
Modeling with UML
Dániel Varró / Kristian Sandahl

UML in Software Engineering

3

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

Implementation
of Units (classes, procedures,

functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

MaintenanceModeling with UML / Dániel Varró & Kristian Sandahl 2023-09-05

The goals of module design
• Provide the expected function

• Prepare for change:

– Separation of concern

– Testability

– Understandability

• Contribute to quality, e.g.:

– Performance

– Usability

– Reliability

– ...

• Map for the implementers, testers, and maintainers

• Provide detailed specs for the internal content and interface of a module

4Modeling with UML / Dániel Varró & Kristian Sandahl 2023-09-05

Modelling software

• Models supplement natural language

• Models support both elicitation and design

• Models can generate code and test cases

• The boundaries between specification and design
have to be decided

• UML has become the standard notation

• Industry interest in SysML –
extends UML (and defined in UML)

Modeling with UML / Dániel Varró & Kristian Sandahl 52023-09-05

Unified Modeling Language

• Wide-spread standard of modeling software and
systems

• Several diagrams and perspectives

• Often needs a text of assumptions and intentions

• Many tools tweak the standard, we use UML 2.5

2023-09-05 6Modeling with UML / Dániel Varró & Kristian Sandahl

UML Class and Object Diagrams

Well-known Diagrams of UML
UML 2.5

Diagram

Behavioral
Diagram

Structural
Diagram

Class
Diagram

Object
Diagram

Deployment
Diagram

Component
Diagram

Package
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

8

82023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl

Activity
Diagram

Where to use Class diagrams?

• Domain modeling: Capture key concepts and relations in a domain

– Ontologies

– Metamodels

• Database design:

– E.g. used by object-relational mappings (Hibernate)

– User code manipulates objects → serialized in Rel DB

• Component / module design:

– Internal structure of components / modules

• Defines structure of various serialization formats

– XMI: XML Metadata Interchange (modeling tools), JSON

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 9

A Single Class

10

+getNoOfOrders():Integer

+getOrderStatus():String

+ addEmail(email:String)

name: String[1]

email: String [0..2]

Customer

Class name

attributes

operations

visibility
+ public
- private
protected
~ package

Multiplicity
1 exactly one
0..1 Zero or one
* Zero or more

(same as 0..*)
2..8 Between 2 and 8

Return type
Parameter

Modeling with UML / Dániel Varró & Kristian Sandahl 2023-09-05

Attributes

• Each attribute shall have

– Name: e.g. birth

– (Primitive) Type:

• E.g. String, Integer, Real, Date, ...

– Example:

• Integer birth;

• Each attribute may

– Specify default value

– Be derived: e.g. age

• Calculated from other values

age = currYear – birth

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 11

Enumerations
• Enumeration:

• a fixed set of symbolic values

• represented as a class with
values as attributes

• Usage:
• Frequently define possible states

• Use enumerations instead of
hard-wired String literals whenever possible

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 12

Relationships (1/6) - overview and intuition
- Association

13

BA Association
(with navigability)

Modeling with UML / Dániel Varró & Kristian Sandahl 2023-09-05

Relationships (1/6) - overview and intuition
- Association

14Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel

wheel1

wheel2

wheel3

wheel4
mycar

4
class

objects

mycar has links to 4
wheels

Navigation - mycar can reach the
wheels, but not the oppositeExplicitly show that navigation is

not allowed

has

Reading order

name

2023-09-05

Equivalent object diagram

2023-09-05 15Modeling with UML / Dániel Varró & Kristian Sandahl

mycar : Car

wheel1 : Wheel

wheel2 : Wheel

wheel3 : Wheel

wheel4 : Wheel

Relationships (1/6) - overview and intuition
- Association

16Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel

wheel1

mycar1

4

What does it mean to have a * here? What if we have multiplicity 1 instead?

mycar2

wheel2 wheel3 wheel4

mycar3

A wheel can be linked to more
than one car instance wheel1

mycar1

wheel2 wheel3 wheel4

mycar2
A wheel can only be liked to

one car instance

"*" "1"

has

2023-09-05

Relationships (1/6) - overview and intuition
- Association

17Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel

wheel1

mycar1

4

wheel2 wheel3 wheel4

Associations are the "glue" that ties a system together

association instance = link

A link (association instance) describes a relation
between objects at run-time.

