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Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

Implementation
of Units (classes, procedures, 

functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education
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Motivation for Architecture



Why should we design a system? 
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Harry
the hacker

Carol
the customer

Requirements Implementation

Why not go directly?
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Constructing a building... 
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Construction
The king's

requirements

Ulla

I need a tower, 
with a big 
clock...
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Constructing a building... 

6Software Architecture/Dániel Varró & Kristian Sandahl

Construction

Ulla
Architecture

The king's

requirements
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Constructing software... 
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Architecture

Carol
the customer

Requirements

Harry
the hacker

Implementation

Software is different
• No physical natural order of construction
(e.g. start with the foundation of the house)

• Software is not tangible 
• Sometimes a large semantic gap
• You need a map to coordinate efforts

2023-09-06

That’s not to say that customers 
and implementers should not 
meet!



Constructing software... 

8Software Architecture/Dániel Varró & Kristian Sandahl

Carol
the customer

Requirements

Harry
the hacker

Implementation

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Abstraction

Fuzzy distinction

▪ Sometimes several levels

▪ Sometimes only one level

2023-09-06



Why design and document software architectures?
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Communication between stakeholders

A high-level presentation of the system. 

Use for understanding, negotiation and communication.

Early design decisions

Profound effect on the systems quality attributes, e.g. 

performance, availability, maintainability etc.

(Bass et.al., 2003)

Large-scale reuse

If similar system have common requirements, modules 

can be identified and reused.
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System vs. Software Architecture: 
General Concepts and Views



Analyze and Synthesis a system (decompose and compose)
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Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures, 
functions)

Unit testing

Module Testing
(Integration testing 

of units)

System Testing
(Integration testing 

of modules)

Acceptance Test
(Release testing)

Imagine a "virtual" System

Divide into "virtual" 

modules

a "concrete" System

Design each module

"concrete“ modules
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Analyze and Synthesis a system (decompose and compose)
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Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures, 
functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

"concrete" 

modules

Design is an iterative process!

➢ Throw away Prototyping

➢ Evolutionary Prototyping

➢ The world is nearly 

decomposable*

*Herbert Simon
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http://www.ni.com/white-paper/6163/en/



Overview of System Architecture
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Platform 
Description

Allocation

System Architecture

Functional 
Architecture



Functional / Logical Architecture
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Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Functional (logical) decomposition of 

system into subsystems / components

- Component: Deployable & 
executable unit with precise 
interfaces at well-defined 
points of service

- Interfaces: Functionality, 
interaction



Platform Description
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Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Specification of HW/SW platform:

- Nodes: Execution units (processors, ECUs)
- Their physical interconnection (e.g., buses, wires)

Examples:
- AUTOSAR (automotive)
- ARINC 653 (avionics)
- Cloud providers, IT infra.



Allocation
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Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Mapping of functional components to 

hardware/software platform by respecting:

- Schedule, timeliness constraints
- Redundancy, fault-tolerance 

requirements
- Reliability, availability 

agreements
- Performance constraints



System Architecture
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Platform 
Description

Allocation

System 
Architecture

Functional 
Architecture

Result of the allocation step that:
- Is ready for deployment
- Specifies or derives configuration files



Block (Box-and-line) diagrams...
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Logging

Identification &
Authentication

User

Database

Encryption / 
Decryption

Packet 
Handler

Session
Handler

Module, Subsystem, 

Element, Entity, 

Component... (many 

names)

Interface

Relationship, 

shows data 

and/or control 

flow
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Coupling - dependency between modules
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Uncoupled - no dependencies Loosely coupled - few dependencies

Highly coupled - many dependencies

What do we want?

Low coupling. Why?

▪ Replaceable

▪ Enable changes

▪ Testable - isolate faults

▪ Understandable
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Cohesion - relation between internal parts of the module
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What do we want?

High cohesion. Why?

▪ More understandable

▪ Easier to maintain

Low cohesion - the parts e.g. functions 

have less or nothing in common.
Medium cohesion - some logically 

related function, e.g. I/O related 

functions

High cohesion - does only what it is designed for

2023-09-06



Architectural views
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Implementation 

(code) view

Execution

view
Deployment

view

Module

Client

Server

On different machines? 

