

TDDC88/TDDC93: So�ware Engineering

Lab 2

Kubernetes

Purpose:

• To give you a fundamental understanding and practical experience with Kubernetes, the
most widely used container/cluster orchestration system.

• To give you an idea of how to deploy a containerized application on a Kubernetes cluster.
• To give you an idea of how to scale that deployment (up and down)
• To give you an idea of Kubernetes services and how to set up web ingress to reach our

service from the browser.

Kubernetes (k8s):

Parts of this tutorial have been heavily adapted from the following sources:

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://gitlab.liu.se/henhe83/kubernetes-krash
https://kubernetes.io/docs/concepts/overview/

What is Kubernetes (K8s)?

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation. It has
a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely
available.

The name Kubernetes originates from Greek, meaning helmsman or pilot. K8s as an
abbreviation results from counting the eight letters between the "K" and the "s". To give you
a one-line definition, Kubernetes is an open-source container orchestration engine for
automating deployment, scaling, and management of containerized applications.

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://gitlab.liu.se/henhe83/kubernetes-krash
https://kubernetes.io/docs/concepts/overview/

Why do we need Kubernetes? Why is it useful?

Let's take a look at why Kubernetes is so useful by going back in time.

Traditional deployment era: Early on, organizations ran applications on physical servers.
There was no way to define resource boundaries for applications in a physical server, and
this caused resource allocation issues. For example, if multiple applications run on a physical
server, there can be instances where one application would take up most of the resources,
and as a result, the other applications would underperform. A solution for this would be to
run each application on a different physical server. But this did not scale as resources were
underutilized, and it was expensive for organizations to maintain many physical servers.

Virtualized deployment era: As a solution, virtualization was introduced. It allows you to
run multiple Virtual Machines (VMs) on a single physical server's CPU. Virtualization allows
applications to be isolated between VMs and provides a level of security as the information
of one application cannot be freely accessed by another application.

Virtualization allows better utilization of resources in a physical server and allows better
scalability because an application can be added or updated easily, reduces hardware costs,
and much more. With virtualization you can present a set of physical resources as a cluster
of disposable virtual machines.

Each VM is a full machine running all the components, including its own operating system,
on top of the virtualized hardware.

Container deployment era: Containers are like VMs, but they have relaxed isolation
properties to share the Operating System (OS) among the applications. Therefore, containers
are considered lightweight. Like a VM, a container has its own file system, share of CPU,
memory, process space, and more. As they are decoupled from the underlying
infrastructure, they are portable across clouds and OS distributions.

Containers have become popular because they provide extra benefits, such as:

• Agile application creation and deployment: increased ease and efficiency of
container image creation compared to VM image use.

• Continuous development, integration, and deployment: provides for reliable and
frequent container image build and deployment with quick and efficient rollbacks
(due to image immutability).

• Dev and Ops separation of concerns: create application container images at
build/release time rather than deployment time, thereby decoupling applications
from infrastructure.

• Observability: not only surfaces OS-level information and metrics, but also
application health and other signals.

• Environmental consistency across development, testing, and production: runs
the same on a laptop as it does in the cloud.

• Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-premises,
on major public clouds, and anywhere else.

• Application-centric management: raises the level of abstraction from running an
OS on virtual hardware to running an application on an OS using logical resources.

• Loosely coupled, distributed, elastic, liberated micro-services: applications are
broken into smaller, independent pieces and can be deployed and managed
dynamically – not a monolithic stack running on one big single-purpose machine.

• Resource isolation: predictable application performance.
• Resource utilization: high efficiency and density.

What can Kubernetes do for you?

Containers are a good way to bundle and run your applications. In a production
environment, you need to manage the containers that run the applications and ensure that
there is no downtime. For example, if a container goes down, another container needs to
start. Wouldn't it be easier if this behavior was handled by a system?

That's how Kubernetes comes to the rescue! Kubernetes provides you with a framework to
run distributed systems resiliently. It takes care of scaling and failover for your application,
provides deployment patterns, and more. For example: Kubernetes can easily manage a
canary deployment for your system.

Kubernetes provides you with:

• Service discovery and load balancing Kubernetes can expose a container using the
DNS name or using their own IP address. If traffic to a container is high, Kubernetes
can load balance and distribute the network traffic so that the deployment is stable.

• Storage orchestration Kubernetes allows you to automatically mount a storage
system of your choice, such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks You can describe the desired state for your
deployed containers using Kubernetes, and it can change the actual state to the
desired state at a controlled rate. For example, you can automate Kubernetes to
create new containers for your deployment, remove existing containers and adopt all
their resources to the new container.