{(mycar1,wheel1),
(mycar1,wheel2),
(mycar1,wheel3),
(mycar1,wheel4)}

has

2023-09-05

Relationships (2/6) - overview and intuition
- Aggregation

18Modeling with UML / Dániel Varró & Kristian Sandahl

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

2023-09-05

Relationships (2/6) - overview and intuition
- Aggregation

19Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel
4

Common vague interpretations: "owns a" or "part of"

What does this mean? What is the
difference to association?

Vague definitions Inconsistency and misunderstandings

Aggregation was added to UML with little
semantics. Why?

Jim Rumbaugh
"Think of it as a modeling placebo"

Recommendation: - Do not use it in your models.
- If you see it in other's models, ask them what they actually mean.

2023-09-05

Relationships (3/6) - overview and intuition
- Composition

20Modeling with UML / Dániel Varró & Kristian Sandahl

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

2023-09-05

Relationships (3/6) - overview and intuition
- Composition

21Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel
4

Any difference to association?

Yes! First, multiplicity must be 1 or 0..1. An instance can only have one owner.

1

Car Wheel
41

But, isn't this equivalent to what we
showed with associations?

Well, in this case...

wheel1

mycar1

wheel2 wheel3 wheel4

mycar2

2023-09-05

Relationships (3/6) - overview and intuition
- Composition

22Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Ok for wheels to be part of
mycar1 or mybike1

2023-09-05

Relationships (3/6) - overview and intuition
- Composition

23Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Can mycar1 and mybike1 share
the same wheels?

NO!
Not with composition!

Key concepts

• "No sharing" rule

• The owner is responsible for managing

its parts, e.g. allocation and deallocation.

2023-09-05

Relationships (3/6) - overview and intuition
- Composition

24Modeling with UML / Dániel Varró & Kristian Sandahl

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using associations...

wheel5 wheel6

mybike1

Can mycar1 and mybike1 share the
same wheels this time?

Yes! Associations do not
have a "no sharing"
rule.

(Note the difference. The diamond is removed.)

However, in this case it is a
strange model...

2023-09-05

Relationships (4/6) - overview and intuition
- Generalization

25Modeling with UML / Dániel Varró & Kristian Sandahl

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA Generalization

2023-09-05

Relationships - (4/6) overview and intuition
- Generalization

26Modeling with UML / Dániel Varró & Kristian Sandahl

+ reverse()

Car

+ drive()

Vehicle

Class with code for
the drive()
operation

Inherits the code for
drive(). New
operation reverse()

+ reverse()

Car

+ drive()

MotorCycle

Overrides drive()

1. Inheritance

~ relation implementation

2. Subtyping

~ relation on interfaces

+ drive()

Vehicle Visible Type: Vehicle.
Instance of: MotorCycle.
Can we drive()? Can we reverse()?

+ drive()

Vehicle

An instance of a class can have many types
= (subtyping) polymorphism

Visible Type: Vehicle.
Instance of: Car
Can we drive()? Can we reverse()?

Visible Type: Car.
Instance of: Car
Can we drive()? Can we reverse()?

static typing: safe substitution

2023-09-05

Typical Use of Generalization

Aim: Lift up common attributes
and methods to the superclass

Parent class is more general
than its children classes

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 27

Relationships - (5/6) overview and intuition
- Realization

28Modeling with UML / Dániel Varró & Kristian Sandahl

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a instance of

"B" is expected.
Generalization

BA Realization

2023-09-05

Relationships - (5/6) overview and intuition
- Realization

29Modeling with UML / Dániel Varró & Kristian Sandahl

+ drive()

Vehicle

+ reverse()

Car

+ drive()

MotorCycle

Realization

Implementation

Specifier

Correct?
Must implement
the interface

+ open()

<<interface>>

Door

Interface
(no implementation)

Provides the Door
interface

+ drive()

Vehicle

Can we create an instance of
Vehicle?

