
Information page for written
examinations at Linköping University

Examination date 2017-04-21

Room (1) TER2(19)
Time 8-12
Course code TDDC90
Exam code TEN1
Course name
Exam name

Software Security (Software Security)
Written examination (Skriftlig tentamen)

Department IDA
Number of questions in
the examination 7

Teacher
responsible/contact
person during the exam
time

Ulf Kargén

Contact number during
the exam time 013-285876

Visit to the examination
room approximately 9:30, 11:00

Name and contact details
to the course
administrator
(name + phone nr + mail)

Madeleine Häger Dahlqvist,
013-282360,
madeleine.hager.dahlqvist@liu.se

Equipment permitted Dictionary (printed, NOT electronic)
Other important
information
Number of exams in the
bag

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2017-04-21

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ulf Kargén, 013-285876

Instructions and grading

You may answer in Swedish or English.

There are 7 questions on the exam. Your grade will depend on the total points you score. The

maximum number of points is 40. The following grading scale is preliminary and might be

adjusted during grading.

Grade 3 4 5

Points required 20 29 35

Question 1: Secure software development (4 points)

a) Consider the general software development lifecycle. In order to secure the lifecycle

we can introduce security touch points. Draw the lifecycle and annotate where in the

cycle you would use: misuse cases, static analysis and penetration testing.

b) During the release phase of SDL an incident response plan is made. In this course we

have discussed four parts of this plan, describe these parts.

Question 2: Exploits and mitigations (5 points)

a) Briefly explain how a ROP-attack works, using English/Swedish and a figure.

b) Consider a Heartbleed-style vulnerability, which allows an attacker to read some data

past the end of a buffer. This kind of vulnerability can be used to disclose sensitive

information stored adjacent to the buffer. For each of the following two mitigations,

explain whether it can mitigate this kind of attack, and why.

i. ASLR

ii. DEP

Question 3: Design patterns (5 points)

Explain the following two design patterns: secure chain of responsibility and privilege

separation. For each pattern your answer should include a diagram, pseudo-code and an

explanation of why and when the pattern should be used.

Question 4: Web security (6 points)

For the three (web)vulnerabilities: SQL injection, command injection and cross-site scripting,

address the following (in the context of web security).

i. Give a brief example of a possible consequence if an attack is successful in exploiting

the vulnerability.

ii. Write an example of client/server-side code (pseudo-code) that allows for the

vulnerability (explain why the code is vulnerable).

iii. Give an example of a request to the server-side code that would exploit the

vulnerability (i.e. an attack).

iv. Give an example of how changes to the code can mitigate the vulnerability so that the

attack is no longer effective (explain why the code works).

Question 5: Static analysis (7 points)

The type int denotes integers with an absolute value that can be arbitrarily large. Do not account for
integer overflows.

1 int positive_euclidean_division(int a, int b){
2 if(a < 0)
3 return -1;
4 if(b < 0)
5 return -1;
6 int p = 0;
7 int r = a;
8 while (r >= b){
9 p = p + 1;

10 r = r - b;
11 }
12 assert(p >= 0);
13 assert(r >= 0);
14 return p;
15 }

We aim to check the assertions (p >= 0) at line 12 and (r >= 0) at line 13. In the first part, we
consider the following two approaches for checking a given assertion:

• Symbolic execution: builds a path formula obtained by violating the assertion after following a
path through conditional statements (such as the one at line 2) and loops (such as the one at line
8) by choosing some outcome for the involved conditions.

• Abstract interpretation: here using the abstract values depicted in the lattice above. Intuitively, the
abstract values are used to over-approximate, in an as precise manner as possible, the information
of whether a variable is 0, positive, negative, or some combinations of these.

Questions:

1. Consider the assertion (p >= 0) at line 12:

(a) Give a path formulas that would correspond to taking the else outcome of the if statements
(lines 2 and 4), entering the loop once (i.e., one iteration of the loop), exiting the loop to get
to line 12 and violating the assertion there (i.e. violating the (p >= 0) assertion). (2 pt)

(b) Can abstract interpretation, based on the sign abstract domain mentioned above, establish
that the assertion (p >= 0) is never violated? explain by annotating each line with the
abstract element obtained at the end of such an analysis. (2pt)

2. Consider the assertion (r >= 0) at line 13:

(a) Let the predicate Inv be defined as (r ≥ 0). Give the predicate P10 defined as the weakest
precondition of Inv with respect to the assignment at line 10 (i.e., r= r - b); then give P9

defined as the weakest precondition of the predicate P10 with respect to the assignment at
line 9 (i.e., p = p + 1). (1pt)

(b) What does it mean for P9 to be the weakest precondition of the predicate Inv with respect
to the assignment sequence r = r - b; p = p + 1? (1pt)

(c) Justify that the assertion at line 13 holds using your ansswer to question (2.b) and the relation
between P9 and the loop’s condition at line 8. (1pt)

Question 6: Security testing (7 points)

a) What is the benefit of using a dynamic-analysis tool such as Valgrind or

AddressSanitizer during fuzzing? Give an example. What is the downside?

b) Give an example of a case where generation-based fuzzing would work well, but

where mutation-based or whitebox fuzzing would not. Motivate clearly!

c) Explain two reasons why the scalability of concolic testing is limited for large and

complex software.

Question 7: Vulnerabilities in C/C++ programs (6 points)

Note: In the original version of the exam, this question had a typo that made the

intended bug unexploitable, and also contained an unintended bug. This is the corrected

version of the question.

The code on the next page shows a function that prepends a prefix to each entry in a list of

strings, before sending each string to a function write_to_file, the details of which are

unimportant here. The function takes three parameters, a prefix, an array of strings (str), and

the number of strings in the array (n_strings). It can be assumed that the number of strings in

the array is always the same as the stated n_strings, but the contents of the prefix and the

strings in str, as well as the number of strings in str, is user-controllable.

The function contains at least one serious bug that can lead to an exploitable condition.

a) Explain what the bug is, and how to fix it. Clearly explain what the consequence

would be of triggering the bug.

b) Provide an example input to the function that would trigger the bug. (You don’t need

to explain how to exploit the bug for e.g. code execution.)

/* Writes 'size' bytes from 'data' to a predetermined file.
 Details not important here */
void write_to_file(const char* data, size_t size);

/* Takes an array of strings and a prefix, and prepends the prefix to
 each string before sending the resulting string to 'write_to_file'.
 Returns 1 on success, and 0 on failure. */
int append_prefix(const char* prefix, const char* str[], size_t n_strings)
{
 char buffer[256];
 char prefix_buffer[32];

 size_t prefix_len = strlen(prefix);

 strncpy(prefix_buffer, prefix, sizeof(prefix_buffer));

 // Replace space with underscore in prefix
 for(size_t i = 0; i < sizeof(prefix_buffer); i++) {
 if(prefix_buffer[i] == ' ')
 prefix_buffer[i] = '_';
 }

 for(size_t j = 0; j < n_strings; j++) {
 size_t str_len = strlen(str[j]);
 if(prefix_len > SIZE_MAX - str_len || prefix_len + str_len > SIZE_MAX - 1)
 return 0; // Integer overflow
 if(prefix_len + str_len + 1 > sizeof(buffer))
 return 0; // Too long strings

 strcpy(buffer, prefix_buffer);
 strcat(buffer, str[j]);
 write_to_file(buffer, prefix_len + str_len + 1);
 }

 return 1;
}

