
 TDDC88/TDDC93: Software Engineering
Lab 5

Software Configuration Management (SCM) and
Continuous Integration (CI)

Objectives

● To give you a fundamental understanding and practical experience of how a version
control system works in general, some of the things that are possible with Git

● To gain an understanding of git branches and manage branches whenever you want
to add new work and push it to the original repository via merge request

● To gain a fundamental understanding and hands-on experience on continuous
integration (CI)

This lab consists of two parts. The initial part gives you a fundamental understanding and
practical experience of how a version control system works in general. The subsequent part
provides you with fundamental insights and hands-on experience with continuous
integration.

Part 1 - Software Configuration Management (SCM)

Introduction

“Version control is to programmers what the safety net is to a trapeze artist. Knowing the
net is there to catch them if they fall, aerialists are free to fly. In the same way, version
control enables you to take programming risks that you would never otherwise consider.
If something goes wrong, you can always revert back to a known, good-working version
of your code. You can experiment in a branch1 off the main trunk without interfering with
other team members. When bugs are discovered in an older version of a shipped product,
you can easily check out that specific version to confirm, fix, and generate a patch for the
bug. Without version control, you would have to be much more cautious, move more
slowly, and generally be less productive”

1 The normal convention is to use three root folders for a software project: branches,
tags, and trunk. Branches are for experiments. Tags normally identify older, already
released versions of the software. However, most of the time, you'll want to work on the
main branch, which is called trunk.

1

- Elliotte Harold, Adjunct Professor, Polytechnic University

The main idea of a version control system is to contain the software project in a so-called
repository; from which developers can check out copies of a project and in this way
create local working copies. These working copies can then be edited and eventually
uploaded, or committed, back to the repository, as a new version, or revision, of the file
that has been modified. If several developers simultaneously are editing working copies
of the same file, the version control system must be able to deal with conflicts that might
occur when the developers later try to commit their different working copies to the
repository. To be sure that a developer always has the latest revision of a file he or she
should update his copy from the repository frequently, and at least before commit.

Git was developed by Linus Torvalds in 2005 for the development of the Linux kernel. Git
is by default included in the standard Eclipse version. It is possible to work with Git from
the terminal (by typing the commands) or from a graphical user interface (e.g., standalone
clients or plugins to IDEs such as eclipse).

 Very Important -
 All instructions in this lab are inter-dependent. If you make a mistake in one
instruction, the whole flow will fail, and you will be asked to do the lab again. To
avoid the inconvenience, it is important to take a screen shot of each command, you
ran in the terminal. These screen shots can be placed in Word along with the number
or what you did. These screen shots will help your instructor to debug the error in
case the workflow fails. This does not guarantee (i.e., particularly in cases, where you
made many mistakes) that you will not be asked to do lab again.

 These tasks are for demonstrating some features and problems that may occur using
version control and the features in Git. To make life a bit easier we will in the later part of
the exercise pretend that we are monitoring two different developers, named Peter and
Sally, who are working for the same company. This company has recently bought a project
called HelloWorld. However, the product manager of the company would like to make
some changes to HelloWorld and has put both Peter and Sally to work on the project. Of
course, since Peter and Sally do not exist, you will have to carry out the tasks for them.
When you have finished the tasks, you should report to the lab assistant and give an oral
explanation and a demonstration of what you have done and what you learned from it. Be
prepared to answer questions about the details of your solution.

 Note: Using several workspaces/terminals/folders can be a bit confusing. Therefore, it
is very important that you read what you should do before you do it! In the worst
case, you will have to re-do the lab from the start if you just miss a single instruction.

2

Task 1. Setting up a Git repository and importing a project
In this, task you will create a Git repository and import the HelloWorld project to the
repository. However, since this is something that developers usually don’t have to bother
about, we will not pay it that much attention, but only go through the task.