+ drive()

+ open()

AnotherVehicle

Can we create an instance of
AnotherVehicle?

Abstract class
(Italic)

Abstract operation

+ drive()

+ reverse()

+ open()

Car

Stereotype: extended semantics

2023-09-05

Relationships - (5/6) overview and intuition
- Realization

30Modeling with UML / Dániel Varró & Kristian Sandahl

What is the difference between an interface and
an abstract class?

+ drive()

+ open()

AnotherVehicle

Abstract class

+ open()

<<interface>>

Door

Interface

Non of them can be instantiated

Cannot contain implementation
Can (but need not to) contain

implementation

An abstract class with only abstract operations is conceptually the same as an interface

2023-09-05

Relationships - (6/6) overview and intuition
- Realization

31Modeling with UML / Dániel Varró & Kristian Sandahl

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a instance of

"B" is expected.
Generalization

BA Realization "A" provides an implementation of the interface
specified by "B".

BA Dependency

2023-09-05

Relationships - (6/6) overview and intuition
- Dependency

32Modeling with UML / Dániel Varró & Kristian Sandahl

Dependency supplierclient

Schedule

viewer

Lecture

<<use>>

<<use>>

Stereotype: extended semantics

2023-09-05

Relationships - overview and intuition
33Modeling with UML / Dániel Varró & Kristian Sandahl

Association
(with navigability)

BA
"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a instance of

"B" is expected.

Generalization

BA Realization "A" provides an implementation of the interface
specified by "B".

"A" is dependent on "B" if changes in the definition
of "B" causes changes of "A".BA Dependency

2023-09-05

Conceptual models, domain models

Design models, architecture models, implementation models

Domain Models
vs

Implementation Models

What you model depends on the recipient
and the perspective

2023-09-05 35Modeling with UML / Dániel Varró & Kristian Sandahl

Information

Outsource

Sketch

Discussion

Communication

Perspectives: Domain modeling vs.
Implementation

2023-09-05 36Modeling with UML / Dániel Varró & Kristian Sandahl

Domain model vs. implementation model

37Modeling with UML / Dániel Varró & Kristian Sandahl

Person
-name
-address

Person

-name: String
-address: String

+getName(): String
+setName(name:String)
+getAddress(): String
+setAddress(address:Sting)

In this course: domain model = conceptual model

2023-09-05

38

Identifying classes: noun analysis

•machine – real noun handled

by the system

•cup – unit for beverage

•coin – detail of user and machine

•shelf – detail of machine

•pipe – detail of machine

•button– handled by the system

•sugar – detail of coffee

•whitener – detail of coffee

•cup of coffee – handled by the

system

•indicator – not discovered

A CoffeeDrinker approaches the machine

with his cup and a coin of SEK 5. He

places the cup on the shelf just under the

pipe. He then inserts the coin, and press

the button for coffee to get coffee

according to default settings. Optionally

he might use other buttons to adjust the

strength and decide to add sugar and/or

whitener. The machine processes the

coffee and bell when it is ready. The

CoffeeDrinker takes his cup from the shelf.

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl

39

The coffee machine class model

CoffeeCustomer

Porter

CupOfCoffee

CanOfCoffee

buys

buys

0..1

0..1

0..*

0..*

makes Machine

1
1

1 11

1

10..*

Interface CoinHandler Brewer

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl

Domain modeling example

40Modeling with UML / Dániel Varró & Kristian Sandahl

Identify key domain concepts and relations

Person
-name
-address

Student
-pnr
-curriculum

Course

-code
-semester
-block
-credits

takes 1..*

0..*

Separation of concerns

2023-09-05

Design data model for persistent data

More use-cases and the Class Responsibility
Card (CRC)

