
Information page for written
examinations at Linköping University

Examination date 2018-01-10

Room (3) U1(36) U2(30) U3(14)
Time 8-12
Course code TDDC90
Exam code TEN1
Course name
Exam name

Software Security (Software Security)
Written examination (Skriftlig tentamen)

Department IDA
Number of questions in
the examination 7

Teacher
responsible/contact
person during the exam
time

Ulf Kargén

Contact number during
the exam time 013-285876

Visit to the examination
room approximately 09:30, 11:00

Name and contact details
to the course
administrator
(name + phone nr + mail)

Madeleine Häger Dahlqvist,
013-282360,
madeleine.hager.dahlqvist@liu.se

Equipment permitted Dictionary (printed, NOT electronic)
Other important
information
Number of exams in the
bag

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2018-01-10

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ulf Kargén, 013-285876

Instructions and grading

You may answer in Swedish or English.

There are 7 questions on the exam. Your grade will depend on the total points you score. The

maximum number of points is 40. The following grading scale is preliminary and might be

adjusted during grading.

Grade 3 4 5

Points required 20 29 35

Question 1: Secure software development (4 points)

a) In which phase of the security development life cycle should static analysis be used?

b) During the verification phase of SDL (the fourth phase), there are three main activities

(“practices” with SDL terminology) that should be performed. Briefly explain these

three activities.

Question 2: Exploits and mitigations (5 points)

a) For each of the three exploit techniques below, state whether DEP is effective in

mitigating the technique. Motivate each of the answers in a sentence or two. Answers

without motivation gives no points.

i. ROP

ii. NOP-sleds

iii. return-to-libc

b) Address Space Layout Randomization (ASLR) is generally less effective on 32-bit

systems, compared to 64-bit systems. Explain why.

Question 3: Design patterns (5 points)

Explain the following two design patterns: secure factory and defer to kernel. For each pattern

your answer should include a diagram, pseudo-code and an explanation of why and when the

pattern should be used.

Question 4: Web security (6 points)

a) It has been stated that disallowing GET-requests, and instead using POST, is a way to

mitigate cross-site request forgery (CSRF). Is this statement correct? If yes, explain

why. If no, give a counterexample of how CSRF-attacks can still be carried out.

b) Explain, in a sentence or two, the difference between stored and reflected cross-site

scripting (XSS).

c) Using pseudo-code, write server-side code that contains a vulnerability that allows for

XSS. Your code should be detailed enough that it is clear how XSS attacks can be

made. Explain your code in English (or Swedish). Give an example of a client-side

request that would exploit the vulnerability in your code. Finally, suggest a

modification of your code such that the vulnerability is removed. Explain why your

mitigation strategy works.

Question 5: Static analysis (7 points)

The following function computes the nth term of the arithmetic sum sn = Σi:0≤i≤ni. For instance s0 = 0,
s1 = 1, s2 = 3 and s3 = 6. Here, int denotes integers with an absolute value that can be arbitrarily
large (i.e., no integer overflows).

1 int sum(int n){
2 if(n <= 0)
3 return 0;
4 int s = 0;
5 while (n > 0){
6 s = s + n;
7 n = n - 1;
8 assert(n < s);
9 }

10 assert (0 <= s);
11 return s;
12 }

We aim to check the assertions (n < s) at line 8 and (0 <= s) at line 10. In the first part, we
consider the following two approaches for checking a given assertion:

• Symbolic execution: builds a path formula obtained by violating the assertion after following a
path through conditional statements (such as the one at line 2) and loops (such as the one at line
5) by choosing some outcome for the involved condition (for example, choosing (n ≤ 0) at line 5 in
order to exit the loop and get to line 10).

• Abstract interpretation: here using the abstract values depicted in the lattice above. Intuitively, the
abstract values are used to over-approximate, in an as precise manner as possible, the information
of whether a variable is 0, positive, negative, or some combinations of these.