• Automatic bin packing You provide Kubernetes with a cluster of nodes that it can
use to run containerized tasks. You tell Kubernetes how much CPU and memory
(RAM) each container needs. Kubernetes can fit containers onto your nodes to make
the best use of your resources.

• Self-healing Kubernetes restarts containers that fail, replaces containers, kills
containers that don't respond to your user-defined health check, and doesn't
advertise them to clients until they are ready to serve.

• Secret and configuration management Kubernetes lets you store and manage
sensitive information, such as passwords, OAuth tokens, and SSH keys. You can
deploy and update secrets and application configuration without rebuilding your
container images, and without exposing secrets in your stack configuration.

What are some standard Kubernetes components?

Kubernetes is a powerful container orchestration platform that helps manage and deploy
containerized applications at scale. It consists of several standard components that work
together to provide its functionality. Here are some standard components,

• Containers: Containers are lightweight, standalone, and executable software
packages that contain everything needed to run a piece of software, including the
code, runtime, system tools, libraries (dependencies), and settings.

• Pods: Pods are the smallest deployable units in Kubernetes. They can contain one or
more closely related containers that share the same network namespace and
storage. Pods are used to group containers that need to work together.

• Nodes: Nodes are the individual machines (physical or virtual) that make up a
Kubernetes cluster. Each node runs the necessary services to manage containers and
is responsible for running Pods.

• Kubelet: The Kubelet is an agent that runs on each node in the cluster. It ensures that
the containers within a Pod are running and healthy. It takes care of container lifecycle
management.

• Ingress: Ingress is an API object that manages external access to services within a
cluster. It provides routing rules to forward HTTP and HTTPS traffic from external
sources to the appropriate services.

• Deployment: A Deployment is a higher-level resource that provides declarative
updates to applications. It ensures that a specified number of replicas of an
application are running and handles rolling updates and rollbacks.

• Replica: Replicas in Kubernetes refer to the number of identical copies or instances
of a Pod or a set of Pods that are running to ensure high availability, fault tolerance,
and scalability. The concept of replicas is used to distribute the load and ensure that
the application remains accessible even if individual Pods fail.

• Service: A Service defines a set of Pods and a policy for how to access them. It
provides a stable IP address and DNS name for external access to a set of Pods, even
as the Pods' IPs and locations change.

• Cluster: A Cluster is the entire Kubernetes system, consisting of a master control
plane and a set of worker machines (nodes) that run applications. It provides a unified
platform for deploying, managing, and scaling containerized applications.

• Cluster Controller: A Cluster Controller is responsible for maintaining the desired
state of various cluster resources.

• Stateless and Stateful: These terms refer to the nature of applications in
Kubernetes. Stateless applications don't rely on the local state of the underlying
infrastructure, making them easier to manage and scale. Stateful applications, on the
other hand, require persistence (like applications with database volumes) and rely on
stable network identities.

• Persistence: Persistence in Kubernetes refers to the ability of an application or
service to maintain its data and state beyond the lifecycle of individual containers or
Pods. This is crucial for applications that require data to be retained even when
containers are restarted, rescheduled, or replaced.

• Token: In Kubernetes, a token is a piece of information used for authentication and
authorization. It grants access to the Kubernetes API and other resources based on
user or service identity.

• Certificate Authority Data: This refers to the root certificate authority's public key
used for encrypting and verifying communication between various components of
the Kubernetes cluster. It ensures secure communication within the cluster.

These components work together to create a robust and scalable platform for managing
containerized applications in a Kubernetes cluster.

What are Kubernetes Clusters?

Kubernetes coordinates a highly available cluster of computers that are connected to work
as a single unit. The abstractions in Kubernetes allow you to deploy containerized
applications to a cluster without tying them specifically to individual machines. To make use
of this new model of deployment, applications need to be packaged in a way that decouples
them from individual hosts: they need to be containerized. Containerized applications are
more flexible and available than in past deployment models, where applications were
installed directly onto specific machines as packages deeply integrated into the
host. Kubernetes automates the distribution and scheduling of application containers across
a cluster in a more efficient way. Kubernetes is an open-source platform and is production-
ready.

A Kubernetes cluster consists of two types of resources:

• The Control Plane coordinates the cluster.
• Nodes are the workers that run applications.

