
Course introduction
Kristian Sandahl/Daniel Ståhl/Dániel Varró

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

2024-09-03 3Intro/Sandahl Ståhl Varró

Where does Kristian come from?

Who is Kristian?

2024-09-03 4Intro/Sandahl Ståhl Varró

• Professor of Software Engineering since 2001
• I love studying (large) software development

organizations and evaluate practices of Software
Engineering

• I love teaching project courses, but I’m not a faithful
constructivist

• My mission: To bring some critical thinking and common
sense to the world

• Background: Civ ing (D) -83; PhD -92
Epitec: spin-off company 86-87
Ericsson research: 95-01

Who is Daniel Ståhl?

DANIEL STÅHL

MSc 2007
Linköping University

Joined Ericsson in 2009

PhD, 2017
University of Groningen

Joined LiU in 2019

ERICSSON

Developer
Architect
Continuous Practices

…

AI Strategy
AI Governance
Research supervision

RESEARCH, WRITING

Continuous integration
Continuous delivery
Continuous deployment
Large-scale testing
Development practices
Teaming
Mob programming

2024-09-03Intro/Sandahl Ståhl Varró 5

Where does Daniel come from?

Where does DánielV come from?

2024-09-03 7Intro/Sandahl Ståhl Varró

12

3

Who is DanielV?

2024-09-03 8Intro/Sandahl Ståhl Varró

Better findings:

• Professor of Software Engineering
– BME (Budapest, Hungary)
– McGill (Montreal, Canada)
– LiU (Linköping, Sweden)

• Research positions
– Lendület Research Chair (MTA Hungary)
– WASP professor

• (Co-)Supervisor of 18 defended PhDs

• Steering committee vice-chair of MODELS

• Co-Founder of two spin-offs
– IncQuery Labs, OptXware

Who am I NOT?

2024-09-03 9Intro/Sandahl Ståhl Varró

Who are you?
I, Ii

SVP

D/U/DIEras-
musMaster

Free
movers

2024-09-03 10Intro/Sandahl Ståhl Varró

Why should I take this course?

Well, I have to, it's compulsory...

It is not a hard mathematical course
but requires some discipline and analysis

This is a rather pragmatic course,
concerning real problem in the industry

Are you going to work in the
software industry?

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

If yes, how would you avoid disasters?

2024-09-03 12Intro/Sandahl Ståhl Varró

• Geppert, L (2004)
Lost Radio Contact
Leaves Pilots On
Their Own, IEEE
Spectrum, Nov
2004

• A commercial blog:
https://www.computerworld.com/
article/3412197/top-software-
failures-in-recent-history.html

https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html
https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html
https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html

2 32 milli-seconds is a looong time?

2024-09-03 13Intro/Sandahl Ståhl Varró

232 ms ≈

4.3 • 106 s ≈

7.2 • 104 min ≈

1 193 h ≈

49.7 days

50 days ago was

2024-07-15

system

whatchdog

Every problem is a people problem...

UNDERSTANDING THE
CUSTOMER

Much of the time, your
customers won’t know
what they want
themselves.

ANTICIPATING THE USER

Who is the end user?
What would be valuable
to them? Do they even
know that themselves?

COLLABORATING WITH
YOUR COLLEAGUES

How do you work
alongside with your
colleagues in the same
project without stepping
on one another’s toes?

PLANNING AND
LEADING

How do you lead, how
do you delegate, and
how do you
communicate a common
vision?

2024-09-03Intro/Sandahl Ståhl Varró 14

... and also a technology problem

UNDERSTANDING THE
CUSTOMER

What are the technology
choices that will enable
the customer’s long-term
ambitions?

ANTICIPATING THE USER

What are the design
patterns that will create
a superior user
experience? What are
the tools and
frameworks that will
enable that?

COLLABORATING WITH
YOUR COLLEAGUES

How do you set up an
effective and efficient
development
environment? What
does your tool chain look
like? How do you enable
transparency, trouble-
shooting and build
confidence?