Open a terminal and run the following commands:

git config --global user.name "<first name> <surname>"

Change <first name> to your name and <surname> to your surname

git config --global user.email <liu-id>@student.liu.se

Change <liu-id> to your liu-id

mkdir -p ~/TDDC88/git_lab
cd ~/TDDC88/git_lab
mkdir remote
cd remote
git init --bare HelloWorld.git

This will create an empty git repository HelloWorld placed in the folder git_lab/remote
placed in your home folder. The ~ is short for your home folder “/home/<liu-id>/”.
*This folder corresponds to a remote repository where everyone has access
to. Usually reachable through a network (e.g., internet).

mkdir ~/TDDC88/git_lab/tmp
cd ~/TDDC88/git_lab/tmp

This will create and navigate to a temporary folder.

git clone ~/TDDC88/git_lab/remote/HelloWorld.git

This clones the repository we just created into a folder HelloWorld in the current directory.
You should now have a copy of the repository in the current folder (tmp). The project is still
empty.

3

Run these commands:

wget https://www.ida.liu.se/~TDDC88/labs/HelloWorld.tar.gz
tar xzf HelloWorld.tar.gz
cd HelloWorld
git add -A
git commit -m "Added HelloWorld files to repository."
git push origin master

This will be explained later, but, in short, we copied new files into the project.
Added them to version tracking with Git, committed the new changes, then pushed
our changes to the remote origin (which is located at git_lab/remote) so that
everyone else can see them.

Remove the temporary folder. We don’t need it anymore.

cd ~/TDDC88/git_lab
rm -Rf tmp

Task 2. Checking out working copies for Peter and Sally

In this task, we will set up two new workspaces/folders/terminal sessions, one for Peter and
one for Sally, and check out one working copy from the Git repository to each of the
workspaces. You will from now on need two terminal sessions running at the same time,
one for Sally and one for Peter. Employing separate terminal sessions might lead to
confusion, so please ensure that each session corresponds to either Peter or Sally.

Note: You have the option to leverage Eclipse for code modification and execution, or you
can use other text editors to edit the source code.

 Now we are ready to start working as Peter.
Launch a terminal designated for Peter (referred to as Peter's terminal) and execute the
subsequent commands to establish a Git folder specific to Peter (referred to as Peter's
folder). Create and navigate to Peter's folder:

mkdir ~/TDDC88/git_lab/peter
cd ~/TDDC88/git_lab/peter

Clone a working copy of the repository to Peter. You should now have a folder
named HelloWorld in the current folder (which is ~/TDDC88/git_lab/peter/). This is your
clone.

4

git clone ~/TDDC88/git_lab/remote/HelloWorld.git

Enter the folder using cd HelloWorld, then:

git config user.name "Peter"

Change the name in this repo to Peter. (This is only for the lab and is normally not needed
since you have entered a global configuration earlier.)

 It is Sally’s turn now.

Open a new terminal for Sally (referred to as Sally's terminal) and do the same for Sally (to
create Sally’s working folder):
mkdir ~/TDDC88/git_lab/sally
cd ~/TDDC88/git_lab/sally
git clone ~/TDDC88/git_lab/remote/HelloWorld.git
cd HelloWorld
git config user.name "Sally"

Tip: If you forget which terminal is Peter and which is Sally you can run
“git config user.name” to get the name from the terminal.

Task 3. Modify-Commit-Conflict that can be automatically resolved
Both Peter and Sally will now begin their modifications of HelloWorld (You have the
option to leverage Eclipse for code modification and execution, or you can use other
text editors to edit the source code). Their first assignment is to add some comments in
the file HelloWorldFrame.java. Although it is the only file in the project, the CEO still
wants to clarify that it is the main file.

1) Sally starts by adding a comment at the top of the file HelloWorldFrame.java
(located in ~/TDDC88/git_lab/sally/HelloWorld/src/helloworld/), clarifying that
this is the main file:

//This is the main file.
Be sure that you are in Sally’s workspace/folder, add this comment, and save
the file!

2) Sally then checks if there has been a new revision to the repository and performs an
update. To do this run git pull in Sally’s terminal. Has anything happened since the
latest revision?

3) Switch to Peter’s workspace/folder.