The Control Plane is responsible for managing the cluster. The Control Plane coordinates
all activities in your cluster, such as scheduling applications, maintaining applications'
desired state, scaling applications, and rolling out new updates.

A node is a VM or a physical computer that serves as a worker machine in a Kubernetes
cluster. Each node has a Kubelet, which is an agent for managing the node and
communicating with the Kubernetes control plane. The node should also have tools for
handling container operations, such as containerd or CRI-O. A Kubernetes cluster that
handles production traffic should have a minimum of three nodes because if one node goes

https://cri-o.io/#what-is-cri-o

down, both an etcd member and a control plane instance are lost, and redundancy is
compromised. You can mitigate this risk by adding more control plane nodes.

When you deploy applications on Kubernetes, you tell the control plane to start the
application containers. The control plane schedules the containers to run on the cluster's
nodes. Node-level components, such as the kubelet, communicate with the control plane
using the Kubernetes API, which the control plane exposes. End users can also use the
Kubernetes API directly to interact with the cluster.

Ge�ng Started: What you need

• You need to connect to a Linux computer on LiUs network, either via ThinLinc or RDP, or
just be physically on campus.

• You need access to a GitLab project configured for kubernetes-access
• You need to read all the theory and definitions in this document.

Find the needed informa�on to connect

In order to connect to LiU's Kubernetes instance, you would need an access token. An access
token is an authentication artifact that allows a client application to access server resources
securely. For this lab, the access tokens you need are placed inside the console logs of the
Continuous Integration/Continuous Deployment (CI/CD) jobs pipeline nested within the
repository you were given. To find it, go to your repository.

For example, if you are taking TDDC88 (Software Engineering) in 2023 as group F, subgroup
12, go to https://gitlab.liu.se/tddc88-2023/F-12/ (Please note that this link can be different
depending on your group number, subgroup number, course code or the year when you
take this course).

In the sidebar or left panel, go to Build -> Jobs. (You may have to move the mouse pointer
to the very left side of the screen with the browser maximized as this panel is normally
hidden).

You should see a manual job called retrieve kubeconfig. Under the coverage

column, you will see a play button on the right side. Click play ►

https://kubernetes.io/docs/concepts/overview/components/#etcd
https://kubernetes.io/docs/concepts/overview/kubernetes-api/

A console should open showing you the job execution logs. Take your time to read all the
services that were started as it will give you an idea of how the environment was created.
Once you scroll down, you should see three dashes (---). Copy everything from apiVersion:
v1 to the end of your personal token. Do not copy the three dashes or the informative
text (like cleaning up project, job succeeded) at the end of the console. This clipboard content
is your personal Kubernetes configuration file you need to connect to the cluster instance. In
this console output, here are a few of the listed components,

• Kubernetes cluster name - Just an arbitrary name given to the cluster.
• Token – Your personal access token used to communicate with the cluster.
• CA Certificate - A certificate to verify that you are talking to the correct cluster.
• Project namespace - The namespace you are granted access to.

Take note of these parameters and keep the browser window open, we will use them later.
The namespace parameter, in particular will be used repeatedly.

Installing and configuring kubectl

If you are running on a Linux lab workstation on campus or via Thinlinc/SSH, should not
install kubectl as we have already installed it for you. Instead, use the following command -
module add courses/TDDC88 in a terminal to add it to your environment. If that module
can’t load, try module add prog/kubectl and report the error to the course staff.

To use kubectl we first need to provide the necessary data to connect to the cluster. Let's
configure it. Kubectl stores its config in ~/.kube, so create that first:

mkdir -p ~/.kube

Next, we create the cluster configuration. Start by creating the configuration file in a text
editor. We have used Kate, but you can use whichever editor you are comfortable with:

kate ~/.kube/config

Paste what you copied from the Gitlab CI/CD Jobs Console Output into this text editor. It
should look something like this (below). Once done, save the file. DO NOT copy the same file
as below!

apiVersion: v1

clusters:

- cluster:

 server: https://10.216.0.8

 certificate-authority-data:

LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURBRENDQWVpZ0F3SUJBZ0lVV3N0

