes, which will always be of the same length.

Related problems
• Storage covert channel

Version Date: 31 March 2006 92

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Symbolic name not mapping to correct object

Overview
A constant symbolic reference to an object is used, even though the underlying object changes over time.

Consequences
• Access control: The attacker can gain access to otherwise unauthorized resources.

• Authorization: Race conditions such as this kind may be employed to gain read or write access to
resources not normally readable or writable by the user in question.

• Integrity: The resource in question, or other resources (through the corrupted one) may be changed
in undesirable ways by a malicious user.

• Accountability: If a file or other resource is written in this method, as opposed to a valid way, logging
of the activity may not occur.

• Non-repudiation: In some cases it may be possible to delete files that a malicious user might not
otherwise have access to — such as log files.

Exposure period

Platform

Required resources

Severity

Likelihood of exploit

Avoidance and mitigation

Discussion
See more specific instances.

Examples
Not available.

Related problems
• Time of check, time of use race condition

• Comparing classes by name

Version Date: 31 March 2006 93

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Time of check, time of use race condition

Overview
Time-of-check, time-of-use race conditions occur when between the time in which a given resource is
checked, and the time that resource is used, a change occurs in the resource to invalidate the results of
the check.

Consequences
• Access control: The attacker can gain access to otherwise unauthorized resources.

• Authorization: race conditions such as this kind may be employed to gain read or write access to
resources which are not normally readable or writable by the user in question.

• Integrity: The resource in question, or other resources (through the corrupted one), may be changed
in undesirable ways by a malicious user.

• Accountability: If a file or other resource is written in this method, as opposed to in a valid way, log-
ging of the activity may not occur.

• Non-repudiation: In some cases it may be possible to delete files a malicious user might not other-
wise have access to, such as log files.

Exposure period
• Design: Strong locking methods may be designed to protect against this flaw.

• Implementation: Use of system APIs may prevent check, use race conditions.

Platform
• Languages: Any

• Platforms: All

Required resources
• Some access to the resource in question

Severity
Medium

Likelihood of exploit
Low to Medium

Avoidance and mitigation
• Design: Ensure that some environmental locking mechanism can be used to protect resources

effectively.

• Implementation: Ensure that locking occurs before the check, as opposed to afterwards, such that
the resource, as checked, is the same as it is when in use.

Version Date: 31 March 2006 94

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Discussion
Time-of-check, time-of-use race conditions occur when a resource is checked for a particular value, that
value is changed, then the resource is used, based on the assumption that the value is still the same as it
was at check time.

This is a broad category of race condition encompassing binding flaws, locking race conditions, and oth-
ers.

Examples
In C/C++:

struct stat *sb;
..
lstat(“...”,sb);
// it has not been updated since the last time it was read
printf(“stated file\n”);
if (sb->st_mtimespec==...)
 print(“Now updating things\n”);
 updateThings();
}

Potentially the file could have been updated between the time of the check and the lstat, especially since
the printf has latency.

Related problems
• State synchronization error

Version Date: 31 March 2006 95

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Comparing classes by name

Overview
The practice of determining an object’s type, based on its name, is dangerous since malicious code may
purposely reuse class names in order to appear trusted.

Consequences
• Authorization: If a program trusts, based on the name of the object, to assume that it is the correct

object, it may execute the wrong program.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Use class equivalency to determine type. Rather than use the class name to deter-

mine if an object is of a given type, use the getClass() method, and == operator.

Discussion
If the decision to trust the methods and data of an object is based on the name of a class, it is possible for
malicious users to send objects of the same name as trusted classes and thereby gain the trust afforded
to known classes and types.

Examples
if (inputClass.getClass().getName().equals(“TrustedClassName”)) {
 // Do something assuming you trust inputClass
 // …
}

Related problems
Not available.

Version Date: 31 March 2006 96

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition in switch

Overview
If the variable which is switched on is changed while the switch statement is still in progress, undefined
activity may occur.

Consequences
• Undefined: This flaw will result in the system state going out of sync.

Exposure period
• Implementation: Variable locking is the purview of implementers.

Platform
• Languages: All that allow for multi-threaded activity

• Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Variables that may be subject to race conditions should be locked for the duration

of any switch statements.

Discussion
This issue is particularly important in the case of switch statements that involve fall-through style case
statements — i.e., those which do not end with break.

If the variable which we are switching on change in the course of execution, the actions carried out may
place the state of the process in a contradictory state or even result in memory corruption.

For this reason, it is important to ensure that all variables involved in switch statements are locked before
the statement starts and are unlocked when the statement ends.

Examples
In C/C++:

#include <sys/types.h>
#include <sys/stat.h>

int main(argc,argv){

Version Date: 31 March 2006 97

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

 struct stat *sb;
 time_t timer;

 lstat("bar.sh",sb);

 printf("%d\n",sb->st_ctime);
 switch(sb->st_ctime % 2){
 case 0: printf("One option\n");break;
 case 1: printf("another option\n");break;
 default: printf("huh\n");break;
 }

 return 0;
}

Related problems
• Race condition in signal handler

• Race condition within a thread

Version Date: 31 March 2006 98

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition in signal handler

Overview
 Race conditions occur frequently in signal handlers, since they are asynchronous actions. These race
conditions may have any number of Problem Types and symptoms.

Consequences
• Authorization: It may be possible to execute arbitrary code through the use of a write-what-where

condition.

• Integrity: Signal race conditions often result in data corruption.

Exposure period
• Requirements specification: A language might be chosen which is not subject to this flaw.

• Design: Signal handlers with complicated functionality may result in this issue.

• Implementation: The use of any non-reentrant functionality or global variables in a signal handler
might result in this race conditions.

Platform
• Languages: C, C++, Assembly

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: A language might be chosen, which is not subject to this flaw, through a

guarantee of reentrant code.

• Design: Design signal handlers to only set flags rather than perform complex functionality.

• Implementation: Ensure that non-reentrant functions are not found in signal handlers. Also, use san-
ity checks to ensure that state is consistent be performing asynchronous actions which effect the
state of execution.

Discussion
Signal race conditions are a common issue that have only recently been seen as exploitable. These
issues occur when non-reentrant functions, or state-sensitive actions occur in the signal handler, where

Version Date: 31 March 2006 99

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

they may be called at any time. If these functions are called at an inopportune moment — such as while a
non-reentrant function is already running —, memory corruption occurs that may be exploitable.

Another signal race condition commonly found occurs when free is called within a signal handler,
resulting in a double free and therefore a write-what-where condition. This is a perfect example of a signal
handler taking actions which cannot be accounted for in state. Even if a given pointer is set to NULL after
it has been freed, a race condition still exists between the time the memory was freed and the pointer was
set to NULL. This is especially prudent if the same signal handler has been set for more than one signal
— since it means that the signal handler itself may be reentered.

Examples
#include <signal.h>
#include <syslog.h>
#include <string.h>
#include <stdlib.h>

void *global1, *global2;
char *what;

void sh(int dummy) {
 syslog(LOG_NOTICE,"%s\n",what);
 free(global2);
 free(global1);
 sleep(10);
 exit(0);
}

int main(int argc,char* argv[]) {
 what=argv[1];
 global1=strdup(argv[2]);
 global2=malloc(340);
 signal(SIGHUP,sh);
 signal(SIGTERM,sh);
 sleep(10);
 exit(0);
}

Related problems
• Doubly freeing memory

• Using freed memory

• Unsafe function call from a signal handler

• Write-what-where

Version Date: 31 March 2006
100

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Unsafe function call from a signal handler

Overview
There are several functions which — under certain circumstances, if used in a signal handler — may
result in the corruption of memory, allowing for exploitation of the process.

Consequences
• Access control: It may be possible to execute arbitrary code through the use of a write-what-where

condition.

• Integrity: Signal race conditions often result in data corruption.

Exposure period
• Requirements specification: A language might be chosen which is not subject to this flaw.

• Design: Signal handlers with complicated functionality may result in this issue.

• Implementation: The use of any number of non-reentrant functions will result in this issue.

Platform
• Languages: C, C++, Assembly

• Platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Low

Avoidance and mitigation
• Requirements specification: A language might be chosen, which is not subject to this flaw, through a

guarantee of reentrant code.

• Design: Design signal handlers to only set flags rather than perform complex functionality.

• Implementation: Ensure that non-reentrant functions are not found in signal handlers. Also, use san-
ity checks to ensure that state is consistently performing asynchronous actions which effect the
state of execution.

Discussion
This flaw is a subset of race conditions occurring in signal handler calls which is concerned primarily with
memory corruption caused by calls to non-reentrant functions in signal handlers.

Non-reentrant functions are functions that cannot safely be called, interrupted, and then recalled before
the first call has finished without resulting in memory corruption. The function call syslog() is an example

Version Date: 31 March 2006
101

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

of this. In order to perform its functionality, it allocates a small amount of memory as “scratch space.” If
syslog() is suspended by a signal call and the signal handler calls syslog(), the memory used by both of
these functions enters an undefined, and possibly, exploitable state.

Examples
See Race condition in signal handler, for an example usage of free() in a signal handler which is exploit-
able.

Related problems
• Race condition in signal handler

• Write-what-where

Version Date: 31 March 2006
102

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Failure to drop privileges when reasonable

Overview
Failing to drop privileges when it is reasonable to do so results in a lengthened time during which
exploitation may result in unnecessarily negative consequences.

Consequences
• Access control: An attacker may be able to access resources with the elevated privilege that he

should not have been able to access. This is particularly likely in conjunction with another flaw —
e.g., a buffer overflow.

Exposure period
• Design: Privilege separation decisions should be made and enforced at the architectural design

phase of development.

Platform
• Languages: Any

• Platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Undefined.

Avoidance and mitigation
• Design: Ensure that appropriate compartmentalization is built into the system design and that the

compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Discussion
The failure to drop system privileges when it is reasonable to do so is not a vulnerability by itself. It does,
however, serve to significantly increase the Severity of other vulnerabilities. According to the principle of
least privilege, access should be allowed only when it is absolutely necessary to the function of a given
system, and only for the minimal necessary amount of time.

Any further allowance of privilege widens the window of time during which a successful exploitation of the
system will provide an attacker with that same privilege.

If at all possible, limit the allowance of system privilege to small, simple sections of code that may be
called atomically.

Version Date: 31 March 2006
103

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Examples
In C/C++:

setuid(0);
//Do some important stuff
//setuid(old_uid);
// Do some non privlidged stuff.

In Java:

method() {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 //Insert all code here
 }
 });
}

Related problems
• All problems with the consequence of “Access control.”

Version Date: 31 March 2006
104

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition in checking for certificate revocation

Overview
If the revocation status of a certificate is not checked before each privilege requiring action, the system
may be subject to a race condition, in which their certificate may be used before it is checked for revoca-
tion.

Consequences
• Authentication: Trust may be assigned to an entity who is not who it claims to be.

• Integrity: Data from an untrusted (and possibly malicious) source may be integrated.

• Confidentiality: Date may be disclosed to an entity impersonating a trusted entity, resulting in infor-
mation disclosure.

Exposure period
• Design: Checks for certificate revocation should be included in the design of a system

• Design: One can choose to use a language which abstracts out this part of the authentication pro-
cess.

Platform
• Languages: Languages which do not abstract out this part of the process.