PLANNING AND
LEADING

How do you break down
high-level ambitions into
manageable tasks? How
can you collect the
necessary data to make
confident predictions?

2024-09-03Intro/Sandahl Ståhl Varró 15

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

Software Engineering

2024-09-03 17Intro/Sandahl Ståhl Varró

• Application of
systematic, disciplined,
quantifiable approach to
software development,
operation and
maintenance of
software. (IEEE-Std.)

2024-09-03 18Intro/Sandahl Ståhl Varró

The term “Software Engineering” was coined
to describe a necessity, not the state of the
art.

Freely from
Brian Randell,
ICSE 2018
Keynote

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

Course goals

2024-09-03 20Intro/Sandahl Ståhl Varró

Give sound theoretical foundation of Software
Engineering
The intended learning outcomes are that the student at
the end of the course can:
• explain and exemplify basic concepts in the area of

large-scale software engineering.
• explain how to specify, model, implement and test a

software system.
• explain how to execute a software development

project.

Ambition level

2024-09-03 21Intro/Sandahl Ståhl Varró

• You will know enough to
communicate easily with
professional software
engineers

• You will have the basic
knowledge to start generating
your own experience already
in student projects

• You will have a curious, but
critical, attitude towards
existing and new methods

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

Labs (TDDC88, 725G64 only)

2024-09-03 23Intro/Sandahl Ståhl Varró

Give the student practical insight in tools used in
software development.
• Lab 1 – Packaging with Docker (guided tour)
• Lab 2 – Kubernetes (guided tour)
• Lab 3 - Unified Modeling Language (UML)
• Lab 4 – Automated Testing
• Lab 5 - Software Configuration Management (SCM) and –

Continuous integration
• Lab 6 - SW metrics
Sign-up deadline September 7

Projects (TDDC88, 725G64 only)

2024-09-03 24Intro/Sandahl Ståhl Varró

• TDDC88, 725G64:
• Project integrated in the course during Ht1-Ht2
• Three large “companies” of c:a 25 students
• External customer
• Start: 2024-09-04 at 10:15 in KMC Aulan

• Students of D and U:
• Bachelor project during Vt1-Vt2 2025 for D, 2026 for U
• Teams of 6-8 students
• Real, different customers

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

2024-09-03 26Intro/Sandahl Ståhl Varró

How do you kill this monster?

“There is no silver bullet”

2024-09-03 27Intro/Sandahl Ståhl Varró

• A good Software
Engineer knows several
methods, tools, and
techniques:

• How does it work?
• What are the benefits?
• What are the

drawbacks?
• Is it good for my

situation?

Fred Brooks, 1986
"No Silver Bullet — Essence and Accidents of
Software Engineering“, Proceedings of the IFIP
Tenth World Computing Conference.

Software engineering is a craft

STUDYING IS
IMPORTANT, BUT…

… it also needs to be
practiced!

THERE ARE VERY FEW
SIMPLE ANSWERS

The answer to just about
everything is ”it
depends”.

There are always pros
and cons.

There is a lot of buzz.

THE MOST IMPORTANT
SKILL IS TO THINK

Think creatively.

Think critically.

Move comfortably
between levels of
abstraction.

Needs

Algorithms

Architecture

Requirements

Structures

Patterns

2024-09-03Intro/Sandahl Ståhl Varró 28

How does one study software engineering?

READ MULTIPLE
SOURCES

There is always another
side to the latest trend.
Look for skeptical voices.

TRUST EXPERIENCE
OVER THEORY

There are many nice
theoretical concepts that
don’t work in practice.

The world is full of clever
languages and compilers
that nobody ever uses.

YOU WILL NEVER LEARN
EVERYTHING

Don’t even try. But it
helps to know what you
don’t know! Known

known
Known

unknown

Unknown
known

Unknown
unknown

Bad place.

Happy place.