5

4) Peter, who is lagging behind somewhat, adds a comment right above the main
Method of the file HelloWorldFrame.java (located in
~/TDDC88/git_lab/peter/HelloWorld/src/helloworld/):
//This is the main method.
Add this to his working copy of the file and save it. Peter also checks
for new revisions. Do this! Has anything happened? Why/why not?

5) Switch to Sally’s workspace.
6) Sally now feels pretty satisfied and decides to commit her working copy to the

repository. Do this for her using the following commands (in Sally’s terminal):

git status
git pull

To check for unstaged changes, HelloWorld/HelloWorld/src/helloworld/
HelloWorldFrame.java Should be marked in red. If you have unstaged
.class files don’t add those.

git add <file path>

This command puts the file in the staging area. Change <file path> to the
unstaged file ex.
HelloWorld/HelloWorld/src/helloworld/HelloWorldFrame.java

git commit -m “Enter commit message here”

This commits the changes.
git push

This updates the server with your changes.

git log -2

This shows the last 2 commits.

7) What is the git log output after the push?
8) What is the staging area for?
9) Why should you do a git pull before pushing?
10) Switch to Peter’s workspace/folder.
11) Peter also feels it is time to make a commit. Therefore, commit the file to the

repository using the same procedure as above (in Peter’s terminal). Remember to
enter a commit comment. What happened?
Tip. Git may ask you to pull the changes first before pushing Peter’s files. To pull the
changes, simply run git pull. You may also find yourself trying to resolve a merge

6

conflict in VIM (MERGE_MSG). To do this, press i (to insert), enter a message on
the next line, and exit using ESC + :wq (Once resolved, commit and push the files)

12) Would it have been possible to solve the problem just as easily if Peter had added a
comment at the top of the file as well?

13) Which are the three latest commit messages after Peter successfully has committed
the file?

14) What are the key differences between git merge and git rebase? How do these
commands affect the commits history?

Note: Once the conflict is resolved, make a commit from Peter's end. Ensure that both
Peter and Sally are aligned with the same version upon concluding this section, which
may necessitate a pull if required.

Task 4. Modify-Commit-Conflict that must be manually resolved
The product manager has also asked Peter to change the color of the “Hello World”-
message from blue to green when pressing the button (in HelloWorldFrame.java).
However, due to a misunderstanding Sally thought she was assigned to do this, she
also thought the color should be red instead of blue.

1) Switch to Sally’s workspace/folder.
2) Make a pull for Sally (in Sally’s terminal) so that she has the latest revision. Locate

the section in the file containing the information about the color and enter the code
for red and save the file. Then make a commit with a suitable commit comment
and push it to the server.

3) Switch to Peter’s workspace/folder.
4) Without first making an update with pull, help Peter change the color to green.

Save the file! When you are done, try to commit and push the file. If it does not
work, you must solve the conflict in it and commit the merge!

Tip: switch to Peters workspace in Eclipse and look for rows looking like
these and replace it with what it should be:

<<<<<<< HEAD
// This is your local version
=======
// This is the conflicting change from the server
>>>>>>> 9c421ebb4def402d2204d05301aec9b1b07e148a

Note: Do not push the commit to the remote after the merge has been resolved.

5) What happens? Can this problem be solved like before? Why/why not?

6) Why is the use of git rebase not preferred in a team project?

7

Task 5. Roll-back to an earlier revision
The CEO of the company, who has been under a lot of stress lately, suddenly realizes that
it is probably best to go with the blue color after all. The product manager is notified
about this and asks Sally to fix it.

1) Switch to Sally’s workspace and make sure she has the latest version.
2) Sally, being a practical developer, thinks the best way to fix this is to make a

so-called roll-back to an earlier revision instead of changing the code. Help her
with this.

Terminal:

Run git log and find a suitable commit that you want to check. On the commit you
want to check copy the string following “commit” looking something like this
775b4b53e2de4d85f794c5932af3e5f133ffde07.

Then run:

git diff HEAD 775b4b53e2de4d85f794c5932af3e5f133ffde07

This command will show what will be changed if we roll back or revert that commit.
When you find the commit you want to revert run:

git revert 775b4b53e2de4d85f794c5932af3e5f133ffde07
git push

● What does the log say now, why?
● What are the key differences between git reset and git revert? How do these

commands affect the files in the staging area?

