
Information page for written
examinations at Linköping
University

Examination date 2015-04-08

Room (1) TER3
Time 14-18
Course code TDDC90
Exam code TEN1
Course name
Exam name

Software Security (Software Security)
Written examination (Skriftlig tentamen)

Department IDA
Number of questions in
the examination 7

Teacher
responsible/contact
person during the exam
time

Ulf Kargén

Contact number during
the exam time 013-285876

Visit to the examination
room approximately 15:00, 17:00

Name and contact details
to the course
administrator
(name + phone nr + mail)

Madeleine Häger Dahlqvist,
013-282360,
madeleine.hager.dahlqvist@liu.se

Equipment permitted Dictionary (printed, NOT electronic)
Other important
information
Number of exams in the
bag

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2015-04-08

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ulf Kargén, 013-285876

Instructions and grading

You may answer in Swedish or English.

There are 7 questions on the exam. Your grade will depend on the total points you

score. The maximum number of points is 40. The following grading scale is

preliminary and might be adjusted during grading.

Grade 3 4 5

Points required 20 29 35

Question 1: Secure software development (4 points)

a) How is probability and consequence represented in CORAS, and how are risks

compared? Use a small example to illustrate your explanation.

b) In this course we mentioned three additional activities that can be requested by

security advisors for projects using SDL. Name two of these.

Question 2: Exploits and mitigations (5 points)

a) Name one benefit of using a register trampoline over a NOP-sled when

exploiting a stack-based buffer overflow. Motivate your answer!

b) Why may the register trampoline method not always be applicable?

c) Depending on the implementation, ASLR may or may not be able to mitigate

register trampoline exploits. What property must an ASLR implementation

have in order to prevent such exploits? Briefly explain your answer.

Question 3: Design patterns (5 points)

Explain the following two design patterns: secure factory and secure logger. For each

pattern your answer should include a diagram, pseudo-code and an explanation of

why and when the pattern should be used.

Question 4: Web security (6 points)

For each of the two (web)vulnerabilities: command injection and SQL injection,

address the following (in the context of web security).

a) Give a brief example of a possible consequence if an attacker is successful in

exploiting the vulnerability.

b) Write an example of server-side code (pseudo-code) that allows for the

vulnerability (explain why the code is vulnerable).

c) Give an example of a request to the server-side code that would exploit the

vulnerability (i.e. an attack).

d) Give an example of how changes to the code can mitigate the vulnerability so

that the attack is no longer effective (explain why the code works).

Question 5: Static analysis (7 points)

Consider the following foo function:

1 int foo(int x){
2 int y=0;
3 int z=x;
4

5 while (x!=0){
6 if(x > 0){
7 x--;
8 y++;
9 } else {

10 x++;
11 y--;
12 }
13 }
14 assert(y == z);
15 return 1;
16 }

We check the assertion (y == z) at line 14. For this, we compute the
reachable variables values at that line with two different methods:

while get value vx for x do
/* compute effects of lines 1-13 */

let vx, vy, vz be values of x, y, z at line 14;
/* check assertion */

if vy 6= vz then
report violated assertion;

end

end

Method 1: Concrete value based

/* compute effects of lines 1-4 */

let both Ix and Iz be the interval [int min, int max];
let Iy be the interval [0, 0];
/* compute effects of loop, lines 5-13 */

repeat
let Jx, Jy, Jz respectively equal Ix, Iy, Iz;
compute new intervals Ix, Iy, Iz resulting from lines 5-13 ;

until Ix equals Jx and Iy equals Jy and Iz equals Jz;
/* check assertion */

report violation if there are vy ∈ Iy and vz ∈ Iz with vy 6= vz;

Method 2: Abstract intervals based
Questions:

a) Which method is sound? Give a drawback and an advantage. (2pt)

b) Which method is complete? Give a drawback and an advantage. (2pt)

c) Give a formula that captures a symbolic execution that corresponds to one
iteration of the loop, takes the then branch of the if statement, and violates
the assertion. Is the formula satisfiable? (1pt)

d) Can the assertion be violated? Use your own arguments. (2pt)

1

Question 6: Security testing (7 points)

a) What is the benefit of using a dynamic-analysis tool such as Valgrind or

AddressSanitizer during fuzzing? Give an example! What is the downside?

b) Briefly explain two reasons why automated fuzzing of web applications is

often harder than fuzzing e.g. a desktop program written in C.

c) Give pseudocode for a small program with a bug that would be easy to find

using concolic testing, but hard to find using mutation-based fuzzing. Explain

your reasoning!

Question 7: Vulnerabilities in C/C++ programs (6 points)

The small C++ function shown on the next page reads text from a file, one line at a

time, and concatenates all lines into one string before proceeding to process the

concatenated text. (The nature of that processing is not relevant here.) The code

contains at least one serious vulnerability, which could potentially be exploited to

allow arbitrary code execution.

a) Identify the vulnerability, and explain what the input file should look like in

order to trigger the bug. (You don’t need to explain in detail how to exploit the

vulnerability.)

b) Explain, in words and pseudocode, how to fix the bug.

You can assume that the comments in the code correctly describe the behaviour of

library functions, etc. You don’t need any additional knowledge about the library

functions used than what is given in the comments.

void read_and_process(istream& in_file)

{

 const int MAX_DATA = INT_MAX;

 const int BUFSIZE = 1000;

 // Allocate a buffer on the heap with MAX_DATA bytes.

 char* concatenated = new char[MAX_DATA];

 // 'concatenated' should initially contain an empty string.

 concatenated[0] = 0;

 int total_read = 0;

 char buffer[BUFSIZE];

 // 'getline' reads one line of text (until a line delimiter is reached)

 // from 'in_file' into 'buffer'.

 // A maximum of 'BUFSIZE' bytes is written to 'buffer', including the

 // null terminator.

 // If end-of-file is reached, or the current line contains 'BUFSIZE'

 // characters or more, the call to 'getline' will evaluate to false,

 // and the loop will be terminated.

 while(in_file.getline(buffer, BUFSIZE))

 {

 int len = strlen(buffer) + 1;

 if(total_read + len > MAX_DATA)

 {

 printf("Error: Too much data");

 exit(1); // Quit program

 }

 // Append string in 'buffer' to existing string in 'concatenated',

 // starting from the position of the old null terminator in

 // 'concatenated'.

 strcat(concatenated, buffer);

 total_read = strlen(concatenated);

 }

 // Complete string read. Process it...

 process(concatenated);

}