2024-09-03Intro/Sandahl Ståhl Varró 29

2024-09-03 30Intro/Sandahl Ståhl Varró

Example
One approach:
• Check the “concepts”-file
• Google
• Wikipedia
• References
• Search and read

Another approach:
• Homepage
• Literature
• Download and read

Be careful and
critical

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

2024-09-03 32Intro/Sandahl Ståhl Varró

Scope of a software life-cycle model

Idea Software Product

Usage ReplacementOperation & maintenance

Model of a life-cycle

3

Carol
the customer

Diana
the developer

Abstraction level

Time

Model of a life-cycle
34

 Week 36 – Requirements
 Week 37 – Design and Architecture
 Week 38 – Testing and SCM
 Week 39 – Planning and Processes
 Week 40 – Software Quality

Knowledge areas – lecture week overview

KA #1: Requirements
35

Requirements

Elicitation

Collect user
requirement

Analyze

Understand

Specify

Document

Validate

Check that it matches
user requirements

Ulla
the user

No user input until too late

Sam
the seller

No written specification

Lecture - Requirements

KA #2: Design and Architecture
36

Requirements

System Design
(Architecture,
High-level Design)

Decompose into sub-systems or modules
• Well-defined interfaces
• High level of abstraction

Module 1 Module 2

Module 3

Architecture styles, e.g.
• Client-server
• Layered Models
• Pipes and Filters
• SOA

Lecture - System Design and Architecture

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

Unified Modeling Language (UML)

Use a standardized way to model system
graphically

Conny
the consultant

His "own" notations
Design Patterns

Reuse design solution that has worked before

Lecture - Module Design and UML

KA #2: Design and Architecture

KA #3: Testing and SCM

Requirements Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

System Testing
(Integration testing of modules)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Verify Implementation

Module Testing
(Integration testing of units)

Verify Module Design

Verify System Design

KA #3: Testing and SCM

Requirements Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

System Testing
(Integration testing of modules)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Verify Implementation

Module Testing
(Integration testing of units)

Verify Module Design

Integration testing
• Dependencies between modules

Approaches
• Top-down (need stubs)
• Bottom-up (need drivers)
• Sandwich
• Big-bang

Module 1 Module 2

Module 3

Crash!

Lack of unit, integration and system testing

Lecture - Testing

KA#3: Testing and SCM

Verify System Design

Requirements Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

System Testing
(Integration testing of modules)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Verify Implementation

Module Testing
(Integration testing of units)

Verify Module Design

Configuration Management (CM)

Carol
the customer

Crash!

Commit and test frequently
Deliver new functions immediately

Lecture - Software Configuration Management
and Continuous Practices

Continuous Practices

Keep track of versions.
Used the wrong code-base.

Supporting Processes

Requirements

KA #4: Planning and Processes

Verify System Design

Requirements

Verify Implementation

Module Testing
(Integration testing of units)

Verify Module Design

Lecture - Software Life Cycles and Processes
Agile Methodologies

V-model
Waterfall model

Iterative models

Processes e.g. Scrum, XP, OpenUP, Kanban, Essence

R R R

KA #4: Planning and Processes

Verify System Design

Requirements

Validate Requirements, Verify Specification

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,
functions)

Verify Implementation

Verify Module Design

Lecture - Project Management

Time plan

Milestones Time-budget

Resources Calendar-time

Activities

Harry
the hacker

- Minimize
- Transfer
- Accept

Risk Management

Identify Analyze Plan

• Resource management - Harry
• Time-buffer, toll-gates
• Internal milestones - keep track

probability - consequence

KA #5: Software Quality

Verify System Design

Requirements Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

System Testing
(Integration testing of modules)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Verify Implementation

Module Testing
(Integration testing of units)

Verify Module Design

Lecture - Software Quality Management

Different quality factors
• Quality of product
• Quality of process
• Quality in business
• Finding defects
• Learning organization

Lecture - Software Reviews
Lecture - Software Metrics

Course ending (Theory part)

Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,
functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

Maintenance

Lecture – Exam rehearsal

Communication Principles

2024-09-03 46Intro/Sandahl Ståhl Varró

• What if "I have a question related to the course"?