• Operating platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Ensure that certificates are checked for revoked status before each use of a protected

resource

Discussion
If a certificate is revoked after the initial check, all subsequent actions taken with the owner of the revoked
certificate will loose all benefits guaranteed by the certificate. In fact, it is almost certain that the use of a
revoked certificate indicates malicious activity.

If the certificate is checked before each access of a protected resource, the delay subject to a possible
race condition becomes almost negligible and significantly reduces the risk associated with this issue.

Version Date: 31 March 2006
105

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Examples
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if (X509_V_OK==foo)
//do stuff
 foo=SSL_get_veryify_result(ssl);
 //do more stuff without the check.

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate host-specific certificate data

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
106

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Passing mutable objects to an untrusted method

Overview
Sending non-cloned mutable data as an argument may result in that data being altered or deleted by the
called function, thereby putting the calling function into an undefined state.

Consequences
• Integrity: Potentially data could be tampered with by another function which should not have been

tampered with.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
• Languages: C/C++ or Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Pass in data which should not be alerted as constant or immutable.

• Implementation: Clone all mutable data before returning references to it. This is the preferred
mitigation. This way — regardless of what changes are made to the data — a valid copy is retained
for use by the class.

Discussion
In situations where unknown code is called with references to mutable data, this external code may possi-
bly make changes to the data sent. If this data was not previously cloned, you will be left with modified
data which may, or may not, be valid in the context of execution.

Examples
In C\C++:

private:
 int foo.
 complexType bar;
 String baz;
 otherClass externalClass;

Version Date: 31 March 2006
107

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

public:
 void doStuff() {
 externalClass.doOtherStuff(foo, bar, baz)
 }

In this example, bar and baz will be passed by reference to doOtherStuff() which may change them.

Related problems
Not available.

Version Date: 31 March 2006
108

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Mutable object returned

Overview
Sending non-cloned mutable data as a return value may result in that data being altered or deleted by the
called function, thereby putting the class in an undefined state.

Consequences
• Access Control / Integrity: Potentially data could be tampered with by another function which should

not have been tampered with.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
• Languages: C,C++ or Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Pass in data which should not be alerted as constant or immutable.

• Implementation: Clone all mutable data before returning references to it. This is the preferred
mitigation. This way, regardless of what changes are made to the data, a valid copy is retained for
use by the class.

Discussion
In situations where functions return references to mutable data, it is possible that this external code,
which called the function, may make changes to the data sent. If this data was not previously cloned, you
will be left with modified data which may, or may not, be valid in the context of the class in question.

Examples
In C\C++:

private:
 externalClass foo;

public:
 void doStuff() {

Version Date: 31 March 2006
109

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

//..//Modify foo
 return foo;
 }

In Java:

public class foo {
 private externalClass bar = new externalClass();
 public doStuff(...){
 //..//Modify bar
 return bar;
 }

Related problems
Not available.

Version Date: 31 March 2006
110

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Accidental leaking of sensitive information through error
messages

Overview
Server messages need to be parsed before being passed on to the user.

Consequences
• Confidentiality: Often this will either reveal sensitive information which may be used for a later attack

or private information stored in the server.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

• Build: It is important to adequately set read privileges and otherwise operationally protect the log.

Platform
• Languages: Any; it is especially prevalent, however, when dealing with SQL or languages which

throw errors.

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Any error should be parsed for dangerous revelations.

• Build: Debugging information should not make its way into a production release.

Discussion
The first thing an attacker may use — once an attack has failed — to stage the next attack is the error
information provided by the server.

SQL Injection attacks generally probe the server for information in order to stage a successful attack.

Examples
In Java:

try {
 /.../
} catch (Exception e) {

Version Date: 31 March 2006
111

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

 System.out.println(e);
}

Here you are passing much more data than is needed.

Another example is passing the SQL exceptions to a WebUser without filtering.

Related problems
Not available.

Version Date: 31 March 2006
112

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Accidental leaking of sensitive information through sent data

Overview
The accidental leaking of sensitive information through sent data refers to the transmission of data which
is either sensitive in and of itself or useful in the further exploitation of the system through standard data
channels.

Consequences
• Confidentiality: Data leakage results in the compromise of data confidentiality.

Exposure period
• Requirements specification: Information output may be specified in the requirements

documentation.

• Implementation: The final decision as to what data is sent is made at implementation time.

Platform
• Languages: All

• Platforms: All

Required resources
Any

Severity
Low

Likelihood of exploit
Undefined.

Avoidance and mitigation
• Requirements specification: Specify data output such that no sensitive data is sent.

• Implementation: Ensure that any possibly sensitive data specified in the requirements is verified
with designers to ensure that it is either a calculated risk or mitigated elsewhere.

Discussion
Accidental data leakage occurs in several places and can essentially be defined as unnecessary data
leakage. Any information that is not necessary to the functionality should be removed in order to lower
both the overhead and the possibility of security sensitive data being sent.

Examples
The following is an actual mysql error statement:

Warning: mysql_pconnect():
Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-
data/includes/database.inc on line 4

Version Date: 31 March 2006
113

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Related problems

• Accidental leaking of sensitive information through error messages

• Accidental leaking of sensitive information through data queries

Version Date: 31 March 2006
114

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Accidental leaking of sensitive information through data queries

Overview
When trying to keep information confidential, an attacker can often infer some of the information by using
statistics.

Consequences
• Confidentiality: Sensitive information may possibly be through data queries accidentally.

Exposure period
• Design: Proper mechanisms for preventing this kind of problem generally need to be identified at

the design level.

Platform
Any; particularly systems using relational databases or object-relational databases.

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
This is a complex topic. See the book Translucent Databases for a good discussion of best practices.

Discussion
In situations where data should not be tied to individual users, but a large number of users should be able
to make queries that “scrub” the identity of users, it may be possible to get information about a user —
e.g., by specifying search terms that are known to be unique to that user.

Examples
See the book Translucent Databases for examples.

Related problems
Not available.

Version Date: 31 March 2006
115

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition within a thread

Overview
If two threads of execution use a resource simultaneously, there exists the possibility that resources may
be used while invalid, in turn making the state of execution undefined.

Consequences
• Integrity: The main problem is that — if a lock is overcome — data could be altered in a bad state.

Exposure period
• Design: Use a language which provides facilities to easily use threads safely.

Platform
• Languages: Any language with threads

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation

Discussion
• Design: Use locking functionality. This is the recommended solution. Implement some form of

locking mechanism around code which alters or reads persistent data in a multi-threaded
environment.

• Design: Create resource-locking sanity checks. If no inherent locking mechanisms exist, use flags
and signals to enforce your own blocking scheme when resources are being used by other threads
of execution.

Examples
In C/C++:

int foo = 0;
 int storenum(int num)
 {
 static int counter = 0;
 counter++;
 if (num > foo)
 foo = num;
 return foo;

Version Date: 31 March 2006
116

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

 }

In Java:

public classRace {
 static int foo = 0;

 public static void main() {
 new Threader().start();
 foo = 1;
 }

 public static class Threader extends Thread {
 public void run() {
 System.out.println(foo);
 }
 }
}

Related problems
Not available.

Version Date: 31 March 2006
117

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Reflection attack in an auth protocol

Overview
Simple authentication protocols are subject to reflection attacks if a malicious user can use the target
machine to impersonate a trusted user.

Consequences
• Authentication: The primary result of reflection attacks is successful authentication with a target

machine — as an impersonated user.

Exposure period
• Design: Protocol design may be employed more intelligently in order to remove the possibility of

reflection attacks.

Platform
• Languages: Any

• Platforms: All

Required resources
Any

Severity
Medium to High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Use different keys for the initiator and responder or of a different type of challenge for the

initiator and responder.

Discussion
Reflection attacks capitalize on mutual authentication schemes in order to trick the target into revealing
the secret shared between it and another valid user.

In a basic mutual-authentication scheme, a secret is known to both the valid user and the server; this
allows them to authenticate. In order that they may verify this shared secret without sending it plainly over
the wire, they utilize a Diffie-Hellman-style scheme in which they each pick a value, then request the hash
of that value as keyed by the shared secret.

In a reflection attack, the attacker claims to be a valid user and requests the hash of a random value from
the server. When the server returns this value and requests its own value to be hashed, the attacker
opens another connection to the server. This time, the hash requested by the attacker is the value which
the server requested in the first connection. When the server returns this hashed value, it is used in the
first connection, authenticating the attacker successfully as the impersonated valid user.

Version Date: 31 March 2006
118

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Examples
In C/C++:

unsigned char *simple_digest(char *alg,char *buf,unsigned int len, int *olen) {
 const EVP_MD *m;
 EVP_MD_CTX ctx;
 unsigned char *ret;

 OpenSSL_add_all_digests();
 if (!(m = EVP_get_digestbyname(alg)))
 return NULL;
 if (!(ret = (unsigned char*)malloc(EVP_MAX_MD_SIZE)))
 return NULL;
 EVP_DigestInit(&ctx, m);
 EVP_DigestUpdate(&ctx,buf,len);
 EVP_DigestFinal(&ctx,ret,olen);
 return ret;
}

unsigned char *generate_password_and_cmd(char *password_and_cmd){
 simple_digest("sha1",password,strlen(password_and_cmd)...);
}

 In Java:

String command = new String(“some cmd to execute & the password”)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(command.getBytes(“UTF-8”));
byte[] digest = encer.digest();

Related problems
• Using a broken or risky cryptographic algorithm

Version Date: 31 March 2006
119

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Capture-replay

Overview
A capture-relay protocol flaw exists when it is possible for a malicious user to sniff network traffic and
replay it to the server in question to the same effect as the original message (or with minor changes).

Consequences
• Authorization: Messages sent with a capture-relay attack allow access to resources which are not

otherwise accessible without proper authentication.

Exposure period
• Design: Prevention of capture-relay attacks must be performed at the time of protocol design.

Platform
• Languages: All

• Operating platforms: All

Required resources
Network proximity: Some ability to sniff from, and inject messages into, a stream would be required to
capitalize on this flaw.

Severity
Medium to High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Utilize some sequence or time stamping functionality along with a checksum which takes

this into account in order to ensure that messages can be parsed only once.

Discussion
Capture-relay attacks are common and can be difficult to defeat without cryptography. They are a subset
of network injection attacks that rely listening in on previously sent valid commands, then changing them
slightly if necessary and resending the same commands to the server.

Since any attacker who can listen to traffic can see sequence numbers, it is necessary to sign messages
with some kind of cryptography to ensure that sequence numbers are not simply doctored along with con-
tent.

Examples
In C/C++:

unsigned char *simple_digest(char *alg,char *buf,unsigned int len, int *olen) {
 const EVP_MD *m;

Version Date: 31 March 2006
120

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

 EVP_MD_CTX ctx;
 unsigned char *ret;

 OpenSSL_add_all_digests();
 if (!(m = EVP_get_digestbyname(alg)))
 return NULL;
 if (!(ret = (unsigned char*)malloc(EVP_MAX_MD_SIZE)))
 return NULL;
 EVP_DigestInit(&ctx, m);
 EVP_DigestUpdate(&ctx,buf,len);
 EVP_DigestFinal(&ctx,ret,olen);
 return ret;
}

unsigned char *generate_password_and_cmd(char *password_and_cmd){
 simple_digest("sha1",password,strlen(password_and_cmd)...);
}

 In Java:

String command = new String(“some cmd to execute & the password”)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(command.getBytes(“UTF-8”));
byte[] digest = encer.digest();

Related problems
Not available.