Questions:

1. Consider the assertion (0 <= s) at line 10:

(a) Give a path formulas that would correspond to taking the else outcome of the if statement
(line 2), entering the loop once (i.e., one iteration of the loop), exiting the loop to get to line
10 and violating the assertion there (i.e. violating the (0 <= s) assertion). (2 pt)

(b) Can abstract interpretation, based on the sign abstract domain mentioned above, establish
that the assertion is never violated? explain by annotating each line with the abstract element
associated to each variable and obtained at the end of such an analysis. (1pt)

2. Consider the assertion (n < s) at line 8:

(a) What does it mean for the predicate wp(stmt,Q) to be the weakest precondition of a predicate
Q with respect to a program statement stmt? (1 pt)

(b) Give P7 defined as the weakest precondition of the predicate (n < s) with respect to the as-
signment n= n - 1 at line 7; then give P6 defined as the weakest precondition of the predicate
P7 with respect to the assignment s = s + n at line 6. (2pt)

(c) Can you argue whether P6 is an invariant of the loop? would having P6 as an invariant of the
loop be enough to establish the assertion at line 8? justify. (1pt)

Question 6: Security testing (7 points)

a) AFL is a recent successful greybox fuzzer. Explain the main ways in which AFL’s

approach differs from traditional mutation-based fuzzers.

b) Mutation-based fuzzers typically does not work so well for fuzzing implementations

of stateful network protocols. Explain why, and name a fuzzing technique more suited

for this use case.

c) Give pseudocode for a small program with a bug that would be easy to find using

concolic testing, but hard to find using mutation-based fuzzing. Explain your

reasoning!

Question 7: Vulnerabilities in C/C++ programs (6 points)

The code on the next page shows part of a program that reads data from a simple data stream

format. Each message in the stream consists of two 32-bit integers, followed by a variable-

size data part. The first number specifies the type of data in the message, and the second

number specifies the length of the data. The data part then follows directly.

The part of the program we are concerned with (print_text_record) parses a message, and

prints its data if it is of text type (plain text or XML). We also give function declarations for a

simple API for reading data from streams. It can be assumed that the API functions are

correctly implemented, and function in accordance with the comments given above each

function declaration. The program may be used to read streams from untrusted sources.

print_text_record contains at least one serious bug that can lead to a potentially

exploitable condition. Explain what the bug is, and how to fix it. Clearly explain what the

consequence would be of triggering the bug.

/* Constants defining message data types. */
enum DStream_Types {
 DS_PLAIN_TEXT = 1,
 DS_XML_TEXT = 2,
 DS_RGB_RASTER = 3
};

/* Reads 4 bytes off the stream 'ds' and returns them as an int. */
int DStream_read_int32(struct DStream* ds);

/* Reads 'sz' bytes from stream 'ds' into buffer 'dest' */
void DStream_read_data(struct DStream* ds, char* dest, size_t sz);

/* Check if a previous operation on 'ds' has caused an error.
 Returns zero (false) in case of no error, and non-zero otherwise. */
int DStream_has_error(struct DStream* ds);

int print_text_record(struct DStream* ds)
{
 char buffer[1024];

 int type = DStream_read_int32(ds);
 int size = DStream_read_int32(ds);

 // Check if we failed to read header from stream
 if(DStream_has_error(ds))
 return -1;

 size_t text_size = size;

 if(text_size <= 0)
 return -1; // Invalid size

 if(type == DS_PLAIN_TEXT)
 printf("Type: TEXT\n");
 else if(type == DS_XML_TEXT)
 printf("Type: XML\n");
 else
 return 1; // Not a text-type record

 // Check that input fits in buffer
 if(size >= 1024)
 return -1; // Oversized record

 // Read into buffer
 DStream_read_data(ds, buffer, size);

 if(DStream_has_error(ds))
 return -1; // Error reading string off stream

 buffer[size] = 0; // Make sure string is terminated

 // Print string
 printf("%s\n", buffer);

 return 0; // Signal success
}