– Principle 1: Post your technical questions in the MS
Teams channels of the course

– (You may get no answer if you write an email instead)

• What if "I have a personal issue / problem"?

– Principle 2: Write an email to Kristian or DanielV if
you have a personal issue or problem in the course

– (You may get too many replies if you write a post
instead)

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

48

Feed-back

All feedback is welcome
 Via mail kristian.sandahl@liu.se, daniel.varro@liu.se
 Via phone 0706-681957
 Via coffee. Drop an e-mail, so we can schedule a time

EVALIUATE (web-based system)

Student representative feed-back

INCLUDE COURSE CODE IN MAIL HEADINGS

Muddy Cards, Wednesday, week 37

2024-09-03Intro/Sandahl Ståhl Varró

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

50

Examination

Written Exam (both TDDC88/725G64 and TDDC93)
 Primary Exam 14:00-18:00, October 28, 2024
 Retake Exam January 8, 2025
 Retake Exam, August 2025, TBD

2024-09-03Intro/Sandahl Ståhl Varró

Course part Examination Credits Applicable to

Theory Written exam 4 hp TDDC93, TDDC88,
725G64

Project Project tasks 6 hp TDDC88, 725G64

Laboratory
exercises

Oral exam, written
exercises

2 hp TDDC88, 725G64

51

Examination Part I: Fundamentals
 Requirements
 Planning and Processes
 Design and Architecture
 Testing and SCM
 Software Quality
10 credits per area. Max 50 credits.

Part II: Advanced
50 credits, distributed over 2-5 questions.
 argue, compare, and analyze different concepts

and techniques.
 construct and/or design solutions to larger

problem.
 explain more advanced and specific topics.

2024-09-03Intro/Sandahl Ståhl Varró

Pass with 50 credits

52

Lecture exercises

Note! The credits are only valid on the exams in
October 2024, January 2025, and August 2025

Lecture Exercises
 Optional
 5 exercises, one for each knowledge area
 Solve exercises in groups of 2 students
 0-4 extra credits on the exam for each exercise (max 20)
 Possibility: Higher grades and easier to pass the exam

For details, see course page under “Lecture Exercises”

2024-09-03Intro/Sandahl Ståhl Varró

2024-09-03 53Intro/Sandahl Ståhl Varró

Lecture exercise: Plagiarism is forbidden
https://liu.se/en/article/plagiering-upphovsratt

“We therefore believe that
internal software
documentation is
important, no matter the
ways of working.” [1]

[1] L. Lagerberg, T. Skude, P. Emanuelsson, K.
Sandahl and D. Ståhl, "The Impact of Agile
Principles and Practices on Large-Scale
Software Development Projects: A Multiple-
Case Study of Two Projects at Ericsson," 2013
ACM / IEEE International Symposium on
Empirical Software Engineering and
Measurement, Baltimore, MD, 2013, pp. 348-
356. doi: 10.1109/ESEM.2013.53

We therefore believe that
internal software
documentation is
important, no matter the
ways of working. [1]

[1] L. Lagerberg, T. Skude, P. Emanuelsson, K.
Sandahl and D. Ståhl, "The Impact of Agile
Principles and Practices on Large-Scale
Software Development Projects: A Multiple-
Case Study of Two Projects at Ericsson," 2013
ACM / IEEE International Symposium on
Empirical Software Engineering and
Measurement, Baltimore, MD, 2013, pp. 348-
356. doi: 10.1109/ESEM.2013.53

2024-09-03 54Intro/Sandahl Ståhl Varró

Lecture exercise: Run NoPlagiat self-study

A large-scale study found
that regardless of working
method, internal
documentation is
important. [1]

[1] L. Lagerberg, T. Skude, P. Emanuelsson, K.
Sandahl and D. Ståhl, "The Impact of Agile
Principles and Practices on Large-Scale
Software Development Projects: A Multiple-
Case Study of Two Projects at Ericsson," 2013
ACM / IEEE International Symposium on
Empirical Software Engineering and
Measurement, Baltimore, MD, 2013, pp. 348-
356. doi: 10.1109/ESEM.2013.53

2024-09-03 55Intro/Sandahl Ståhl Varró

Don’t use generative AI to produce text and
code that you should have written yourself!