Version Date: 31 March 2006
121

CLASP Vulnerability View — Category 4: Protocol Errors

Category 4: Protocol Errors
This section introduces the vulnerability Problem Types organized under the problem type “protocol
errors.”

Failure to follow chain of trust in certificate validation

Overview
Failure to follow the chain of trust when validating a certificate results in the trust of a given resource
which has no connection to trusted root-certificate entities.

Consequences
• Authentication: Exploitation of this flaw can lead to the trust of data that may have originated with a

spoofed source.

• Accountability: Data, requests, or actions taken by the attacking entity can be carried out as a
spoofed benign entity.

Exposure period
• Design: Proper certificate checking should be included in the system design.

• Implementation: If use of SSL (or similar) is simply mandated by design and requirements, it is the
implementor’s job to properly use the API and all its protections.

Platform
• Languages: All

• Platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Design: Ensure that proper certificate checking is included in the system design.

• Implementation: Understand, and properly implement all checks necessary to ensure the integrity of
certificate trust integrity.

Version Date: 31 March 2006
122

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
If a system fails to follow the chain of trust of a certificate to a root server, the certificate looses all useful-
ness as a metric of trust. Essentially, the trust gained from a certificate is derived from a chain of trust —
with a reputable trusted entity at the end of that list. The end user must trust that reputable source, and
this reputable source must vouch for the resource in question through the medium of the certificate.

In some cases, this trust traverses several entities who vouch for one another. The entity trusted by the
end user is at one end of this trust chain, while the certificate wielding resource is at the other end of the
chain.

If the user receives a certificate at the end of one of these trust chains and then proceeds to check only
that the first link in the chain, no real trust has been derived, since you must traverse the chain to a
trusted source to verify the certificate.

Examples
if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN==foo))
//do stuff

Related problems
• Key exchange without entity authentication

• Failure to validate host-specific certificate data

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
123

CLASP Vulnerability View — Category 4: Protocol Errors

Key exchange without entity authentication

Overview
Performing a key exchange without verifying the identity of the entity being communicated with will pre-
serve the integrity of the information sent between the two entities; this will not, however, guarantee the
identity of end entity.

Consequences
• Authentication: No authentication takes place in this process, bypassing an assumed protection of

encryption

• Confidentiality: The encrypted communication between a user and a trusted host may be subject to
a “man-in-the-middle” sniffing attack

Exposure period
• Design: Proper authentication should be included in the system design.

• Design: Use a language which provides an interface to safely handle this exchange.

• Implementation: If use of SSL (or similar) is simply mandated by design and requirements, it is the
implementor’s job to properly use the API and all its protections.

Platform
• Languages: Any language which does not provide a framework for key exchange.

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Ensure that proper authentication is included in the system design.

• Implementation: Understand and properly implement all checks necessary to ensure the identity of
entities involved in encrypted communications.

Discussion
Key exchange without entity authentication may lead to a set of attacks known as “man-in-the-middle”
attacks. These attacks take place through the impersonation of a trusted server by a malicious server. If
the user skips or ignores the failure of authentication, the server may request authentication information
from the user and then use this information with the true server to either sniff the legitimate traffic
between the user and host or simply to log in manually with the user’s credentials.

Version Date: 31 March 2006
124

CLASP Vulnerability View — Category 4: Protocol Errors

Examples
Many systems have used Diffie-Hellman key exchange without authenticating the entities exchanging
keys, leading to man-in-the-middle attacks. Many people using SSL/TLS skip the authentication (often
unknowingly).

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate host-specific certificate data

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
125

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to validate host-specific certificate data

Overview
The failure to validate host-specific certificate data may mean that, while the certificate read was valid, it
was not for the site originally requested.

Consequences
• Integrity: The data read from the system vouched for by the certificate may not be from the

expected system.

• Authentication: Trust afforded to the system in question — based on the expired certificate — may
allow for spoofing or redirection attacks.

Exposure period
• Design: Certificate verification and handling should be performed in the design phase.

Platform
• Language: All

• Operating platform: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Check for expired certificates and provide the user with adequate information about the

nature of the problem and how to proceed.

Discussion
If the host-specific data contained in a certificate is not checked, it may be possible for a redirection or
spoofing attack to allow a malicious host with a valid certificate to provide data, impersonating a trusted
host.

While the attacker in question may have a valid certificate, it may simply be a valid certificate for a
different site. In order to ensure data integrity, we must check that the certificate is valid and that it
pertains to the site that we wish to access.

Examples
if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || X509_V_ERR_SUBJECT_ISSUER_MISMATCH==foo))

Version Date: 31 March 2006
126

CLASP Vulnerability View — Category 4: Protocol Errors

//do stuff

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
127

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to validate certificate expiration

Overview
The failure to validate certificate operation may result in trust being assigned to certificates which have
been abandoned due to age.

Consequences
• Integrity: The data read from the system vouched for by the expired certificate may be flawed due to

malicious spoofing.

• Authentication: Trust afforded to the system in question — based on the expired certificate — may
allow for spoofing attacks.

Exposure period
• Design: Certificate expiration handling should be performed in the design phase.

Platform
• Languages: All

• Platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Design: Check for expired certificates and provide the user with adequate information about the

nature of the problem and how to proceed.

Discussion
When the expiration of a certificate is not taken in to account, no trust has necessarily been conveyed
through it; therefore, all benefit of certificate is lost.

Examples
if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALID==foo))
//do stuff

Related problems
• Failure to follow chain of trust in certificate validation

Version Date: 31 March 2006
128

CLASP Vulnerability View — Category 4: Protocol Errors

• Failure to validate host-specific certificate data

• Key exchange without entity authentication

• Failure to check for certificate revocation

• Using a key past its expiration date

Version Date: 31 March 2006
129

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to check for certificate revocation

Overview
If a certificate is used without first checking to ensure it was not revoked, the certificate may be compro-
mised.

Consequences
• Authentication: Trust may be assigned to an entity who is not who it claims to be.

• Integrity: Data from an untrusted (and possibly malicious) source may be integrated.

• Confidentiality: Date may be disclosed to an entity impersonating a trusted entity, resulting in infor-
mation disclosure.

Exposure period
• Design: Checks for certificate revocation should be included in the design of a system.

• Design: One can choose to use a language which abstracts out this part of authentication and
encryption.

Platform
• Languages: Any language which does not abstract out this part of the process

• Operating platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Ensure that certificates are checked for revoked status.

Discussion
The failure to check for certificate revocation is a far more serious flaw than related certificate failures.
This is because the use of any revoked certificate is almost certainly malicious. The most common reason
for certificate revocation is compromise of the system in question, with the result that no legitimate
servers will be using a revoked certificate, unless they are sorely out of sync.

Examples
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)

Version Date: 31 March 2006
130

CLASP Vulnerability View — Category 4: Protocol Errors

... without a get_verify_results

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate host-specific certificate data

• Key exchange without entity authentication

• Failure to check for certificate expiration

Version Date: 31 March 2006
131

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to encrypt data

Overview
The failure to encrypt data passes up the guarantees of confidentiality, integrity, and accountability that
properly implemented encryption conveys.

Consequences
• Confidentiality: Properly encrypted data channels ensure data confidentiality.

• Integrity: Properly encrypted data channels ensure data integrity.

• Accountability: Properly encrypted data channels ensure accountability.

Exposure period
• Requirements specification: Encryption should be a requirement of systems that transmit data.

• Design: Encryption should be designed into the system at the architectural and design phases

Platform
• Languages: Any

• Operating platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: require that encryption be integrated into the system.

• Design: Ensure that encryption is properly integrated into the system design, not simply as a drop-in
replacement for sockets.

Discussion
Omitting the use of encryption in any program which transfers data over a network of any kind should be
considered on par with delivering the data sent to each user on the local networks of both the sender and
receiver.

Worse, this omission allows for the injection of data into a stream of communication between two parties
— with no means for the victims to separate valid data from invalid.

In this day of widespread network attacks and password collection sniffers, it is an unnecessary risk to
omit encryption from the design of any system which might benefit from it.

Version Date: 31 March 2006
132

CLASP Vulnerability View — Category 4: Protocol Errors

Examples
In C:

server.sin_family = AF_INET;
hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy((char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0)
 error("Connecting");
...

 while ((n=read(sock,buffer,BUFSIZE-1))!=-1){
 write(dfd,password_buffer,n);
.
.
.

In Java:

try {
 URL u = new URL("http://www.importantsecretsite.org/");
 HttpURLConnection hu = (HttpURLConnection) u.openConnection();
 hu.setRequestMethod("PUT");
 hu.connect();
 OutputStream os = hu.getOutputStream();
 hu.disconnect();
}
catch (IOException e) { //...

Related problems
Not available.

Version Date: 31 March 2006
133

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to add integrity check value

Overview
If integrity check values or “checksums” are omitted from a protocol, there is no way of determining if data
has been corrupted in transmission.

Consequences
• Integrity: Data that is parsed and used may be corrupted.

• Non-repudiation: Without a checksum it is impossible to determine if any changes have been made
to the data after it was sent.

Exposure period
• Design: Checksums are an aspect of protocol design and should be handled there.

• Implementation: Checksums must be properly created and added to the messages in the correct
manner to ensure that they are correct when sent.

Platform
• Languages: All

• Platforms: All

Required resources
Network proximity: Some ability to inject messages into a stream, or otherwise corrupt network traffic,
would be required to capitalize on this flaw.

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Add an appropriately sized checksum to the protocol, ensuring that data received may be

simply validated before it is parsed and used.

• Implementation: Ensure that the checksums present in the protocol design are properly
implemented and added to each message before it is sent.

Discussion
The failure to include checksum functionality in a protocol removes the first application-level check of data
that can be used. The end-to-end philosophy of checks states that integrity checks should be performed
at the lowest level that they can be completely implemented. Excluding further sanity checks and input
validation performed by applications, the protocol’s checksum is the most important level of checksum,
since it can be performed more completely than at any previous level and takes into account entire
messages, as opposed to single packets.

Version Date: 31 March 2006
134

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to add this functionality to a protocol specification, or in the implementation of that protocol, need-
lessly ignores a simple solution for a very significant problem and should never be skipped.

Examples
In C/C++:

int r,s;
struct hostent *h;
struct sockaddr_in rserv,lserv;
h=gethostbyname("127.0.0.1");
rserv.sin_family=h->h_addrtype;
memcpy((char *) &rserv.sin_addr.s_addr, h->h_addr_list[0]
 ,h->h_length);
rserv.sin_port= htons(1008);
s = socket(AF_INET,SOCK_DGRAM,0);

lserv.sin_family = AF_INET;
lserv.sin_addr.s_addr = htonl(INADDR_ANY);
lserv.sin_port = htons(0);

r = bind(s, (struct sockaddr *) &lserv,sizeof(lserv));
sendto(s,important_data,strlen(improtant_data)+1,0
 ,(struct sockaddr *) &rserv, sizeof(rserv));

In Java:

while(true) {
 DatagramPacket rp=new DatagramPacket(rData,rData.length);

 outSock.receive(rp);
 String in = new String(p.getData(),0, rp.getLength());
 InetAddress IPAddress = rp.getAddress();
 int port = rp.getPort();

 out = secret.getBytes();
 DatagramPacket sp =new DatagramPacket(out,out.length,
 IPAddress, port);
 outSock.send(sp);
 }
}

Related problems
• Failure to check integrity check value

Version Date: 31 March 2006
135

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to check integrity check value

Overview
If integrity check values or “checksums” are not validated before messages are parsed and used, there is
no way of determining if data has been corrupted in transmission.