Examination
When you are done and understand all steps in part A contact your assistant during a lab
occasion. Be ready to answer questions concerning what you did when demonstrating.
You don't need to hand in anything.

References and resources:

Git
git-scm.com

8

https://git-scm.com/

Part 2 - Continuous Integration (CI)

Introduction

This lab will give you some hands-on experience in using continuous integration tools to
automate the integration when members of a team push new/modified code into the remote
repository. There are several CI tools to choose from, for example Jenkins, GitLab CI,
TeamCity, and Travis CI etc...
In this Lab, you will be able to set up a CI system using GitLab, which is one of the more
popular CI tools. In GitLab, you can create projects for hosting your codebase, collaborate on
code, and automate all sorts of tasks related to building, testing, and delivering or deploying
software continuously with built-in GitLab CI/CD. Builds can be triggered by time or event
based.
You will be using the FreeCol codebase (FreeCol is a turn-based strategy game), which
resides at https://gitlab.liu.se/jesji387/group3, along with GitLab from LiU
(https://gitlab.liu.se/), and docker hub images available in https://hub.docker.com/ to build
FreeCol application. FreeCol application [http://www.freecol.org/] is a Java module, aims to
create an open-source version of the game Colonization. FreeCol project's build script, using
Ant, is configured to build, generate HTML documentation, code coverage reports,
automated testing report etc. Apache Ant (https://ant.apache.org/) is a Java library and
command-line tool with a number of built-in tasks allowing to compile, assemble, test, and
run Java applications
Recommended reading before you start working on this lab:

 Introduction to CI/CD with GitLab
https://docs.gitlab.com/ee/ci/introduction/index.html#how-gitlab-cicd-works

 GitLab CI/CD Pipeline Configuration Reference
https://docs.gitlab.com/ee/ci/yaml/README.html

 Creating and Tweaking GitLab CI/CD for GitLab Pages-
https://docs.gitlab.com/ee/user/project/pages/getting_started_part_four.html

 JUnit test reports - https://docs.gitlab.com/ee/ci/junit_test_reports.html

Part A – Tutorial on how to set up a CI using Gitlab... 11
1. Create a “helloworld” project in GitLab.. 11
2. Clone your remote repository...12
3. Working on your local repository...13
4. Gitlab CI configuration for “helloworld” project...14

Question: Explain each line in the figure above... 14
Part B – GitLab CI Configuration and Git Branches...16

1. Setting up a shared Git repository.. 16
2. Forking the FreeCol repository.. 18
3. Cloning the repository..18
4. Run build scripts in FreeCol in your local computer... 19
5. Set up Continuous Integration in GitLab.. 20

9

https://gitlab.liu.se/
https://hub.docker.com/
https://ant.apache.org/
https://docs.gitlab.com/ee/ci/introduction/index.html#how-gitlab-cicd-works
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/user/project/pages/getting_started_part_four.html
https://docs.gitlab.com/ee/ci/junit_test_reports.html

6. Step 4. Create a merge request in GitLab to the original repository.............................. 21
7. Merge the proposed changes.. 22
8. Fixing the test cases..22
9. Merge test fix into the master branch...23

Examination... 24

10

 Part A – Tutorial on how to set up a CI
using Gitlab

1.Create a “helloworld” project in GitLab
1. Sign in on https://gitlab.liu.se/ using your LiU account.
2. In your dashboard, click the green New project button or use the plus icon in the

navigation bar.

This opens the New project page.

11

3. On the New project page, choose the blank project tab.
4. On the Blank project tab, provide the following information:

 The name of your project (i.e., helloworld) in the Project name field.
 Select the Initialize repository with a README option to create a README

file.
5. Click Create project. Now your Git repository is initialized with a default branch

(master).

