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Question 1: Secure software development (4 points) 

a) How is probability and consequence represented in CORAS, and how are risks 

compared? Use a small example to illustrate your explanation.  

b) In Security Development Lifecycle (SDL), how are bug bars and quality gates 

different?  

Question 2: Exploits and mitigations (5 points) 

For each of the two mitigations below, give a high-level explanation of how it works. Also, 

for each of the two, name and explain one exploit technique that is specifically designed to 

overcome the mitigation. 

a) DEP 

b) ASLR 

Question 3: Design patterns (5 points) 

Explain the following two design patterns: privilege separation and secure logger. For each 

pattern your answer should include a diagram, pseudo-code and an explanation of why and 

when the pattern should be used. 

Question 4: Web security (6 points) 

a) Using pseudo-code, write server-side code that contains a vulnerability that allows for 

SQL injections. Your code should be detailed enough that it is clear how SQL 

injections can be made. Explain your code in English. Give an example of a client-side 

request that would exploit the vulnerability in your code. Finally, suggest a 

modification of your code such that the vulnerability is removed. Explain why your 

mitigation strategy works 

b) Explain how a slow HTTP-POST attack works. What is an attacker attempting to 

achieve by executing such an attack? How can the risk of such an attack be mitigated? 

 



Question 5: Static analysis (7 points)

The following function takes two integers n and m as input. It computes the remainder of the euclidean
division of n by m in case both of them are strictly positive. It otherwise returns -1. For instance
remainder 10 2 gives 0 because 10=5*2+0 while remainder 20 3 gives 2 because 20=3*6+2. Here,
int denotes integers with an absolute value that can be arbitrarily large (i.e., no integer overflows).

1 int remainder(int n, int m){
2 if(n <= 0 || m <= 0)
3 return -1;
4 int r = n;
5 int q = 0;
6 while (r >= m){
7 r = r - m;
8 q = q + 1;
9 assert(n = m * q + r);

10 }
11 assert (0 <= r);
12 return r;
13 }

We aim to check the assertions (n = m * q + r) at line 9 and (0 <= r) at line 11. In the first part,
we consider the following two approaches for checking a given assertion:

• Symbolic execution: builds a path formula obtained by violating the assertion after following a
path through conditional statements (such as the one at line 2) and loops (such as the one at line
6) by choosing some outcome for the involved condition (for example, choosing (r < m) at line 6
in order to exit the loop and get to line 11).

• Abstract interpretation: here using the abstract values depicted in the lattice above. Intuitively, the
abstract values are used to over-approximate, in an as precise manner as possible, the information
of whether a variable is 0, positive, negative, or some combinations of these.

Questions:

1. Consider the assertion (0 <= r) at line 11:

(a) Give a path formulas that would correspond to taking the else outcome of the if statement
(line 2), entering the loop once (i.e., one iteration of the loop), exiting the loop to get to line
11 and violating the assertion there (i.e. violating the (0 <= r) assertion). (2 pt)

(b) Can abstract interpretation, based on the sign abstract domain mentioned above, establish
that the assertion is never violated? explain by annotating each line with the abstract element
associated to each variable and obtained at the end of such an analysis. (1pt)

2. Consider the assertion (n = m * q + r) at line 9:

(a) Give P8 defined as the weakest precondition of the predicate (n = m * q + r) with respect
to the assignment q= q + 1 at line 8; then give P7 defined as the weakest precondition of the
predicate P8 with respect to the assignment r = r - m at line 7. (2pt)

(b) Argue whether P7 is an invariant of the loop? would having P7 as an invariant of the loop be
enough to establish the assertion at line 9? Justify. (2pt)



Question 6: Security testing (7 points) 

a) What is the benefit of using a dynamic-analysis tool such as Valgrind or 

AddressSanitizer during fuzzing? Give an example! What is the downside? 

b) What is the problem with magic constants in fuzzing? Which of blackbox, greybox, or 

whitebox fuzzing is best suited to deal with this problem? Briefly motivate. 

c) In the context of mutation-based fuzzing, what is a seed input? 

d) Imagine that you are tasked with performing mutation-based fuzzing on an image 

viewer for JPEG images. In order to thoroughly test the program, the fuzzer should be 

run with several different seed inputs. You realize that you have a bunch of vacation 

photos from last summer that you can use as seeds. If you want to maximize the 

chance of finding bugs, what may be the problem with this seed-selection approach? 

Also suggest a better approach. 

Question 7: Vulnerabilities in C/C++ programs (6 points) 

The code on the next page shows the beginning of a program that performs some privileged 

operation, the nature of which is not important here. The program makes sure that the user is 

allowed to perform the privileged operation by first asking for a password and user name, and 

checking these against a user database. (Exactly how the database works is also not important 

here.) The program has an implementation error, which could potentially be exploited by 

attackers. 

a) Identify and name the vulnerability. Explain how an attacker could trigger the bug. 

You don’t need to explain how to exploit the bug. 

b) Explain how to fix the bug. 

 

Note: It is best-practice to clear (overwrite) passwords stored in memory as soon as possible, 

to minimize the chance that someone can get them by e.g. dumping RAM contents. We here 

assume that this is not a possible attack scenario on the system that this code runs on. 

 



// Read input string from user and store in 'dst'. A maximum 
// of 'max_size' bytes will be written to 'dst', including the 
// NULL terminator. Returns 0 if successful, or -1 if the  
// input does not fit in 'dst'. 
int get_input(char* dst, size_t max_size); 
 
// Returns the user ID for the given user name, or -1 if the 
// user name is unknown. 
int get_user_id(const char* username); 
 
// Fetches the password for given user ID from the database 
// and stores it in 'dst'. Passwords cannot be longer than 20  
// characters. A maximum of 21 bytes can thus be written to  
// 'dst'. Returns 0 if successful, or -1 if the operation  
// failed due to an invalid user ID. 
int get_password(char* dst, int user_id); 
 

int main(void) { 
   const size_t BUF_SIZE = 25; 
   int id = -1;    
   int failed = 0; 
 
   printf("Username: "); 
   char* user = malloc(BUF_SIZE); 
   if(get_input(user, BUF_SIZE) != 0) { 
      // Too long input 
      printf("Error: Too long username!\n"); 
      free(user); 
      failed = 1; 
   } else { 
      id = get_user_id(user); 
   } 
    
   printf("Password: "); 
   char* given_password = malloc(BUF_SIZE); 
   if(get_input(given_password, BUF_SIZE) != 0) { 
      // Too long input 
      printf("Error: Too long password!\n"); 
      free(user); 
      free(given_password); 
      failed = 1; 
   } 
     
   if (failed != 1) { 
      char* real_password = malloc(BUF_SIZE); 
      if(get_password(real_password, id) != 0) { 
         printf("Invalid user name!\n"); 
         failed = 1; 
      } else if(strcmp(real_password, given_password) != 0) { 
         // If real password is not identical to given password,  
         // authentication fails       
         failed = 1; 
      } 
      free(user); 
      free(given_password); 
      free(real_password); 
   } 
 
   if(failed == 0) 
      printf("Authenticaton succeeded!\n"); 
   else { 
      printf("Authenticaton failed!\n"); 
   } 
 
   if(failed == 1) { 
      exit(2); // Quit program if autentication failed 
   } 
 
   // Continue processing... 