Consequences
• Authentication: Integrity checks usually use a secret key that helps authenticate the data origin.

Skipping integrity checking generally opens up the possibility that new data from an invalid source
can be injected.

• Integrity: Data that is parsed and used may be corrupted.

• Non-repudiation: Without a checksum check, it is impossible to determine if any changes have been
made to the data after it was sent.

Exposure period
• Implementation: Checksums must be properly checked and validated in the implementation of mes-

sage receiving.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Ensure that the checksums present in messages are properly checked in accor-

dance with the protocol specification before they are parsed and used.

Discussion
The failure to validate checksums before use results in an unnecessary risk that can easily be mitigated
with very few lines of code. Since the protocol specification describes the algorithm used for calculating
the checksum, it is a simple matter of implementing the calculation and verifying that the calculated
checksum and the received checksum match.

If this small amount of effort is skipped, the consequences may be far greater.

Version Date: 31 March 2006
136

CLASP Vulnerability View — Category 4: Protocol Errors

Examples
In C/C++:

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {
 memset(msg, 0x0, MAX_MSG);
 clilen = sizeof(cli);
 if (inet_ntoa(cli.sin_addr)==...)
 n = recvfrom(sd, msg, MAX_MSG, 0,
 (struct sockaddr *) & cli, &clilen);
}

In Java:

while(true) {
 DatagramPacket packet
 = new DatagramPacket(data,data.length,IPAddress, port);
 socket.send(sendPacket);
}

Related problems
• Failure to add integrity check value

Version Date: 31 March 2006
137

CLASP Vulnerability View — Category 4: Protocol Errors

Use of hard-coded password

Overview
The use of a hard-coded password increases the possibility of password guessing tremendously.

Consequences
• Authentication: If hard-coded passwords are used, it is almost certain that malicious users will gain

access through the account in question.

Exposure period
• Design: For both front-end to back-end connections and default account settings, alternate

decisions must be made at design time.

Platform
• Languages: All

• Operating platforms: All

Required resources
Knowledge of the product or access to code.

Severity
High

Likelihood of exploit
Very high

Avoidance and mitigation
• Design (for default accounts): Rather than hard code a default username and password for first time

logins, utilize a “first login” mode which requires the user to enter a unique strong password.

• Design (for front-end to back-end connections): Three solutions are possible, although none are
complete. The first suggestion involves the use of generated passwords which are changed
automatically and must be entered at given time intervals by a system administrator. These
passwords will be held in memory and only be valid for the time intervals. Next, the passwords used
should be limited at the back end to only performing actions valid to for the front end, as opposed to
having full access. Finally, the messages sent should be tagged and checksummed with time
sensitive values so as to prevent replay style attacks.

Discussion
The use of a hard-coded password has many negative implications — the most significant of these being
a failure of authentication measures under certain circumstances.

On many systems, a default administration account exists which is set to a simple default password which
is hard-coded into the program or device. This hard-coded password is the same for each device or sys-
tem of this type and often is not changed or disabled by end users. If a malicious user comes across a

Version Date: 31 March 2006
138

CLASP Vulnerability View — Category 4: Protocol Errors

device of this kind, it is a simple matter of looking up the default password (which is freely available and
public on the internet) and logging in with complete access.

In systems which authenticate with a back-end service, hard-coded passwords within closed source or
drop-in solution systems require that the back-end service use a password which can be easily
discovered. Client-side systems with hard-coded passwords propose even more of a threat, since the
extraction of a password from a binary is exceedingly simple.

Examples
In C\C++:

int VerifyAdmin(char *password) {

 if (strcmp(password, “Mew!”)) {
 printf(“Incorrect Password!\n”);
 return(0)
 }

 printf(“Entering Diagnostic Mode…\n”);
 return(1);
}

In Java:

int VerifyAdmin(String password) {

 if (passwd.Eqauls(“Mew!”)) {
 return(0)
 }
//Diagnostic Mode
 return(1);
}

Every instance of this program can be placed into diagnostic mode with the same password. Even worse
is the fact that if this program is distributed as a binary-only distribution, it is very difficult to change that
password or disable this “functionality.”

Related problems
• Use of hard-coded cryptographic key

• Storing passwords in a recoverable format

Version Date: 31 March 2006
139

CLASP Vulnerability View — Category 4: Protocol Errors

Use of hard-coded cryptographic key

Overview
The use of a hard-coded cryptographic key tremendously increases the possibility that encrypted data
may be recovered

Consequences
• Authentication: If hard-coded cryptographic keys are used, it is almost certain that malicious users

will gain access through the account in question.

Exposure period
• Design: For both front-end to back-end connections and default account settings, alternate

decisions must be made at design time.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Prevention schemes mirror that of hard-coded password storage.

Discussion
The main difference between the use of hard-coded passwords and the use of hard-coded cryptographic
keys is the false sense of security that the former conveys. Many people believe that simply hashing a
hard-coded password before storage will protect the information from malicious users. However, many
hashes are reversible (or at least vulnerable to brute force attacks) — and further, many authentication
protocols simply request the hash itself, making it no better than a password.

Examples
In C\C++:

int VerifyAdmin(char *password) {
 if (strcmp(password,”68af404b513073584c4b6f22b6c63e6b”)) {
 printf(“Incorrect Password!\n”);
 return(0)
 }

Version Date: 31 March 2006
140

CLASP Vulnerability View — Category 4: Protocol Errors

 printf(“Entering Diagnostic Mode…\n”);
 return(1);
}

In Java:

int VerifyAdmin(String password) {

 if (passwd.Eqauls(“68af404b513073584c4b6f22b6c63e6b”)) {
 return(0)
 }
//Diagnostic Mode
 return(1);
}

Related problems
• Use of hard-coded password

Version Date: 31 March 2006
141

CLASP Vulnerability View — Category 4: Protocol Errors

Storing passwords in a recoverable format

Overview
The storage of passwords in a recoverable format makes them subject to password reuse attacks by
malicious users. If a system administrator can recover the password directly — or use a brute force
search on the information available to him —, he can use the password on other accounts.

Consequences
• Confidentiality: User’s passwords may be revealed.

• Authentication: Revealed passwords may be reused elsewhere to impersonate the users in
question.

Exposure period
• Design: The method of password storage and use is often decided at design time.

• Implementation: In some cases, the decision of algorithms for password encryption or hashing may
be left to the implementers.

Platform
• Languages: All

• Operating platforms: All

Required resources
Access to read stored password hashes

Severity
Medium to High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design / Implementation: Ensure that strong, non-reversible encryption is used to protect stored

passwords.

Discussion
The use of recoverable passwords significantly increases the chance that passwords will be used mali-
ciously. In fact, it should be noted that recoverable encrypted passwords provide no significant benefit
over plain-text passwords since they are subject not only to reuse by malicious attackers but also by
malicious insiders.

Examples
In C\C++:

int VerifyAdmin(char *password) {

Version Date: 31 March 2006
142

CLASP Vulnerability View — Category 4: Protocol Errors

 if (strcmp(compress(password), compressed_password)) {
 printf(“Incorrect Password!\n”);
 return(0)
 }

 printf(“Entering Diagnostic Mode…\n”);
 return(1);
}

In Java:

int VerifyAdmin(String password) {

 if (passwd.Eqauls(compress((compressed_password)) {
 return()0)
 }
//Diagnostic Mode
 return(1);
}

Related problems
• Use of hard-coded passwords

Version Date: 31 March 2006
143

CLASP Vulnerability View — Category 4: Protocol Errors

Trusting self-reported IP address

Overview
The use of IP addresses as authentication is flawed and can easily be spoofed by malicious users.

Consequences
• Authentication: Malicious users can fake authentication information, impersonating any IP address

Exposure period
• Design: Authentication methods are generally chosen during the design phase of development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Use other means of identity verification that cannot be simply spoofed.

Discussion
As IP addresses can be easily spoofed, they do not constitute a valid authentication mechanism.
Alternate methods should be used if significant authentication is necessary.

Examples
In C/C++:

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {
 memset(msg, 0x0, MAX_MSG);
 clilen = sizeof(cli);
 if (inet_ntoa(cli.sin_addr)==...)
 n = recvfrom(sd, msg, MAX_MSG, 0,
 (struct sockaddr *) & cli, &clilen);
}

Version Date: 31 March 2006
144

CLASP Vulnerability View — Category 4: Protocol Errors

In Java:

while(true) {
 DatagramPacket rp=new DatagramPacket(rData,rData.length);

 outSock.receive(rp);
 String in = new String(p.getData(),0, rp.getLength());
 InetAddress IPAddress = rp.getAddress();
 int port = rp.getPort();

 if ((rp.getAddress()==...) && (in==...)){
 out = secret.getBytes();
 DatagramPacket sp =new DatagramPacket(out,out.length,
 IPAddress, port);
 outSock.send(sp);
 }
}

Related problems
• Trusting self-reported DNS name

• Using the referer field for authentication

Version Date: 31 March 2006
145

CLASP Vulnerability View — Category 4: Protocol Errors

Trusting self-reported DNS name

Overview
The use of self-reported DNS names as authentication is flawed and can easily be spoofed by malicious
users.

Consequences
Authentication: Malicious users can fake authentication information by providing false DNS information.

Exposure period
• Design: Authentication methods are generally chosen during the design phase of development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Use other means of identity verification that cannot be simply spoofed.

Discussion
As DNS names can be easily spoofed or mis-reported, they do not constitute a valid authentication mech-
anism. Alternate methods should be used if the significant authentication is necessary.

In addition, DNS name resolution as authentication would — even if it was a valid means of
authentication — imply a trust relationship with the DNS servers used, as well as all of the servers they
refer to.

Examples
In C/C++:

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {
 memset(msg, 0x0, MAX_MSG);

Version Date: 31 March 2006
146

CLASP Vulnerability View — Category 4: Protocol Errors

 clilen = sizeof(cli);
 h=gethostbyname(inet_ntoa(cliAddr.sin_addr));
 if (h->h_name==...)
 n = recvfrom(sd, msg, MAX_MSG, 0,
 (struct sockaddr *) & cli, &clilen);
}

In Java:

while(true) {
 DatagramPacket rp=new DatagramPacket(rData,rData.length);

 outSock.receive(rp);
 String in = new String(p.getData(),0, rp.getLength());
 InetAddress IPAddress = rp.getAddress();
 int port = rp.getPort();

 if ((rp.getHostName()==...) && (in==...)){
 out = secret.getBytes();
 DatagramPacket sp =new DatagramPacket(out,out.length,
 IPAddress, port);
 outSock.send(sp);
 }
}

Related problems
• Trusting self-reported IP address

• Using referrer field for authentication

Version Date: 31 March 2006
147

CLASP Vulnerability View — Category 4: Protocol Errors

Using referrer field for authentication

Overview
The referrer field in HTTP requests can be easily modified and, as such, is not a valid means of message
integrity checking.

Consequences
• Authorization: Actions, which may not be authorized otherwise, can be carried out as if they were

validated by the server referred to.

• Accountability: Actions may be taken in the name of the server referred to.

Exposure period
• Design: Authentication methods are generally chosen during the design phase of development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: Use other means of authorization that cannot be simply spoofed.