One machine? Different 

CPUs? 

Components, connectors, sub-

systems (box-and-line)
Packages, components, 

artifacts, repositories
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Architecture Modeling in UML



Well-known Diagrams of UML in architecture
UML 2.5

Diagram

Behavior 

Diagram

Structure 

Diagram

Class 

Diagram

Object 

Diagram

Deployment 

Diagram

Component 

Diagram

Package 

Diagram

Use-Case 

Diagram

State 

Machine 

Diagram

Interaction 

Diagram

Sequence 

Diagram

2

4
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Implementation view with packages
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A developer’s perspective:
1. What are we going to develop?
2. Where is the code?

GUI

Transaction
manager

Encryption/
decryption

Storage
 manager

Package
• Organize work
• Compile together
• Name space

dependency

Packages can be used to give an overall structure to other things
than code, eg. Use-cases and Classes

2023-09-06



Component diagram with interfaces
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Dictionary

spell-check

supplement

Older notation:

<<component>>

Alternative notation:

provided interface

required interface

2023-09-06



Subsystem with components
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Dictionary

Search engine

<<subsystem>> word-book

port

delegation connector
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Artifacts
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<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

Physical code, file, or library

<<artifact>>
clientCrypto.jar

<<manifest>> <<component>>
    Encryption

The artifact implements
the component

2023-09-06



Deployment view in UML
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<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

<<protocol>>
TCP/IP

Node, physical hardware

Communication path

<<client>> <<server>>



Architecture and Quality Factors



Several quality factors - sometimes overlap
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Maintainability

Availability

Performance

Modifiability

Scalability

Portability

Reliability

Safety

Usability

Testability

Non-functional requirements...

2023-09-06



How can you design a system for better 
performance?

• Throughput

• Response time in an interactive system
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Performance
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Scale out...

Scale up...
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How can you design a secure system

2023-09-06 35Software Architecture/Dániel Varró & Kristian Sandahl

CIA

Confidentiality • Only authorized users can read 
the information
• E.g. Military

Integrity

• Only authorized users can 
modify, edit or delete data.

• E.g. bank systems

Availability

• Right information is available at the right time
• Important for everyone



Security
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System
User

Encryption layer

Authenticator

Authenticator

Server



Less naïve NIST Zero Trust logical components
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Rose, S. , Borchert, O. , Mitchell, S. and Connelly, S. (2020), Zero Trust Architecture, Special 

Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online], 

https://doi.org/10.6028/NIST.SP.800-207, 

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420 (Accessed September 2, 2022)



Safety - absence of critical faults
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Critical failures can create 
great damage to property, 
environment and lives. 

E.g. military 
products



Isolate the most critical parts
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How can we validate that a safety critical system 

is correct?

▪ Formal validation?

▪ Testing?

▪ Software reviews?

▪ Experience?

Design so that all 

safety critical 

operations are 

located in one or  few 

modules / 

subsystems. 

Critical

The whole system

2023-09-06



Redundancy + Diversity
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Critical 
functions 1

Critical 
functions 2

Caller

Manager

Critical 
functions n…

Same specification, 
different teams
Back-up or voting



Performance:
- Scale-up: Creating a small number of large subsystems, 
- Scale-out: Parallel computations (see cloud)
Security:
- Maximized by layering systems with critical assets 

protected in the innermost layer
- No information up-read / down-flow
Safety:
- Maximized by placing critical safety functions in a small 

number of subsystems

Maximizing non-functional system 
characteristics with architectural design



Availability:
- Maximized through redundant subsystems 

to allow hot-swapping for updates
Maintainability:
- Maximized by creating a large number of 

small, independent subsystems

Maximizing non-functional system 
characteristics with architectural design



Performance:
- Maximized by creating a small number of 

large subsystems
Maintainability:
- Maximized by creating a large number of 

small, independent subsystems

Balancing tradeoffs in
architectural design



How can we create a portable system?
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Historically, a major factor in technology decisions.