2.Clone your remote repository

To start working locally on your remote repository, you must clone (download) a copy of its
files to your local computer. You can clone it via HTTPS:

● From your helloworld project click on the Clone button
● Copy the URL from “Clone with HTTPS” field
● Open a terminal in the directory you wish to clone the repository files into, and run

the following command:
○ git clone [repository_URL]

where [repository_URL] is the URL (remote repository path) you copied.
● Enter your credentials if asked. Once completed, the following actions occur.
● A new folder called hellworld initialized as a Git repository is created in your local

computer
● A remote named origin is created, pointing to the URL you cloned from. Go to

helloworld folder and type git remote -v and press Enter. You will see the current
configured remote repository:

○ origin https://gitlab.liu.se/<USERNAME>/helloworld.git (fetch)
○ origin https://gitlab.liu.se/<USERNAME>/helloworld.git (push)

● All of the repository's files and commits are downloaded there (for now only the
README file)

● The default branch (usually called master) is checked out. Type git branch and
press Enter. You will see your branches. A * will appear next to the currently active
branch: * master.

12

Questions:
Write a few lines (i.e., what, and why mostly) about each of the following terms, with respect
to GIT:

1) Origin
2) Remote
3) Branching (master or other) – Creating a new branch
4) Forking
5) Merge Request
6) Continuous Integration
7) Continuous Delivery
8) Making a pull request
9) Build Script

10) .yml file in CI workflow

3.Working on your local repository
1. Create a file called HelloWorld.java in you project root, which contains the simplest

program of Java printing “Hello World” to the screen.
class HelloWorld
{

public static void main(String args[])
{

System.out.println("Hello, World");
}

}
2. Push all your changes to Gitlab (your remote repository):

● Run the command “git status” to know how many files have been added/changed.
● Add the file to your local repository and stage it for commit to your local

repository:
git add . or git add HelloWorld.java
Note: The . character means all file changes in the current directory and
subdirectories.

● Commit the file that you've staged in your local repository:
git commit -m "helloworld”, where -m stands for message, you want to associate
with these changes so you remember, why you made these changes.

● Push all commits in your local repository to GitLab (remote repository)
git push [name_of_your_remote] [name_of_your_branch]

On successful completion, your new file “HelloWorld.java” will be added to your
remote repository in GitLab webpage as well as on local computer.

13

4.Gitlab CI configuration for “helloworld” project
● Create .gitlab-ci.yml and save it in your root directory of “helloworld” project. The

contents of .yml file is as follows:

NOTE: YAML does not allow tab indentation, so use 2 spaces instead. If you are
using vim to create the ci file, run set ts=2 sw=2 et and add a line containing # vi:
ts=2 sw=2 et at the bottom of the file. Ensure that the file ~/.vimrc contains the line
set modeline.

Question: Explain each line in the figure above.
● Push all your changes to Gitlab (your remote repository)

git add .
git commit -m "initial CI"
git push [name_of_your_remote] [name_of_your _branch]
On successful completion, GitLab CI automatically starts to execute the jobs you’ve
set. Go to option on left side on gitlab.liu.se “Build” and click on “pipelines” (Build
→ Pipelines). You should see the status of you last commit changes from pending to
either running, passed or failed as shown below (see your Gitlab repository).

14

You can view all pipelines by going to the Pipelines page in your project.

In GitLab CI, Runners run the code defined in .gitlab-ci.yml. GitLab CI not only executes
the jobs you’ve set, but also shows you what’s happening during execution, as you would see
in your terminal. You can also view if artifacts were stored correctly using the build artifacts
browser that is available from the build sidebar.

15

 Part B – GitLab CI Configuration and Git
Branches

In Part B, you have to work in pair, and the project owner (In this case student-A) want the
GitLab CI tool to continuously integrate, build and test his FreeCol project automatically
triggered by push event, and publish the test results.