Discussion
The referrer field in HTML requests can be simply modified by malicious users, rendering it useless as a
means of checking the validity of the request in question. In order to usefully check if a given action is
authorized, some means of strong authentication and method protection must be used.

Examples
In C/C++:

sock= socket(AF_INET, SOCK_STREAM, 0);
...
bind(sock, (struct sockaddr *)&server, len)
...
while (1)
newsock=accept(sock, (struct sockaddr *)&from, &fromlen);
pid=fork();

Version Date: 31 March 2006
148

CLASP Vulnerability View — Category 4: Protocol Errors

if (pid==0) {
 n = read(newsock,buffer,BUFSIZE);
...
if (buffer+...==Referer: http://www.foo.org/dsaf.html)
//do stuff

In Java:

public class httpd extends Thread{
 Socket cli;
 public httpd(Socket serv){
 cli=serv;
 start();
 }
 public static void main(String[]a){
 ...
 ServerSocket serv=new ServerSocket(8181);
 for(;;){
 new h(serv.accept());
 ...
 public void run(){
 try{
 BufferedReader reader
 =new BufferedReader(new InputStreamReader(cli.getInputStream()));
 //if i contains a the proper referer.

 DataOutputStream o=
 new DataOutputStream(c.getOutputStream());
 ...

Related problems
• Trusting self-reported IP address

• Using the referer field for authentication

Version Date: 31 March 2006
149

CLASP Vulnerability View — Category 4: Protocol Errors

Using a broken or risky cryptographic algorithm

Overview
The use of a broken or risky cryptographic algorithm is an unnecessary risk that may result in the disclo-
sure of sensitive information.

Consequences
• Confidentiality: The confidentiality of sensitive data may be compromised by the use of a broken or

risky cryptographic algorithm.

• Integrity: The integrity of sensitive data may be compromised by the use of a broken or risky crypto-
graphic algorithm.

• Accountability: Any accountability to message content preserved by cryptography may be subject to
attack.

Exposure period
• Design: The decision as to what cryptographic algorithm to utilize is generally made at design time.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium to High

Avoidance and mitigation
• Design: Use a cryptographic algorithm that is currently considered to be strong by experts in the

field.

Discussion
Since the state of cryptography advances so rapidly, it is common to find algorithms, which previously
were considered to be safe, currently considered unsafe. In some cases, things are discovered, or
processing speed increases to the degree that the cryptographic algorithm provides little more benefit
than the use of no cryptography at all.

Examples
In C/C++:

EVP_des_ecb();

Version Date: 31 March 2006
150

CLASP Vulnerability View — Category 4: Protocol Errors

In Java:

Cipher des=Cipher.getInstance("DES...);
des.initEncrypt(key2);

Related problems
• Failure to encrypt data

Version Date: 31 March 2006
151

CLASP Vulnerability View — Category 4: Protocol Errors

Using password systems

Overview
The use of password systems as the primary means of authentication may be subject to several flaws or
shortcomings, each reducing the effectiveness of the mechanism.

Consequences
• Authentication: The failure of a password authentication mechanism will almost always result in

attackers being authorized as valid users.

Exposure period
• Design: The period of development in which authentication mechanisms and their protections are

devised is the design phase.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: Use a zero-knowledge password protocol, such as SRP.

• Design: Ensure that passwords are sorted safely and are not reversible.

• Design: Implement password aging functionality that requires passwords be changed after a certain
point.

• Design: Use a mechanism for determining the strength of a password and notify the user of weak
password use.

• Design: Inform the user of why password protections are in place, how they work to protect data
integrity, and why it is important to heed their warnings.

Discussion
Password systems are the simplest and most ubiquitous authentication mechanisms. However, they are
subject to such well known attacks, and such frequent compromise that their use in the most simple
implementation is not practical. In order to protect password systems from compromise, the following
should be noted:

Version Date: 31 March 2006
152

CLASP Vulnerability View — Category 4: Protocol Errors

• Passwords should be stored safely to prevent insider attack and to ensure that — if a system is
compromised — the passwords are not retrievable. Due to password reuse, this information may be
useful in the compromise of other systems these users work with. In order to protect these
passwords, they should be stored encrypted, in a non-reversible state, such that the original text
password cannot be extracted from the stored value.

• Password aging should be strictly enforced to ensure that passwords do not remain unchanged for
long periods of time. The longer a password remains in use, the higher the probability that it has
been compromised. For this reason, passwords should require refreshing periodically, and users
should be informed of the risk of passwords which remain in use for too long.

• Password strength should be enforced intelligently. Rather than restrict passwords to specific con-
tent, or specific length, users should be encouraged to use upper and lower case letters, numbers,
and symbols in their passwords. The system should also ensure that no passwords are derived
from dictionary words.

Examples
unsigned char *check_passwd(char *plaintext){
 ctext=simple_digest("sha1",plaintext,strlen(plaintext)...);
 if (ctext==secret_password())
 // Log me in
}

In Java:

String plainText = new String(plainTextIn)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
if (digest==secret_password())
//log me in

Related problems
• Using single-factor authentication

Version Date: 31 March 2006
153

CLASP Vulnerability View — Category 4: Protocol Errors

Using single-factor authentication

Overview
The use of single-factor authentication can lead to unnecessary risk of compromise when compared with
the benefits of a dual-factor authentication scheme.

Consequences
• Authentication: If the secret in a single-factor authentication scheme gets compromised, full

authentication is possible.

Exposure period
• Design: Authentication methods are determined at design time.

Platform
• Languages: All

• Operating platform: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Use multiple independent authentication schemes, which ensures that — if one of the meth-

ods is compromised — the system itself is still likely safe from compromise.

Discussion
While the use of multiple authentication schemes is simply piling on more complexity on top of authentica-
tion, it is inestimably valuable to have such measures of redundancy.

The use of weak, reused, and common passwords is rampant on the internet. Without the added protec-
tion of multiple authentication schemes, a single mistake can result in the compromise of an account. For
this reason, if multiple schemes are possible and also easy to use, they should be implemented and
required.

Examples
In C:

unsigned char *check_passwd(char *plaintext){
 ctext=simple_digest("sha1",plaintext,strlen(plaintext)...);
 if (ctext==secret_password())
 // Log me in

Version Date: 31 March 2006
154

CLASP Vulnerability View — Category 4: Protocol Errors

}

In Java:

String plainText = new String(plainTextIn)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
if (digest==secret_password())
 //log me in

Related problems
• Using password systems

Version Date: 31 March 2006
155

CLASP Vulnerability View — Category 4: Protocol Errors

Not allowing password aging

Overview
If no mechanism is in place for managing password aging, users will have no incentive to update pass-
words in a timely manner.

Consequences
• Authentication: As passwords age, the probability that they are compromised grows.

Exposure period
• Design: Support for password aging mechanisms must be added in the design phase of develop-

ment.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Very Low

Avoidance and mitigation
• Design: Ensure that password aging functionality is added to the design of the system, including an

alert previous to the time the password is considered obsolete, and useful information for the user
concerning the importance of password renewal, and the method.

Discussion
The recommendation that users change their passwords regularly and do not reuse passwords is
universal among security experts. In order to enforce this, it is useful to have a mechanism that notifies
users when passwords are considered old and that requests that they replace them with new, strong
passwords.

In order for this functionality to be useful, however, it must be accompanied with documentation which
stresses how important this practice is and which makes the entire process as simple as possible for the
user.

Examples
• A common example is not having a system to terminate old employee accounts.

• Not having a system for enforcing the changing of passwords every certain period.

Version Date: 31 March 2006
156

CLASP Vulnerability View — Category 4: Protocol Errors

Related problems

• Using password systems

• Allowing password aging

• Using a key past its expiration date

Version Date: 31 March 2006
157

CLASP Vulnerability View — Category 4: Protocol Errors

Allowing password aging

Overview
Allowing password aging to occur unchecked can result in the possibility of diminished password integrity.

Consequences
• Authentication: As passwords age, the probability that they are compromised grows.

Exposure period
• Design: Support for password aging mechanisms must be added in the design phase of develop-

ment.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Very Low

Avoidance and mitigation
• Design: Ensure that password aging is limited so that there is a defined maximum age for

passwords and so that the user is notified several times leading up to the password expiration.

Discussion
Just as neglecting to include functionality for the management of password aging is dangerous, so is
allowing password aging to continue unchecked. Passwords must be given a maximum life span, after
which a user is required to update with a new and different password.

Examples
• A common example is not having a system to terminate old employee accounts.

• Not having a system for enforcing the changing of passwords every certain period.

Related problems
• Not allowing for password aging

Version Date: 31 March 2006
158

CLASP Vulnerability View — Category 4: Protocol Errors

Reusing a nonce, key pair in encryption

Overview
Nonces should be used for the present occasion and only once.

Consequences
• Authentication: Potentially a replay attack, in which an attacker could send the same data twice,

could be crafted if nonces are allowed to be reused. This could allow a user to send a message
which masquerades as a valid message from a valid user.

Exposure period
• Design: Mitigating technologies such as safe string libraries and container abstractions could be

introduced.

• Implementation: Many traditional techniques can be used to create a new nonce from different
sources.

• Implementation: Reusing nonces nullifies the use of nonces.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Refuse to reuse nonce values.

• Implementation: Use techniques such as requiring incrementing, time based and/or challenge
response to assure uniqueness of nonces.

Discussion
Nonces, are often bundled with a key in a communication exchange to produce a new session key for
each exchange.

Version Date: 31 March 2006
159

CLASP Vulnerability View — Category 4: Protocol Errors

Examples
In C/C++:

#include <openssl/sha.h>
#include <stdio.h>
#include <string.h>
#include <memory.h>

int main(){
 char *paragraph = NULL;
 char *data = NULL;
 char *nonce = “bad“;
 char *password = “secret”;

 parsize=strlen(nonce)+strlen(password);
 paragraph=(char*)malloc(para_size);
 strncpy(paragraph,nonce,strlen(nonce));
 strcpy(paragraph,password,strlen(password));

 data=(unsigned char*)malloc(20);
 SHA1((const unsigned char*)paragraph,parsize,(unsigned char*)data);

 free(paragraph);
 free(data);
//Do something with data//
 return 0;
}

In Java:

String command = new String(“some command to execute”)
MessageDigest nonce = MessageDigest.getInstance("SHA");
nonce.update(String.valueOf(“bad nonce”);
byte[] nonce = nonce.digest();

MessageDigest password = MessageDigest.getInstance("SHA");
password.update(nonce + “secretPassword”);
byte[] digest = password.digest();
//do somethign with digest//

Related problems
Not available.

Version Date: 31 March 2006
160

CLASP Vulnerability View — Category 4: Protocol Errors

Using a key past its expiration date

Overview
The use of a cryptographic key or password past its expiration date diminishes its safety significantly.

Consequences
• Authentication: The cryptographic key in question may be compromised, providing a malicious user

with a method for authenticating as the victim.

Exposure period
• Design: The handling of key expiration should be considered during the design phase — largely

pertaining to user interface design.

• Run time: Users are largely responsible for the use of old keys.

Platform
• Languages: All

• Platforms: All

Required resources
Any

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Design: Adequate consideration should be put in to the user interface in order to notify users previ-

ous to the key’s expiration, to explain the importance of new key generation and to walk users
through the process as painlessly as possible.

• Run time: Users must heed warnings and generate new keys and passwords when they expire.