Applies to: Lecture exercises, individual project
reports, solutions to labs, written assignments

Agenda:
Presentation
Problems with software
What is Software Engineering?
Course Goals
Labs and Projects (TDDC88/725G64)
Studying Software Engineering
Contents of the theory part
Communication
Examination
Changes since last year

Changes since last year

2024-09-03 57Intro/Sandahl Ståhl Varró

• ISO25010 material updated to 2023 version

• New project, new customer

• Lecture exercises better aligned with exam

• Slightly modified lecture exercises. Students from
previous years must have at least 30% new material
in answers.

• More examples and best practices for UML modeling

• Re-take exams in 2025 will change from Wiseflow to
Inspera

Summary

2024-09-03 58Intro/Sandahl Ståhl Varró

• SE is critical for software industry
• Be skeptical and critical to methods
• Knowledge areas:

– Requirements
– Design and architecture
– Testing and SCM
– Planning and processes
– Software quality

• Communication in Teams
• Examination

www.liu.se

Extra material

60

A typical Software Project 60

How the customer explained it

2024-09-03/

61
61

How the project leader understood it

A typical Software Project2024-09-03

62

A typical Software Project 62

How the analyst designed it

2024-09-03

63

A typical Software Project 63

How the programmer wrote it

2024-09-03

64

A typical Software Project 64

How the business consultant described it

2024-09-03

65

A typical Software Project65

How the project was documented

2024-09-03

66

A typical Software Project66

What operations installed

2024-09-03

67

A typical Software Project67

How the customer was billed

2024-09-03

68

A typical Software Project68

How it was supported

2024-09-03

69

A typical Software Project69

Finally, what the customer really needed

Welcome to
the Software
Engineering course
2024!

2024-09-03

	Course introduction
	Bildnummer 2
	Where does Kristian come from?
	Who is Kristian?
	Who is Daniel Ståhl?
	Where does Daniel come from?
	Where does DánielV come from?
	Who is DanielV?
	Who are you?
	Why should I take this course?
	Bildnummer 11
	If yes, how would you avoid disasters?
	2 32 milli-seconds is a looong time?
	Every problem is a people problem...
	... and also a technology problem
	Bildnummer 16
	Software Engineering
	The term “Software Engineering” was coined to describe a necessity, not the state of the art.
	Bildnummer 19
	Course goals
	Ambition level
	Bildnummer 22
	Labs (TDDC88, 725G64 only)
	Projects (TDDC88, 725G64 only)
	Bildnummer 25
	How do you kill this monster?
	“There is no silver bullet”
	Software engineering is a craft
	How does one study software engineering?
	Example
	Bildnummer 31
	Scope of a software life-cycle model
	Model of a life-cycle
	Model of a life-cycle
	KA #1: Requirements
	KA #2: Design and Architecture
	Bildnummer 37
	KA #3: Testing and SCM
	KA #3: Testing and SCM
	KA#3: Testing and SCM
	Supporting Processes
	KA #4: Planning and Processes
	KA #4: Planning and Processes
	KA #5: Software Quality
	Course ending (Theory part)
	Communication Principles
	Bildnummer 47
	Feed-back
	Bildnummer 49
	Examination
	Examination
	Lecture exercises
	Lecture exercise: Plagiarism is forbidden�https://liu.se/en/article/plagiering-upphovsratt�
	Lecture exercise: Run NoPlagiat self-study�
	Don’t use generative AI to produce text and code that you should have written yourself!
	Bildnummer 56
	Changes since last year
	Summary
	Bildnummer 59
	A typical Software Project
	Bildnummer 61
	A typical Software Project
	A typical Software Project
	A typical Software Project
	A typical Software Project
	A typical Software Project
	A typical Software Project
	A typical Software Project
	A typical Software Project