1.Setting up a shared Git repository
In this task, you need to import an existing FreeCol repository via HTTP by providing the Git
URL from the New Project page:

● Sign in on https://gitlab.liu.se/ using “Student_A” LiU account

● From your GitLab dashboard click New project
● Switch to the Import project tab
● Click on the Repo by URL button
● Fill https://gitlab.liu.se/jesji387/group3.git in the “Git repository URL”. Use Public

Checkbox. By default, it is private.
● Click Create project to begin the import process

16

https://gitlab.liu.se/
https://gitlab.liu.se/jesji387/group3

Once completed, you will be redirected to your newly created FreeCol project accessible at
https://gitlab.liu.se/<student_A_LiU_ID>/freecol, which will be your original remote
repository.
Your task is now to configure CI for FreeCol project using built-in GitLab CI/CD and
propose changes to the original repository (i.e., to the GitLab repository reside in student
A). You are expected to set up the following stages: build, test, and publish HTML test report
page in GitLab. The second requirement for this lab is to create a new branch with git
whenever you want to add a new work and push it to the remote/original repository via create
merge request.

17

2.Forking the FreeCol repository
A fork is a copy of original repository. Forking a repository allows you to freely experiment
with changes without affecting the original project. In order to push to the original repository,
you will push to your own forked repository and create a merge request from your forked
repository in GitLab.

● Sign in on https://gitlab.liu.se/ using “Student_B” LiU account
● Navigate to the FreeCol repository of student_A in your browser

(https://gitlab.liu.se/<student_A_LiU_ID>/freecol)
● In the top-right corner of the navigated page, click Fork
● Select your namespace to fork the project
● Now if you look at the URL of your forked repository it is changed into

<student_B_LiU_ID>:
https://gitlab.liu.se/<student_B_LiU_ID>/freecol

It also shows you where your repository is forked from (see Figure below).

3.Cloning the repository
Log in on the lab terminal as Student_B.
To start working locally, you must clone (download) a copy of the original repository files
(available in Student_A GitLab repository) to <Student_B> local computer. You can clone it
via HTTPS:

● Go to https://gitlab.liu.se/<student_A_LiU_ID>/freecol
● Click on the Clone button

18

https://gitlab.liu.se/
https://gitlab.liu.se/%3Cstudent_B_LiU_ID%3E/freecol
https://gitlab.liu.se/%3Cstudent_A_LiU_ID%3E/freecol

● Copy the URL from “Clone with HTTPS” field
● Open a terminal in the directory you wish to clone the repository files into and run the

following command.
git clone [repository_URL] , where [repository_URL] is the URL (original remote
repository path) you copied.

After cloning the repository successfully, you should see the copy of files in your local git
repository as shown below (see the directory where you cloned the repository).

Now add the forked repository as well:
● Run git remote add <Student_B> <URL to Student_B’s fork>

git remote -v shoud now output the following lines:
origin https://gitlab.liu.se/<Student_A>/freecol.git (fetch)
origin https://gitlab.liu.se/<Student_A>/freecol.git (push)
<Student_B> https://gitlab.liu.se/<Student_B>/freecol.git (fetch)
<Student_B> https://gitlab.liu.se/<Student_B>/freecol.git (push)

4.Run build scripts in FreeCol in your local computer
As mentioned in the introduction, FreeCol application uses the Apache Ant build script. By
default, Ant uses build.xml as the name for a buildfile. You can find the FreeCol buildfile in
your local repository (see ./build.xml). It includes targets for building FreeCol, distribution
packages, running tests, creating documentation etc.
Now try to build, run tests, and create documentation for FreeCol java application using the
Ant build script:

● Open a terminal in the directory where your FreeCol project is copied and run the
following command:

● ant build to build the FreeCol app

19

https://gitlab.liu.se/
https://gitlab.liu.se/
https://gitlab.liu.se/
https://gitlab.liu.se/

● ant -lib test/lib/junit.jar -Dtest=AllTests testall to run the JUnit tests and create a
browsable HTML report (see the result index.html file under ./build/report/).
NOTE: if the “ant” command does not work. Skip to next stage. We have provided
the docker image including “ant” below.

5.Set up Continuous Integration in GitLab
The workflows required to have working CI and pass this lab is summarized as follows:

1. Create a new branch
2. Add your code for CI configuration. You CI configuration should include the

following:
● Build the FeeCol application.
● Run the FreeCol test suite.
● Store the result as a build artifact (for the test suite).
● Publish the test results with GitLab pages.