Discussion
While the expiration of keys does not necessarily ensure that they are compromised, it is a significant
concern that keys which remain in use for prolonged periods of time have a decreasing probability of
integrity.

For this reason, it is important to replace keys within a period of time proportional to their strength.

Examples
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)

Version Date: 31 March 2006
161

CLASP Vulnerability View — Category 4: Protocol Errors

 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALID==foo))
//do stuff

Related problems
• Failure to check for certificate expiration

Version Date: 31 March 2006
162

CLASP Vulnerability View — Category 4: Protocol Errors

Not using a random IV with CBC mode

Overview
Not using a random initialization vector with Cipher Block Chaining (CBC) Mode causes algorithms to be
susceptible to dictionary attacks.

Consequences
• Confidentiality: If the CBC is not properly initialized, data which is encrypted can be compromised

and therefore be read.

• Integrity: If the CBC is not properly initialized, encrypted data could be tampered with in transfer or if
it accessible.

• Accountability: Cryptographic based authentication systems could be defeated.

Exposure period
• Implementation: Many logic errors can lead to this condition if multiple data streams have a

common beginning sequences.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
.Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Integrity: It is important to properly initialize CBC operating block ciphers or there use is lost.

Discussion
CBC is the most commonly used mode of operation for a block cipher. It solves electronic code book’s
dictionary problems by XORing the ciphertext with plaintext. If it used to encrypt multiple data streams,
dictionary attacks are possible, provided that the streams have a common beginning sequence.

Examples
In C/C++:

#include <openssl/evp.h>

EVP_CIPHER_CTX ctx;

Version Date: 31 March 2006
163

CLASP Vulnerability View — Category 4: Protocol Errors

char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];

RAND_bytes(key, b);
memset(iv,0,EVP_MAX_IV_LENGTH);
EVP_EncryptInit(&ctx,EVP_bf_cbc(), key,iv);

In Java:

public class SymmetricCipherTest {
 public static void main() {
 byte[] text =”Secret".getBytes();
 byte[] iv ={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

 KeyGenerator kg = KeyGenerator.getInstance("DES");
 kg.init(56);
 SecretKey key = kg.generateKey();

 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
 IvParameterSpec ips = new IvParameterSpec(iv);
 cipher.init(Cipher.ENCRYPT_MODE, key, ips);
 return cipher.doFinal(inpBytes);
 }
 }

Related problems
Not available.

Version Date: 31 March 2006
164

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to protect stored data from modification

Overview
Data should be protected from direct modification.

Consequences
• Integrity: The object could be tampered with.

Exposure period
• Design through Implementation: At design time it is important to reduce the total amount of accessi-

ble data.

• Implementation: Most implementation level issues come from a lack of understanding of the lan-
guage modifiers.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design through Implementation: Use private members, and class accessor methods to their full

benefit. This is the recommended mitigation. Make all public members private, and — if external
access is necessary — use accessor functions to do input validation on all values.

• Implementation: Data should be private, static, and final whenever possible This will assure that
your code is protected by instantiating early, preventing access and preventing tampering.

• Implementation: Use sealed classes. Using sealed classes protects object-oriented encapsulation
paradigms and therefore protects code from being extended in unforeseen ways.

• Implementation: Use class accessor methods to their full benefit. Use the accessor functions to do
input validation on all values intended for private values.

Discussion
One of the main advantages of object-oriented code is the ability to limit access to fields and other
resources by way of accessor functions. Utilize accessor functions to make sure your objects are well-
formed.

Version Date: 31 March 2006
165

CLASP Vulnerability View — Category 4: Protocol Errors

Final provides security by only allowing non-mutable objects to be changed after being set. However, only
objects which are not extended can be made final.

Examples
In C++:

public:
 int someNumberPeopleShouldntMessWith;

In Java:

private class parserProg {
 public stringField;
}

Another set of Examples are:

In C/C++:

private:
 int someNumber;

public:
 void writeNum(int newNum) {
 someNumber = newNum;
 }

In Java:

public class eggCorns {
 private String acorns;
 public void misHear(String name){
 acorns=name;
 }
}

Related problems
Not available.

Version Date: 31 March 2006
166

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to provide confidentiality for stored data

Overview
Non-final public fields should be avoided, if possible, as the code is easily tamperable.

Consequences
• Integrity: The object could potentially be tampered with.

• Confidentiality: The object could potentially allow the object to be read.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Make any non-final field private.

Discussion
If a field is non-final and public, it can be changed once their value is set by any function which has
access to the class which contains the field.

Examples
In C++:

public int password r = 45;

In Java:

public String r = new String("My Password");

Now this field is readable from any function and can be changed by any function.

Related problems
Not available.

Version Date: 31 March 2006
167

CLASP Vulnerability View — Category 5: General Logic Errors

Category 5: General Logic Errors
This section introduces the vulnerability Problem Types organized under the problem type “general logic
errors.”

Ignored function return value

Overview
If a functions return value is not checked, it could have failed without any warning.

Consequences
• Integrity: The data which was produced as a result of a function could be in a bad state.

Exposure period
Implementation: This flaw is a simple logic issue, introduced entirely at implementation time.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Implementation: Check all functions which return a value

• Implementation: When designing any function make sure you return a value or throw an exception
in case of an error

• discussion

Important and common functions will return some value about the success of its actions. This will alert the
program whether or not to handle any errors caused by that function

Example
In C/C++:

malloc(sizeof(int)*4);

In Java:

Version Date: 31 March 2006
168

CLASP Vulnerability View — Category 5: General Logic Errors

Although some Java members may use return values to state there status, it is preferable to use excep-
tions.

Related problems
Not available.

Version Date: 31 March 2006
169

CLASP Vulnerability View — Category 5: General Logic Errors

Missing parameter

Overview
If too few arguments are sent to a function, the function will still pop the expected number of arguments
from the stack. Potentially, a variable number of arguments could be exhausted in a function as well.

Consequences
• Authorization: There is the potential for arbitrary code execution with privileges of the vulnerable

program if function parameter list is exhausted.

• Availability: Potentially a program could fail if it needs more arguments then are available.

Exposure period
• Implementation: This is a simple logical flaw created at implementation time.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Forward declare all functions. This is the recommended solution. Properly forward

declaration of all used functions will result in a compiler error if too few arguments are sent to a
function.

Discussion
This issue can be simply combated with the use of proper build process.

Examples
In C or C++:

foo_funct(one, two);
…
void foo_funct(int one, int two, int three) {
 printf(“1) %d\n2) %d\n3) %d\n”, one, two, three);
}

Version Date: 31 March 2006
170

CLASP Vulnerability View — Category 5: General Logic Errors

This can be exploited to disclose information with no work whatsoever. In fact, each time this function is
run, it will print out the next 4 bytes on the stack after the two numbers sent to it.

Another example in C/C++ is:

void some_function(int foo, ...) {
 int a[3], i;
 va_list ap;

 va_start(ap, foo);
 for (i = 0; i < sizeof(a) / sizeof(int); i++)
 a[i] = va_arg(ap, int);
 va_end(ap);
}

int main(int argc, char *argv[]) {
 some_function(17, 42);
}

Related problems
Not available.

Version Date: 31 March 2006
171

CLASP Vulnerability View — Category 5: General Logic Errors

Misinterpreted function return value

Overview
If a function’s return value is not properly checked, the function could have failed without proper acknowl-
edgement.

Consequences
• Integrity: The data — which was produced as a result of an improperly checked return value of a

function — could be in a bad state.

Exposure period
• Requirements specification: The choice could be made to use a language that uses exceptions

rather than return values to handle status.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack, or mis-
use, of mitigating technologies.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Requirements specification: Use a language or compiler that uses exceptions and requires the

catching of those exceptions.

• Implementation: Properly check all functions which return a value.

• Implementation: When designing any function make sure you return a value or throw an exception
in case of an error.

discussion
Important and common functions will return some value about the success of its actions. This will alert the
program whether or not to handle any errors caused by that function.

Examples
In C/C++

Version Date: 31 March 2006
172

CLASP Vulnerability View — Category 5: General Logic Errors

if (malloc(sizeof(int*4) < 0)
 perror(“Failure”); //should have checked if the call returned 0

Related problems
Not available.

Version Date: 31 March 2006
173

CLASP Vulnerability View — Category 5: General Logic Errors

Uninitialized variable

Overview
Using the value of an unitialized variable is not safe.

Consequences
• Integrity: Initial variables usually contain junk, which can not be trusted for consistency. This can

cause a race condition if a lock variable check passes when it should not.

• Authorization: Strings which do are not initialized are especially dangerous, since many functions
expect a null at the end — and only at the end — of a string.

Exposure period
• Implementation: Use of unitialized variables is a logical bug.

• Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.

• Design: Mitigating technologies such as safe string libraries and container abstractions could be
introduced.

Platform
Languages: C/C++

Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Assign all variables to an initial variable.

• Pre-design through Build: Most compilers will complain about the use of unitialized variables if warn-
ings are turned on.

• Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.

• Design: Mitigating technologies such as safe string libraries and container abstractions could be
introduced.

Version Date: 31 March 2006
174

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
Before variables are initialized, they generally contain junk data of what was left in the memory that the
variable takes up. This data is very rarely useful, and it is generally advised to pre-initialize variables or
set them to their first values early.

If one forget — in the C language — to initialize, for example a char *, many of the simple string libraries
may often return incorrect results as they expecting the null termination to be at the end of a string.

Examples
In C\C++, or Java:

int foo;
void bar(){
 if (foo==0) /.../
 /../
 }

Related problems
Not available.

Version Date: 31 March 2006
175

CLASP Vulnerability View — Category 5: General Logic Errors

Duplicate key in associative list (alist)

Overview
Associative lists should always have unique keys, since having non-unique keys can often be mistaken
for an error.

Consequences
Unspecified.

Exposure period
• Design: The use of a safe data structure could be used.

Platform
• Languages: Although alists generally are used only in languages like Common Lisp — due to the

functionality overlap with hash tables — an alist could appear in a language like C or C++.

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Design: Use a hash table instead of an alist.

• Design: Use an alist which checks the uniqueness of hash keys with each entry before inserting the
entry.

Discussion
A duplicate key entry — if the alist is designed properly — could be used as a constant time replace func-
tion. However, duplicate key entries could be inserted by mistake. Because of this ambiguity, duplicate
key entries in an association list are not recommended and should not be allowed.

Examples
In Python:

alist = []
while (foo()):
 #now assume there is a string data with a key basename
 queue.append(basename,data)
queue.sort()

Version Date: 31 March 2006
176

CLASP Vulnerability View — Category 5: General Logic Errors

Since basename is not necessarily unique, this may not sort how one would like it to be.

Related problems
Not available.

Version Date: 31 March 2006
177

CLASP Vulnerability View — Category 5: General Logic Errors

Deletion of data-structure sentinel

Overview
The accidental deletion of a data structure sentinel can cause serious programing logic problems.

Consequences
• Availability: Generally this error will cause the data structure to not work properly.

• Authorization: If a control character, such as NULL is removed, one may cause resource access
control problems.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Mitigating technologies such as safe-string libraries and container abstractions could be
introduced.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed depending on
environment.

Required resources
Any

Severity
Very High

Likelihood of exploit
High to Very High

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete solution.

• Pre-design through Build: Compiler-based canary mechanisms such as StackGuard, ProPolice and
the Microsoft Visual Studio / GS flag. Unless this provides automatic bounds checking, it is not a
complete solution.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Version Date: 31 March 2006
178

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
Often times data-structure sentinels are used to mark structure of the data structure. A common example
of this is the null character at the end of strings. Another common example is linked lists which may
contain a sentinel to mark the end of the list.