Containers and virtual machines
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VM

App A App C

Bins/Libs Bins/Libs

Guest OS

ContainerVM

App B

Bins/Libs

Guest OS

VM

App B

Bins/Libs

Guest OS

App B

Bins/Libs

Container

App A

Bins/Libs

Container

HypervisorHypervisor

InfrastructureInfrastructure

Container Engine

Host operating system

Infrastructure

e.g. Virtual box, WMware e.g. Docker



Reflections
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VM:

+ run in isolation
+ interactive development
- takes time to build
- consumes storage

Containers:

+ faster iterations
+ ecosystem of software
- shared host exploits

Both adds computations => potential performance                               
and resource penalties



Usability - How easy is it and what support 
exists to perform a task
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Relevance
Efficiency
Attitude
Learnability



Separate interface and logic
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GUI

Comnand line

LogicLogic Persistence



How do we create a testable system?
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At least 40% of the cost of well-engineered system is due to testing 

(Bass et. al., 2003)



Control, observation, isolation
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Can I make this transition happen?

Can I observe this state?

Is the code 
cohesive?



How can we create a system that is easy to maintain?
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• Understandability

• Modifiability

• Testability

• Low coupling, high cohesion



Architectural Styles



Architectural patterns/styles:
- Are abstract descriptions of tried-and-tested 

solutions to common application problems
- Should describe when it is a good idea to 

use and when it should be avoided!



Architecture Styles / Patterns
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Example of styles and patterns
▪ Client-Server
▪ Layering
▪ Pipes-and-filters
▪ Service-oriented
▪ Model-View-Control (MVC)
▪ Repository
▪ Peer-to-Peer

Discussed today 

2023-09-06



1. Client-Server
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Server

Client Client Client

The clients need to be 
aware of the server. 

Clients initiate 
communication 

2023-09-06



1. Client-Server
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Server

Client Client Client

The clients need to be 
aware of the server. 

Clients initiate 
communication 

2023-09-06



1. Client-Server
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Presentation 

layer

Business

Layer

Client

Server

Data

management

Two-Tier, Fat-client

Presentation 

layer

Business

Layer

Client

Server

Data

management

Two-Tier, Thin-client

Presentation 

layer

Client

Middle-ware

Business

Layer

Server

Data

management

Three-Tier

- Heavy load on server
- Significant network 

traffic

+ Distribute workload on 
clients
- System management 
problem, update software on 
clients

+ Map each layer on separate 
hardware

+ Possibility for load-balancing

2023-09-06



2. Layers
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layer 3

layer 2

layer 1

layer 3
layer 1

layer 3

Highest
Abstraction

Defined
Interfaces

Client

IP

Ethernet

Application

Transport

Network

Data link

SSL

HTTP

Server

TCP/UDPTCP/UDP

IP

Ethernet

SSL

HTTP In a “pure” layered model, 
only the immediate below 
layer can be accessed

Layer bridging – can access 
lower than the closest one

2023-09-06



2. Layers
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Pros Cons

▪ Easy reuse of layers
▪ Support for standardization
▪ Dependencies are kept local -

modification local to a layer
▪ Supports incremental 

development and testing

▪ Could give performance penalties
▪ Layer bridging loses modularity

layer 3
layer 1

layer 3

2023-09-06



3. Pipes and Filters
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Example: UNIX Shell

lexer parser
semantic

analysis

Intermediate

Code 

Generation

Optimi-

zation

ls -R |grep “html$" |sort ls grep sort

Example: A Compiler

FiltersPipes

Input Output

Code

Generation

2023-09-06



Pipes and filters

Pros:

▪ Good understandability

▪ Supports reuse of filters

▪ Evolution eased

▪ Analyses of e.g. throughput are possible to early

Cons:

▪ Redundant parsing of data =>  performance penalties

2023-09-06 65Software Architecture/Dániel Varró & Kristian Sandahl



Case: (Service-Oriented Architecture )SOA and Amazon
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Customer web clients Webserver + DBMS

Two-tier architecture
Before 2001…

Problems
▪ Scaling the DBMS
▪ Too complex software to

maintain and develop

Customer web clients

Web servers Services

Partner Companies 
(1 million)

Key Success Factors 
▪ Data encapsulated with

business logic.
▪ No data sharing between

services
▪ Independent dev teams 

for each service
▪ Developers have

operational responsibility
(you build, you run)

After 2001…

CTO Werner Vogels blog

www.allthingsdistributed.com
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A bit more detail of Web services
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This is just an example of a SOA.