3. Push your changes to your forked repository.
4. Create merge request in GitLab to the original repository (i.e., to student A).
5. Merge the proposed changes in GitLab (from student_A Gitlab repository).

You are free to work with your own starting point but If you have trouble finding a starting
point, follow the following steps:

1. Create a new branch called “CI_<student_B_id>” on your local machine and switch
in this branch:
git checkout –b <your_new_branch_name> where <your_new_branch_name> is
“CI_<student_B_id>”
This will switch your local git repository to a new branch called
“CI_<student_B_id>”. You can verify this by running git branch in your terminal.
The output shall be:
* CI _<student_id>

Master

2. Create a new file called .gitlab-ci.yml. The first line of yaml file i.e a Docker image
to run your script written in .gitlab-ci.yml file is given below.
image: alash325/javaant:latest

3. Complete other parts using tutorials given in Part A and reference materials or your
own material.

4. Once you are satisfied with your CI configuration, push your changes to your forked
repository with git push <Student_B> CI_<student_b_id>.

20

On successful completion, GitLab CI automatically starts to execute the jobs you’ve set as
shown below (Go to https://gitlab.liu.se/<student_B_LiU_ID>/freecol and see your Gitlab
repository).

Wait until all the jobs (stages) are executed. Once completed, go to CI/CD->Jobs from your
project page and see the result for all the jobs you were expected to complete (i.e., build, test,
publish html pages). If the results are as shown below in the graph which can be interpreted
as: The CI for build job is passed, test job is failed, and publish html page skipped, then go
to Step 4 otherwise try to fix your CI configuration until you reached the expected results.
The reason for the test job failure is due to the sound mixer is not available in our computer
system. However, for the GitLab runner to execute and publish html page for the test, you are
expected to fix those tests otherwise GitLab runner skips to execute the deploy (publish html
page) stage. You are going to do this in step 8.

6.Step 4. Create a merge request in GitLab to the original repository
Go to https://gitlab.liu.se/<student_B_LiU_ID>/freecol

● Click on Create merge request button

21

https://gitlab.liu.se/%3Cstudent_B_LiU_ID%3E/freecol
https://gitlab.liu.se/%3Cstudent_B_LiU_ID%3E/freecol

● Click on Submit merge request button

7.Merge the proposed changes
● Go to your original repository

https://gitlab.liu.se/<student_A_LiU_ID>/freecol
● Go to the Merge Requests tab and open the merge request. Once you open the merge

request you will be redirected to the page like the figure below.

● Click on Merge to merge the proposed changes to your repository

8.Fixing the test cases
As mentioned, the reason for the test job failure is due to the sound mixer is not available in
our computer system. However, for the GitLab runner to execute and publish html page for
the test, you are expected to fix those tests. In this lab, we will fix just by removing those
tests. Instructions are given below.

1. Check out to the original repository i.e., git checkout master
2. Pulling changes from a remote repository to retrieve new work done by other people

and combines your local changes with changes made by others
3. Create a new branch called “Fix_tests” and checkout your new branch
4. Go to AllTests.java in ./test/src/net/sf/freecol/common/AllTests.java and comment

the following line of code:
// suite.addTest(net.sf.freecol.common.sound.AllTests.suite());

5. Push your changes (See Step 3 in Task 4)
After pushing your changes successfully, GitLab CI automatically starts to execute the jobs
you’ve set and you can view the status of the Pipelines.

22

https://gitlab.liu.se/
https://gitlab.liu.se/%3Cstudent_A_LiU_ID%3E/freecol

After successful Pipelines you can view your clickable HTML pages by going to your
projects Deploy->Pages.
You can view your HTML report by clicking the pages your found.

9.Merge test fix into the master branch
1. Create a merge request (See Step 5 in Task 4)
2. Merge the requested changes from your original repository (See Step 5 Task 4)

23

Examination
When you are done with all tasks and ready to demonstrate your solutions, contact your
assistant during a lab occasion. Be prepared to show the workflows described in Task 4 and
answers to questions. The lab assistants may ask you to send in these answers for later
evaluations.

24