41Modeling with UML / Dániel Varró & Kristian Sandahl

Use-case name:
Students register for courses
Students passes courses for degree

Responsibilities Collaboration

Register for courses Course

Keep track of passed courses Course

… …

Student

2023-09-05

The model becomes

42Modeling with UML / Dániel Varró & Kristian Sandahl

Person
-name
-address

Student
-pnr
-curriculum

Course

-code
-semester
-block
-credits

register 1..*

*

passed

*

*

2023-09-05

More requirements

43Modeling with UML / Dániel Varró & Kristian Sandahl

The university stores registrations
The university stores passed courses

Responsibilities Collaboration

Register for courses Registration

Student

Responsibilities Collaboration

Store registrations Registration

Store passed courses Record

University

2023-09-05

Refined model (details suppressed)

44Modeling with UML / Dániel Varró & Kristian Sandahl

Student

Person

Course

University

Record

Registration

-date

+dropCourse

+addCourse
-readList

*

1..*

reads 1

1

registered1 1

passed
*

1..*

2023-09-05

A complete, comprehensive guide to UML 2.5

2023-09-05 45Modeling with UML / Dániel Varró & Kristian Sandahl

Rehearsal and a little example

• https://www.youtube.com/watch?v=UI6lqHOVHic

46Modeling with UML / Dániel Varró & Kristian Sandahl 2023-09-05

https://www.youtube.com/watch?v=UI6lqHOVHic

UML Behavior Modeling
(Sequence Diagrams)

Provide a description of the dynamic behavior as interactions
• between actors and the system and
• between objects within the system

Provide a description of the dynamic behavior as interactions
• between actors and the system and
• between objects within the system

Well-known Diagrams of UML
UML 2.5

Diagram

Behavioral
Diagram

Structural
Diagram

Class
Diagram

Object
Diagram

Deployment
Diagram

Component
Diagram

Package
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

4

8

482023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl

Activity
Diagram

Kristian :
CoffeeCustomer

Cup1 : CupOfCoffee
buys makes IDA-B-house :

Machine

aCoffeeCustomer :
CoffeeCustomer

aCup : CupOfCoffee
buys makes aMachine :

Machine

 : CoffeeCustomer : CupOfCoffee
buys makes : Machine

Specific

Generic

Short hand

: CoffeeCustomer : CupOfCoffee
buys makes : Machine

Related: Roles

Different instance models
492023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl

How to capture their internal behavior and interaction?

Sequence diagram

2023-09-05 50Modeling with UML / Dániel Varró & Kristian Sandahl

: CoffeeCustomer

: Interface

insertCoin

machineReady

pressButton(b1)

pourCoffeetime

Lifeline

of object

Message

(synchronous)

role

Procedure

is active

Sequence diagram with several roles

: CoffeeCustomer

: Interface : CoinHandler : Brewer

insertCoin transport

{ 0 < 5s}

litIndicators
coinAccepted warmUp

pressButton(b1)
makeOrder(o1)

pourCoffeepourCoffee

Timing

constraint

Return message

2023-09-05 51Modeling with UML / Dániel Varró & Kristian Sandahl

Combining fragments of sequence diagrams

:Order :TicketDB :Account

SD processOrder

create

Get existing customer data
ref

loop [get next item]

reserve(date,no)

add(seats)

answer

destruction

loop condition

loopgate

2023-09-05 52Modeling with UML / Dániel Varró & Kristian Sandahl

Combining fragments of sequence diagrams

:Order :TicketDB :Account

SD Get existing customer data

create Getdata(c1)

Data(c1)

2023-09-05 53Modeling with UML / Dániel Varró & Kristian Sandahl

More fragments of sequence diagrams

:Order :TicketDB

loop

[get next item]

reserve(date,no)

add(seats)

alternate branches

reject

alt [available]

[unavailable]

nested conditional

guard condition

2023-09-05 54Modeling with UML / Dániel Varró & Kristian Sandahl

Rehearsal and a little example

2023-09-05 55Modeling with UML / Dániel Varró & Kristian Sandahl

https://www.youtube.com/watch?v=pCK6prSq8aw&t=7s

Two flaws:
Objects preceded with ”:”
Eject card after invalid card or invalid PIN
shall terminate transaction.

https://www.youtube.com/watch?v=pCK6prSq8aw&t=7s

UML Behavior Modeling
(State Machine Diagrams)

For defining reactive behavior of objects
by executing state transitions and actions
in response to events

For defining reactive behavior of objects
by executing state transitions and actions
in response to events

State-based Behavior Modeling

• State partition (AKA state space)

– A set of distinguished system states

– Examples

• Days of Week: {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

• States of microwave oven: {full power, defrost, off}

– DEF: A state partition is a set, exactly one element of which
characterises the system at any time.