Service Brooker

Service 
Requester

Service Provider
<<SOAP>>

WSDL = Web service 
description language
SOAP : Simple Object Access 
Protocol



Documenting the Architecture



Adapted Example From Industry
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What is going on with
the vertical axis?

How do the
boxes communicate?

What do they represent?

Are their meanings consistent?

What do the colors
represent?

…?

2023-09-06



Coming back to documents...
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Write from the point of view of the readers...

Stakeholder Use of the architect document

Requirements engineers                Negotiate and make tradeoffs among 

requirements

Architects/Designers                      Resolve quality issues (e.g. performance, 

maintainability etc.)

Architects/Designers                      A tool to structure and analyze the system 

Designers                                       Design modules according to interfaces 

Developers                                     Get better understanding of the general product

Testers and Integrators                  Specify black-box behavior for system testing

Managers                                       Create teams that can work in parallel with

e.g. different modules. Plan and allocate 

resources.     

New software engineers                 To get a quick view of what the system is doing

Quality assurance team                  Make sure that implementation corresponds

to architecture.                            

2023-09-06



When to document?
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Time implementation

design

requirements

Initial 

design
Design 

iterations

After implementation

(consistent with code?)

2023-09-06



The Architecture Notebook makes it easy to 
understand the architecture decisions
Maintains a list of:

– Issues

– Decisions

– Design patterns

– Pointer to code

• Supports iterative development of an architecture.

• Emphasizes the communication between roles

• Aligns with requirements.

• https://www.ida.liu.se/~TDDC88/openup/practice.tech.evoluti
onary_arch.base/workproducts/architecture_notebook_9BB92
433.html?nodeId=9351a72b
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https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b
https://www.ida.liu.se/~TDDC88/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html?nodeId=9351a72b


Introduce the architecture and the document
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1. Purpose

What will be included in the document?

2. Architectural goals and philosophy

What will drive the project? 

E.g. High performance, adapt software, micro services

Critical issues addressed by the architecture

E.g. usability, scalability, modularity

3. Assumptions and dependencies

E.g. time, skills, resources, H/W dependencies



4. Architecturally significant requirements 
(ASR) determine the architecture
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ASR can be:

• Important functions, e.g. persistence, authentication

• Non-functional, e.g. response time, portability

• High benefits to stakeholders, e.g. early demo wanted

• Handling a risk, e.g. availability of components

When the ASRs are met the architecture is stable!



5. List decisions together with constraints and 
justifications
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Technology choices of all kinds

• E.g ”We will use a DBMS, since the user needs 
advanced search and filter.”

• E.g. ”We will use the React framework since the app 
will run in multiple browsers.”

• E.g. ”We will not use a service-oriented architecture 
since the customer don't think enough providers will 
register.”



6. Architectural Mechanisms are solutions 
that will be standardized in development
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AMs evolve in different states, e.g.

Make design coherent

Support the buy/make decision

Analysis mechanism Design mechanism Implementation mechanism

Persistence RDBMS MySQL

Communication Message broker RabbitMQ



Architectural Mechanisms are often 
described in basic attributes
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E.g. persistence:

• Granularity

• Volume

• Duration

• Retrieval mechanism

• Update frequency

• Survivability



7. Key abstractions are the most important 
concepts the system will handle
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• Typically most high-level analysis classes, e.g. 
customer, catalogue, shopping-basket, payment

• Patterns, e.g. façade or observer

• Without key abstractions you cannot describe the 
system



8. Layers/architectural framework describe 
the components of an architectural style
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• Elements of a box-and-line diagram, e.g. client and 
server

• Description of interfaces connecting elements



Summary

• Decompose-compose

• Coupling and cohesion

• Architectural views (implementation, execution, 
deployment)

• UML notations (Component, Subsystem, Artifact, 
Deployment)

• Quality factors vs architecture

• Architectural styles (Client-server, Layered, Pipes-and-
filters, Service-oriented)

• The architectural notebook

• Much more in course: TDDE41 Software Architecture
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