It is, of course, dangerous to allow this type of control data to be easily accessible. Therefore, it is impor-
tant to protect from the deletion or modification outside of some wrapper interface which provides safety.

Examples
In C/C++:

char *foo;
int counter;
foo=malloc(sizeof(char)*10);
for (counter=0;counter!=14;counter++){
 foo[counter]='a';
 printf("%s\n",foo);
}

Related problems
Not available.

Version Date: 31 March 2006
179

CLASP Vulnerability View — Category 5: General Logic Errors

Addition of data-structure sentinel

Overview
The accidental addition of a data-structure sentinel can cause serious programing logic problems.

Consequences
• Availability: Generally this error will cause the data structure to not work properly by truncating the

data.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Design: Mitigating technologies such as safe string libraries and container abstractions could be
introduced.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed depending on
environment.

Required resources
Any

Severity
Very High

Likelihood of exploit
High to Very High

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete solution.

• Pre-design through Build: Compiler-based canary mechanisms such as StackGuard, ProPolice, and
Microsoft Visual Studio / GS flag. Unless this provides automatic bounds checking, it is not a com-
plete solution.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Version Date: 31 March 2006
180

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
Data-structure sentinels are often used to mark structure of the data structure. A common example of this
is the null character at the end of strings. Another common example is linked lists which may contain a
sentinel to mark the end of the list.

It is, of course dangerous, to allow this type of control data to be easily accessible. Therefore, it is impor-
tant to protect from the addition or modification outside of some wrapper interface which provides safety.

By adding a sentinel, one potentially could cause data to be truncated early.

Examples
In C/C++:

char *foo;
foo=malloc(sizeof(char)*4);
foo[0]='a';
foo[1]='a';
foo[2]=0;
foo[3]='c';
printf("%c %c %c %c %c \n",foo[0],foo[1],foo[2],foo[3]);
printf("%s\n",foo);

Version Date: 31 March 2006
181

CLASP Vulnerability View — Category 5: General Logic Errors

Use of sizeof() on a pointer type

Overview
Running sizeof() on a malloced pointer type will always return the wordsize/8.

Consequences
Authorization: This error can often cause one to allocate a buffer much smaller than what is needed and
therefore other problems like a buffer overflow can be caused.

Exposure period
• Implementation: This is entirely an implementation flaw.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Unless one is trying to leverage running sizeof() on a pointer type to gain some

platform independence or if one is mallocing a variable on the stack, this should not be done.

Discussion
One can in fact use the sizeof() of a pointer as useful information. An obvious case is to find out the word-
size on a platform. More often than not, the appearance of sizeof(pointer)

Examples
In C/C++:

#include <stdiob.h>

int main(){
 void *foo;
 printf("%d\n",sizeof(foo)); //this will return wordsize/4
 return 0;
}

Version Date: 31 March 2006
182

CLASP Vulnerability View — Category 5: General Logic Errors

Related problems
Not available.

Version Date: 31 March 2006
183

CLASP Vulnerability View — Category 5: General Logic Errors

Unintentional pointer scaling

Overview
In C and C++, one may often accidentally refer to the wrong memory due to the semantics of when math
operations are implicitly scaled.

Consequences
Often results in buffer overflow conditions.

Exposure period
• Design: Could choose a language with abstractions for memory access.

• Implementation: This problem generally is due to a programmer error.

Platform
C and C++.

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Use a platform with high-level memory abstractions.

• Implementation: Always use array indexing instead of direct pointer manipulation.

• Other: Use technologies for preventing buffer overflows.

Discussion
Programmers will often try to index from a pointer by adding a number of bytes, even though this is
wrong, since C and C++ implicitly scale the operand by the size of the data type.

Examples
int *p = x;
char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But, adding 1 to p actually adds
sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms).

If the resulting memory address is read, this could potentially be an information leak. If it is a write, it could
be a security-critical write to unauthorized memory — whether or not it is a buffer overflow.

Note that the above code may also be wrong in other ways, particularly in a little endian environment.

Version Date: 31 March 2006
184

CLASP Vulnerability View — Category 5: General Logic Errors

Related problems
Not available.

Version Date: 31 March 2006
185

CLASP Vulnerability View — Category 5: General Logic Errors

Improper pointer subtraction

Overview
The subtraction of one pointer from another in order to determine size is dependant on the assumption
that both pointers exist in the same memory chunk.

Consequences
• Authorization: There is the potential for arbitrary code execution with privileges of the vulnerable

program.

Exposure period
• Pre-design through Build: The use of tools to prevent these errors should be used.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C/C++/C#

• Operating Platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design through Build: Most static analysis programs should be able to catch these errors.

• Implementation: Save an index variable. This is the recommended solution. Rather than subtract
pointers from one another, use an index variable of the same size as the pointers in question. Use
this variable “walk” from one pointer to the other and calculate the difference. Always sanity check
this number.

Related problems
Using the wrong operator

Overview
This is a common error given when an operator is used which does not make sense for the context
appears.

Version Date: 31 March 2006
186

CLASP Vulnerability View — Category 5: General Logic Errors

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is recommended.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack, of or
misuse, of mitigating technologies.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Pre-design through Build: Most static analysis programs should be able to catch these errors.

• Implementation: Save an index variable. This is the recommended solution. Rather than subtract
pointers from one another, use an index variable of the same size as the pointers in question. Use
this variable “walk” from one pointer to the other and calculate the difference. Always sanity check
this number.

Discussion
These types of bugs generally are the result of a typo. Although most of them can easily be found when
testing of the program, it is important that one correct these problems, since they almost certainly will
break the code.

Examples
In C:

char foo;
foo=a+c;

Related problems
Not available.

Version Date: 31 March 2006
187

CLASP Vulnerability View — Category 5: General Logic Errors

Assigning instead of comparing

Overview
In many languages the compare statement is very close in appearance to the assignment statement and
are often confused.

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is recommended.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack, or mis-
use, of mitigating technologies.

PlatforM
• Languages: C, C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Low

Avoidance and mitigation
• Pre-design: Through Build: Many IDEs and static analysis products will detect this problem.

• Implementation: Place constants on the left. If one attempts to assign a constant with a variable, the
compiler will of course produce an error.

Discussion
This bug is generally as a result of a typo and usually should cause obvious problems with program
execution. If the comparison is in an if statement, the if statement will always return the value of the right-
hand side variable.

Version Date: 31 March 2006
188

CLASP Vulnerability View — Category 5: General Logic Errors

Examples

void called(int foo){
 if (foo=1) printf("foo\n");
}
int main(){

 called(2);
 return 0;
}

Related problems
Not available.

Version Date: 31 March 2006
189

CLASP Vulnerability View — Category 5: General Logic Errors

Comparing instead of assigning

Overview
In many languages, the compare statement is very close in appearance to the assignment statement;
they are often confused.

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is recommended.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack, or mis-
use, of mitigating technologies.

Platform
• Languages: C, C++, Java

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Low

Avoidance and mitigation
• Pre-design: Through Build: Many IDEs and static analysis products will detect this problem.

Discussion
This bug is mainly a typo and usually should cause obvious problems with program execution. The
assignment will not always take place.

Version Date: 31 March 2006
190

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In C/C++/Java:

void called(int foo){
 foo==1;
 if (foo==1) printf("foo\n");
}
int main(){

 called(2);
 return 0;
}

Related problems
Not available.

Version Date: 31 March 2006
191

CLASP Vulnerability View — Category 5: General Logic Errors

Incorrect block delimitation

Overview
In some languages, forgetting to explicitly delimit a block can result in a logic error that can, in turn, have
security implications.

Consequences
This is a general logic error — with all the potential consequences that this entails.

Exposure period
• Implementation

Platform
C, C++, C#, Java

Required resources
Any

Severity
Varies

Likelihood of exploit
Low

Avoidance and mitigation
Implementation: Always use explicit block delimitation and use static-analysis technologies to enforce this
practice.

Discussion
In many languages, braces are optional for blocks, and — in a case where braces are omitted — it is pos-
sible to insert a logic error where a statement is thought to be in a block but is not. This is a common and
well known reliability error.

Examples
In this example, when the condition is true, the intention may be that both x and y run.

if (condition==true) x;
 y;

Related problems
Not available.

Version Date: 31 March 2006
192

CLASP Vulnerability View — Category 5: General Logic Errors

Omitted break statement

Overview
Omitting a break statement so that one may fall through is often indistinguishable from an error, and
therefore should not be used.

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is recommended.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies

Platform
• Languages: C/C++/Java

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design through Build: Most static analysis programs should be able to catch these errors.

• Implementation: The functionality of omitting a break statement could be clarified with an if state-
ment. This method is much safer.

Discussion
While most languages with similar constructs automatically run only a single branch, C and C++ are
different. This has bitten many programmers, and can lead to critical code executing in situations where it
should not.

Examples
Java:

{
 int month = 8;
 switch (month) {
 case 1: print("January");

Version Date: 31 March 2006
193

CLASP Vulnerability View — Category 5: General Logic Errors

 case 2: print("February");
 case 3: print("March");
 case 4: print("April");
 case 5: println("May");
 case 6: print("June");
 case 7: print("July");
 case 8: print("August");
 case 9: print("September");
 case 10: print("October");
 case 11: print("November");
 case 12: print("December");
 }
 println(" is a great month");
 }

C/C++:

Is identical if one replaces print with printf or cout.

Now one might think that if they just tested case12, it will display that the respective month “is a great
month.” However, if one tested November, one notice that it would display “November December is a
great month.”

Related problems
Not available.

Version Date: 31 March 2006
194

CLASP Vulnerability View — Category 5: General Logic Errors

Improper cleanup on thrown exception

Overview
Causing a change in flow, due to an exception, can often leave the code in a bad state.

Consequences
• Implementation: The code could be left in a bad state.

Exposure period
• Implementation: Many logic errors can lead to this condition.

Platform
• Languages: Java, C, C# or any language which can throw an exception.

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: If one breaks from a loop or function by throwing an exception, make sure that

cleanup happens or that you should exit the program. Use throwing exceptions sparsely.

Discussion
Often, when functions or loops become complicated, some level of cleanup in the beginning to the end is
needed. Often, since exceptions can disturb the flow of the code, one can leave a code block in a bad
state.

Examples
In C++/Java:

public class foo {
 public static final void main(String args[]) {
 boolean returnValue;
 returnValue=doStuff();
 }
 public static final boolean doStuff() {
 boolean threadLock;
 boolean truthvalue=true;

 try {

Version Date: 31 March 2006
195

CLASP Vulnerability View — Category 5: General Logic Errors

 while(//check some condition){
 threadLock=true;
 //do some stuff to truthvalue
 threadLock=false;
 }
 } catch (Exception e){
 System.err.println("You did something bad");
 if (something) return truthvalue;
 }
 return truthvalue;
 }
}

In this case, you may leave a thread locked accidentally.

Related problems
Not available.

Version Date: 31 March 2006
196

CLASP Vulnerability View — Category 5: General Logic Errors

Uncaught exception

Overview
When an exception is thrown and not caught, the process has given up an opportunity to decide if a given
failure or event is worth a change in execution.

Consequences
Undefined.