• Current state

– E.g. today is Wed, the microwave is on defrost, etc.

– DEF: At any given moment, the current state is the element
of the partition which is currently valid.

Example: Abstract & Concrete States of a Stack

• Concrete states of a stack

– Stack1

• Length = 2

• Element[0] = String(„Winter 2023”)

• Element[1] = String(„Fall 2023”)

– Stack2

• Length = 2

• Element[0] = String(„Winter 2024”)

• Element[1] = String(„Fall 2024”)

• Abstract states of a stack:

– empty : boolean isEmpty() {return length==0;}

– full : boolean isFull() {return length==MAX;}

– hasContent: boolean hasContent()
{return length > 0 && length < MAX;}

Are these stacks in a
different concrete state?
YES!

Are these stacks in a
different abstract state?
NO!

Abstract State vs. Concrete State

• Concrete state of an object:
– Current value of each of its attributes

– Concrete state space:
• Combination of possible values of attributes

• May be infinite

• Abstract states of an object:
– Predicates over concrete states

– One abstract state many concrete states

– Potentally: state hierarchies

State machine diagram

2023-09-05 60Modeling with UML / Dániel Varró & Kristian Sandahl

checking idle
insertCoin()/checkCoin(self)

For class

CoinHandler:

state trigger event,

causing transition
action, reaction

to the event

start state marker

this object
transiton

falseCoin()/returnCoin(self)

7

Specification

• Kristian’s alarm clock starts sounding at 6.00 with a nasty signal.
He can now do either of three things:

a) Turn the alarm off;

b) Press the snooze button; or

c) Do nothing.

• If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

• When an hour has passed from the first time the alarm sound
started, the snooze button has no effect.

• After that the alarm sound starts, the signal will last for 2minutes.

• If no action has been taken during these 2 minutes, the absence of
action will have the same effect as if the snooze button were pressed
exactly when the alarm stopped to sound

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 61

2023-09-05 62Modeling with UML / Dániel Varró & Kristian Sandahl

• Task: design
a UML state
machine of the
class AlarmClock

Alarm off Idle

Snoozed Sound On

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 63

Alarm off Idle

Snoozed Sound On

off = off button pressed

set(tw) = set the alarm time to tw and press the on button

set the alarm time to the wake-up time and
press the on button/-

off/-

set(tw)/-

tw = wake-up time

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 64

Alarm off Idle

Snoozed Sound On

t = current time

tw = wake-up time

ts = sound start-time

off = off button pressed

alarm = play sound signal

t >=tw/ts:=0; alarm

set(tw)/-

off/-

off/-

set(tw) = set the alarm time to tw and press the on button

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 65

Specification

• Kristian’s alarm clock starts sounding at 6.00 with a nasty signal.
He can now do either of three things:

a) Turn the alarm off;

b) Press the snooze button; or

c) Do nothing.

• If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

• When an hour has passed from the first time the alarm sound
started, the snooze button has no effect.

• After that the alarm sound starts, the signal will last for 2minutes.

• If no action has been taken during these 2 minutes, the absence of
action will have the same effect as if the snooze button were pressed
exactly when the alarm stopped to sound

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 66

Alarm off Idle

Snoozed Sound On

t = current time

tw = wake-up time

ts = sound start-time

tsz = time snooze pressed

off = off button pressed

(time in minutes)

sz = snooze button pressed

alarm = send signal

tsz >= 5 [¬off]/alarm

sz/ tsz := 0; ¬alarm

t >=tw/ts:=0; alarm

set(tw)/-

off/-

off/-

set(tw) = set the alarm time to tw and press the on button

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 67

Specification

• Kristian’s alarm clock starts sounding at 6.00 with a nasty signal.
He can now do either of three things:

a) Turn the alarm off;

b) Press the snooze button; or

c) Do nothing.