Exposure period
• Requirements specification: The choice could be made to use a language that is resistant to this

issues.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack, or mis-
use, of mitigating technologies. Generally this problem is either caused by using a foreign API or an
API which the programmer is not familiar with.

Platform
• Languages: Java, C++, C#, or any language which has exceptions.

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements Specification: The choice between a language which has named or unnamed excep-

tions needs to be done. While unnamed exceptions exacerbate the chance of not properly dealing
with an exception, named exceptions suffer from the up call version of the weak base class
problem.

• Requirements Specification: A language can be used which requires, at compile time, to catch all
serious exceptions. However, one must make sure to use the most current version of the API as
new exceptions could be added.

• Implementation: Catch all relevant exceptions. This is the recommended solution. Ensure that all
exceptions are handled in such a way that you can be sure of the state of your system at any given
moment.

Examples
In C++:

Version Date: 31 March 2006
197

CLASP Vulnerability View — Category 5: General Logic Errors

#include <iostream.h>
#include <new>
#include <stdlib.h>

int
main(){
 char input[100];
 int i, n;
 long *l;

Required resources cout << many numbers do you want to type in? ";
 cin.getline(input, 100);
 i = atoi(input);
 //here we are purposly not checking to see if this call to
 //new works
 //try {
 l = new long [i];
 //}

 //catch (bad_alloc & ba) {
 // cout << "Exception:" << endl;
 //}
 if (l == NULL)
 exit(1);
 for (n = 0; n < i; n++) {
 cout << "Enter number: ";
 cin.getline(input, 100);
 l[n] = atol(input);
 }
 cout << "You have entered: ";
 for (n = 0; n < i; n++)
 cout << l[n] << ", ";
 delete[] l;
 return 0;
}

In this example, since we do not check if new throws an exception, we can find strange failures if large
values are entered.

Related problems
Not available.

Version Date: 31 March 2006
198

CLASP Vulnerability View — Category 5: General Logic Errors

Improper error handling

Overview
Sometimes an error is detected, and bad or no action is taken.

Consequences
Undefined.

Exposure period
Implementation: This is generally a logical flaw or a typo introduced completely at implementation time.

Platform
Languages: All

Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
Implementation: Properly handle each exception. This is the recommended solution. Ensure that all
exceptions are handled in such a way that you can be sure of the state of your system at any given
moment.

Discussion
If a function returns an error, it is important to either fix the problem and try again, alert the user that an
error has happened and let the program continue, or alert the user and close and cleanup the program.

Examples
In C:

foo=malloc(sizeof(char);
//the next line checks to see if malloc failed
if (foo==0) {
//We do nothing so we just ignore the error.
}

In C++ and Java:

while (DoSomething()) {

Version Date: 31 March 2006
199

CLASP Vulnerability View — Category 5: General Logic Errors

 try {
 /* perform main loop here */
 }
 catch (Exception &e){
 /* do nothing, but catch so it’ll compile... */
 }
}

Related problems
Not available.

Version Date: 31 March 2006
200

CLASP Vulnerability View — Category 5: General Logic Errors

Improper temp file opening

Overview
Tempfile creation should be done in a safe way. To be safe, the temp file function should open up the
temp file with appropriate access control. The temp file function should also retain this quality, while being
resistant to race conditions.

Consequences
• Confidentiality: If the temporary file can be read, by the attacker, sensitive information may be in

that file which could be revealed.

• Authorization: If that file can be written to by the attacker, the file might be moved into a place to
which the attacker does not have access. This will allow the attacker to gain selective resource
access-control privileges.

Exposure period
• Requirements specification: The choice could be made to use a language or library that is not sus-

ceptible to these issues.

• Implementation: If one must use there own tempfile implementation than many logic errors can lead
to this condition.

Platform
• Languages: All

• Operating platforms: This problem exists mainly on older operating systems and should be fixed in
newer versions.

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Requirements specification: Many contemporary languages have functions which properly handle

this condition. Older C temp file functions are especially susceptible.

• Implementation: Ensure that you use proper file permissions. This can be achieved by using a safe
temp file function. Temporary files should be writable and readable only by the process which own
the file.

• Implementation: Randomize temporary file names. This can also be achieved by using a safe temp-
file function. This will ensure that temporary files will not be created in predictable places.

Version Date: 31 March 2006
201

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
Depending on the data stored in the temporary file, there is the potential for an attacker to gain an addi-
tional input vector which is trusted as non-malicious. It may be possible to make arbitrary changes to data
structures, user information, or even process ownership.

Examples
In C\C++:

FILE *stream;
char tempstring[] = "String to be written";

if((stream = tmpfile()) == NULL) {
 perror("Could not open new temporary file\n");
 return (-1);
}
/* write data to tmp file */
/* ... */
_rmtmp();

The temp file created in the above code is always readable and writable by all users.

In Java:

try {
 File temp = File.createTempFile("pattern", ".suffix");
 temp.deleteOnExit();
 BufferedWriter out = new BufferedWriter(new FileWriter(temp));
 out.write("aString");
 out.close(); }
catch (IOException e) { }

This temp file is readable by all users.

Related problems
Not available.

Version Date: 31 March 2006
202

CLASP Vulnerability View — Category 5: General Logic Errors

Guessed or visible temporary file

Overview
On some operating systems, the fact that the temp file exists may be apparent to any user.

Consequences
Confidentiality: Since the file is visible and the application which is using the temp file could be known, the
attacker has gained information about what the user is doing at that time.

Exposure period
• Requirements specification: The choice could be made to use a language or library that is not sus-

ceptible to these issues.

• Implementation: If one must use his own temp file implementation, many logic errors can lead to this
condition.

Platform
• Languages: All languages which support file input and output.

• Operating platforms: This problem exists mainly on older operating systems and cygwin.

Required resources
Any

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Requirements specification: Many contemporary languages have functions which properly handle

this condition. Older C temp file functions are especially susceptible.

• Implementation: Try to store sensitive tempfiles in a directory which is not world readable — i.e., per
user temp files.

• Implementation: Avoid using vulnerable temp file functions.

Discussion
Since the file is visible, the application which is using the temp file could be known. If one has access to
list the processes on the system, the attacker has gained information about what the user is doing at that
time. By correlating this with the applications the user is running, an attacker could potentially discover
what a user’s actions are. From this, higher levels of security could be breached.

Version Date: 31 March 2006
203

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In C\C++:

FILE *stream;
char tempstring[] = "String to be written";

if((stream = tmpfile()) == NULL) {
 perror("Could not open new temporary file\n");
 return (-1);
}
/* write data to tmp file */
/* ... */
_rmtmp();
In cygwin and some older unixes one can ls /tmp and see that this temp file exists.

In Java:

try {
 File temp = File.createTempFile("pattern", ".suffix");
 temp.deleteOnExit();
 BufferedWriter out = new BufferedWriter(new FileWriter(temp));
 out.write("aString");
 out.close(); }
catch (IOException e) { }

This temp file is readable by all users.

Related problems
Not available.

Version Date: 31 March 2006
204

CLASP Vulnerability View — Category 5: General Logic Errors

Failure to deallocate data

Overview
If memory is allocated and not freed the process could continue to consume more and more memory and
eventually crash.

Consequences
• Availability: If an attacker can find the memory leak, an attacker may be able to cause the

application to leak quickly and therefore cause the application to crash.

Exposure period
• Requirements specification: The choice could be made to use a language that is not susceptible to

these issues.

• Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of or
misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed depending on
environment.

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete solution.

• Pre-design through Build: The Boehm-Demers-Weiser Garbage Collector or valgrind can be used to
detect leaks in code. This is not a complete solution as it is not 100% effective.

Discussion
If a memory leak exists within a program, the longer a program runs, the more it encounters the leak sce-
nario and the larger its memory footprint will become. An attacker could potentially discover that the leak
locally or remotely can cause the leak condition rapidly so that the program crashes.

Examples
In C:

Version Date: 31 March 2006
205

CLASP Vulnerability View — Category 5: General Logic Errors

bar connection(){
 foo = malloc(1024);
 return foo;
}
endConnection(bar foo){
 free(foo);
}
int main() {
 while(1)
 //thread 1
 //On a connection
 foo=connection();

 //thread 2
 //When the connection ends
 endConnection(foo)
 }
}

Here the problem is that every time a connection is made, more memory is allocated. So if one just
opened up more and more connections, eventually the machine would run out of memory.

Related problems
Not available.

Version Date: 31 March 2006
206

CLASP Vulnerability View — Category 5: General Logic Errors

Non-cryptographic PRNG

Overview
The use of Non-cryptographic Pseudo-Random Number Generators (PRNGs) as a source for security
can be very dangerous, since they are predictable.

Consequences
• Authentication: Potentially a weak source of random numbers could weaken the encryption method

used for authentication of users. In this case, a password could potentially be discovered.

Exposure period
• Design through Implementation: It is important to realize that if one is utilizing randomness for

important security, one should use the best random numbers available.

Platform
• Languages: All languages.

• Operating platforms: All platforms.

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design through Implementation: Use functions or hardware which use a hardware-based random

number generation for all crypto. This is the recommended solution. Use CyptGenRandom on Win-
dows, or hw_rand() on Linux.

Discussion
Often a pseudo-random number generator (PRNG) is not designed for cryptography. Sometimes a
mediocre source of randomness is sufficient or preferable for algorithms which use random numbers.
Weak generators generally take less processing power and/or do not use the precious, finite, entropy
sources on a system.

Examples
In C\C++:

srand(time())
int randNum = rand();

In Java:

Version Date: 31 March 2006
207

CLASP Vulnerability View — Category 5: General Logic Errors

Random r = new Random()

For a given seed, these “random number” generators will produce a reliable stream of numbers.
Therefore, if an attacker knows the seed or can guess it easily, he will be able to reliably guess your
random numbers.

Related problems
Not available.

Version Date: 31 March 2006
208

CLASP Vulnerability View — Category 5: General Logic Errors

Failure to check whether privileges were dropped successfully

Overview
If one changes security privileges, one should ensure that the change was successful.

Consequences
• Authorization: If privileges are not dropped, neither are access rights of the user. Often these rights

can be prevented from being dropped.

• Authentication: If privileges are not dropped, in some cases the system may record actions as the
user which is being impersonated rather than the impersonator.

Exposure period
• Implementation: Properly check all return values.

Platform
• Language: C, C++, Java, or any language which can make system calls or has its own privilege

system.

• Operating platforms: UNIX, Windows NT, Windows 2000, Windows XP, or any platform which has
access control or authentication.

Required resources
A process with changed privileges.

Severity
Very High

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: In Windows make sure that the process token has the SeImpersonatePrivi-

lege(Microsoft Server 2003).

• Implementation: Always check all of your return values.

Discussion
In Microsoft operating environments that have access control, impersonation is used so that access
checks can be performed on a client identity by a server with higher privileges. By impersonating the
client, the server is restricted to client-level security — although in different threads it may have much
higher privileges.

Code which relies on this for security must ensure that the impersonation succeeded — i.e., that a proper
privilege demotion happened.

Version Date: 31 March 2006
209

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In C/C++

bool DoSecureStuff(HANDLE hPipe){ {
 bool fDataWritten = false;
 ImpersonateNamedPipeClient(hPipe);
 HANDLE hFile = CreateFile(...);
 /../ RevertToSelf()/../
}

Since we did not check the return value of ImpersonateNamedPipeClient, we do not know if the call suc-
ceeded.

Related problems
Not available.