• If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

• When an hour has passed from the first time the alarm sound
started, the snooze button has no effect.

• After that the alarm sound starts, the signal will last for 2minutes.

• If no action has been taken during these 2 minutes, the absence of
action will have the same effect as if the snooze button were pressed
exactly when the alarm stopped to sound

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 68

Alarm off Idle

Snoozed Sound On

t = current time

tw = wake-up time

ts = sound start-time

tsz = time snooze pressed

off = off button pressed

(time in minutes)

sz = snooze button pressed

alarm = send signal

tsz >= 5 [¬off]/alarm

ts >= 2 [¬off]/tsz := 0; ¬alarm

sz/ tsz := 0; ¬alarm

t >=tw/ts:=0; alarm

set(tw)/-

off/-

off/-
off/-

set(tw) = set the alarm time to tw and press the on button

or t >= tw+60

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 69

Alarm off Idle

Snoozed Sound On

t = current time

tw = wake-up time

ts = sound start-time

tsz = time snooze pressed

off = off button pressed or t >= tw + 60

(time in minutes)

sz = snooze button pressed

alarm = send signal

tsz >= 5 [¬off]/alarm

ts >= 2 [¬off]/tsz := 0; ¬alarm

sz/ tsz := 0; ¬alarm

t >=tw/ts:=0; alarm

set(tw)/-

off/-

off/-
off/-

set(tw) = set the alarm time to tw and press the on button

2023-09-05Modeling with UML / Dániel Varró & Kristian Sandahl 70

Orthogonal, composite states

2023-09-05 71Modeling with UML / Dániel Varró & Kristian Sandahl

Lab 1 Lab 2
lab1 done

Project

lab2 done

project done

Final exam
pass

Studying

Failed Passed
fail

course attempt state machine

orthogonal state

orthogonal region

Explicit exit points
2023-09-05 72Modeling with UML / Dániel Varró & Kristian Sandahl

Lab 1 Lab 2
lab1 done

Project

lab2 done

project done

Final exam
pass

Studying

failed passed

fail

course attempt

Activity diagram ≠ State diagram

insert coin

brew coffee
add hot water

to adjust strength

join

pour coffee

coin accepted?

fork

add sugar/whitener

final

[no] node

2023-09-05 73Modeling with UML / Dániel Varró & Kristian Sandahl

decision

Initial node

[yes]

Summary

• Structural diagrams

– Class vs. Objects, Attributes, Relationships

• Behavioral diagrams

– Sequence diagram

– State machine diagram

• Domain analysis vs implementation

2023-09-05 74Modeling with UML / Dániel Varró & Kristian Sandahl

Preparation for Friday (Modeling Practice)
A review management system (REMS) help the review of scientific journal papers submitted by researchers. Authors submit a
paper by using a form to specify a title, an abstract, a list of keywords and a first version as PDF document. They may also
suggest names for excluded reviewers. When a new submission is received, REMS assigns a qualified editor to manage its
review process by matching the keywords of the paper with editors’ expertise. An editor sends invitation to several reviewers
(not excluded by the authors) who either accept or decline this invitation. When two reviewers agree to review the paper, no
further reviewers will be invited. A reviewer needs to complete a review which includes a textual critic and a recommendation:
accept, minor revision, major revision or reject. Based upon the recommendations of the reviews, the editor makes a decision
on the paper (which is also one of accept, minor revision, major revision and reject). If the decision is major revision, the
authors need to resubmit a revised version of the paper, and the editor initiates a 2nd round of review, which is identical with
the 1st round, except for excluding major revision as a possible outcome.

2023-09-08 75UML Modeling Practice / Dániel Varró

Write a functional requirement to capture that only qualified editors will handle any paper.
Write an non-functional requirement on the availability of the REMS system.

Draw a use case diagram for the REMS system highlighting key actors, use cases and their relations.

Draw a UML Class Diagram as domain model for the REMS system showing the domain concepts, their relationships and
potential generalizations. Specify multiplicities for your associations and arrange all objects into a containment hierarchy by
appropriate composition relations between classes.

Describe the high-level workflow of the paper review process using a UML Activity Diagram. You may assume that the
successful invitation of a reviewer is separated into an activity called Invite-and-Accept-Review which you may use in your
diagram. Your actions should have direct traceability to use cases!

Describe the state-based behavior of the “Paper” class by a UML Statechart Diagram. Use operations derived from use cases
as triggering events of transitions. (The Paper class represents a submission that is handled by REMS for review.)

www.liu.se

Modeling with UML /
Dániel Varró & Kristian Sandahl

	Default Section
	Slide 1: Modeling with UML
	Slide 2
	Slide 3
	Slide 4: The goals of module design
	Slide 5: Modelling software
	Slide 6: Unified Modeling Language

	UML Class Diagrams
	Slide 7
	Slide 8
	Slide 9: Where to use Class diagrams?
	Slide 10: A Single Class
	Slide 11: Attributes
	Slide 12: Enumerations
	Slide 13: Relationships (1/6) - overview and intuition - Association
	Slide 14: Relationships (1/6) - overview and intuition - Association
	Slide 15: Equivalent object diagram
	Slide 16: Relationships (1/6) - overview and intuition - Association
	Slide 17: Relationships (1/6) - overview and intuition - Association
	Slide 18: Relationships (2/6) - overview and intuition - Aggregation
	Slide 19: Relationships (2/6) - overview and intuition - Aggregation
	Slide 20: Relationships (3/6) - overview and intuition - Composition
	Slide 21: Relationships (3/6) - overview and intuition - Composition
	Slide 22: Relationships (3/6) - overview and intuition - Composition
	Slide 23: Relationships (3/6) - overview and intuition - Composition
	Slide 24: Relationships (3/6) - overview and intuition - Composition
	Slide 25: Relationships (4/6) - overview and intuition - Generalization
	Slide 26: Relationships - (4/6) overview and intuition - Generalization
	Slide 27: Typical Use of Generalization
	Slide 28: Relationships - (5/6) overview and intuition - Realization
	Slide 29: Relationships - (5/6) overview and intuition - Realization
	Slide 30: Relationships - (5/6) overview and intuition - Realization
	Slide 31: Relationships - (6/6) overview and intuition - Realization
	Slide 32: Relationships - (6/6) overview and intuition - Dependency
	Slide 33: Relationships - overview and intuition

	Domain Modeling vs. Component Modeling
	Slide 34
	Slide 35: What you model depends on the recipient and the perspective
	Slide 36: Perspectives: Domain modeling vs. Implementation
	Slide 37: Domain model vs. implementation model
	Slide 38: Identifying classes: noun analysis
	Slide 39: The coffee machine class model
	Slide 40: Domain modeling example
	Slide 41: More use-cases and the Class Responsibility Card (CRC)
	Slide 42: The model becomes
	Slide 43: More requirements
	Slide 44: Refined model (details suppressed)
	Slide 45: A complete, comprehensive guide to UML 2.5
	Slide 46: Rehearsal and a little example

	UML Behavioral Diagrams
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Sequence diagram
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Rehearsal and a little example
	Slide 56
	Slide 57: State-based Behavior Modeling
	Slide 58: Example: Abstract & Concrete States of a Stack
	Slide 59: Abstract State vs. Concrete State
	Slide 60: State machine diagram
	Slide 61: Specification
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Specification
	Slide 67
	Slide 68: Specification
	Slide 69
	Slide 70
	Slide 71: Orthogonal, composite states
	Slide 72: Explicit exit points
	Slide 73
	Slide 74: Summary
	Slide 75: Preparation for Friday (Modeling Practice)

	Conclusions
	Slide 76