Q01oU0QvZ2FJQ0F4bWtPazVIMDc0cXRrd0RRWUpLb1pJaHZjTkFRRUwKQlFBd0dERVdN

QlFHQTFVRUF4TU5hM1ZpWlhKdVpYUmxjeTFqWVRBZUZ3MHlNekE0TWpJd056TTBNREJh

RncwegpNekE0TVRrd056TTBNREJhTUJneEZqQVVCZ05WQkFNVERXdDFZbVZ5Ym1WMFpY

TXRZMkV3Z2dFaU1BMEdDU3FHClNJYjNEUUVCQVFVQUE0SUJEd0F3Z2dFS0FvSUJBUUMy

bDN0VWZ1VElCQXRrb2VvTzh2VEQ4YktiLzRjSW41QnoKSjRFbjNFcVJ3NUxNVE03Z3lW

cnJkeHNVNlZCdm9XUzNNamRKbDFJQnlzQWk5K05XaE15RDJPZUJCMDhUenZLVApIZ0lV

WWRGM3VYb0ZFN2lPOWxXWXNsNk03dlk2RGxpeXdaL0NSdUY3RmtDR0ZEMnZTNFM2QmRw

ZlJ0cGlxaXkrCmdiaWcweGNUd0xwaFJxdGZrT3NuNExOU3lXWkN5aHU0YW1HQ3d1dmxH

QjFXTHVvOFJwVUxSTEI3NDFCdDhCd0MKMWRoVEhPM1FUNTlQS0t5SDZOemV2dytRUFFU

R245M2VtT0w1SXl0YUJvSHFsV3NPZDFEdkVhdHdNWUNtUnRPZgorZ1Z0eG1sNnU2T3VH

cGxmMFlkSGp1TGUrNHpHUkNPN0QxZVl0NDRaNnROTlVmK2ZkdlduQWdNQkFBR2pRakJB

Ck1BNEdBMVVkRHdFQi93UUVBd0lCQmpBUEJnTlZIUk1CQWY4RUJUQURBUUgvTUIwR0Ex

VWREZ1FXQkJSQTlHVUwKUnA2ck42M29lU3ZURjZUR1FIV2FzVEFOQmdrcWhraUc5dzBC

QVFzRkFBT0NBUUVBcWIvQzk1emVBUzQyR1BsMgpLRW1RdGltb2tkUTBVMmdlNCtPakRn

U0JueDRLK3pQdVlRVHBaaWxCYXh0UFZrQVA4Rnp1TFNOLzhiVjltdHV5CitjTEpyeFND

YWZDWFFmLzFYdmhWYlI1eFNJZjJudEc1ZFFFS2VoNlBKYXNtbEk3SEltWFBtSWYvemEy

dFRvUmgKb1dmcFd3cXhiUEI5OUg5RkhiQlJJcVQ0UG5hZVlpTkFrZ2FzWmRsVW1FRzhN

clBlYVlWcWRNdCtrQVJGUWNjdQpWTW9GWFA5aVlrTXFNNG9SQnBlY3hqSGluVCtYMDRK

Z2dRY1dFSVE0R0hveUhXZjRvc3hxQk9UWmNtN2REc2xUClFJU0pDRGZieWVzcFNMcEFu

TUZmY3dMM21VWHBMaldZMnQ3ckRoRmRRZHRpdjJDOS9SWlVHelVEN3lSNitsQ2IKY3dI

eUhBPT0KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=

 name: tddc88

contexts:

- context:

 cluster: tddc88

 namespace: tddc88-ht23-test-group-0

 user: tddc88

 name: tddc88

current-context: tddc88

kind: Config

preferences: {}

users:

- name: tddc88

 user:

 token:

eyJhbGciOiJSUzI1NiIsImtpZCI6IkRnQzdhbUFPbnZZclN2bWdqU09CZVY2VDh2enBk

elprRUp2TFRmZUZvbmsifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50I

iwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJ0ZGRjODgta

HQyMy10ZXN0LWdyb3VwLTAiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlY

3JldC5uYW1lIjoiYWRtaW4tdXNlci10b2tlbiIsImt1YmVybmV0ZXMuaW8vc2VydmljZ

WFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJhZG1pbiIsImt1YmVybmV0ZXMua

W8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjU3MzMxYWJjLTM3M

WMtNDJhNi04NTM3LTA2Nzc3MDgxMzE2YyIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb

Make sure it's working

We can list the resources we use to make sure everything is working so far:

$ kubectl get all

No resources found in tddc88-2023-group7 namespace.

We can also check what resources we have available:

$ kubectl describe quota

Name: resource-quota

Namespace: tddc88-2023-group7

Resource Used Hard

-------- ---- ----

configmaps 0 5

count/deployments.apps 1 5

cpu 10m 1

memory 42Mi 1Gi

persistentvolumeclaims 0 2

pods 1 10

replicationcontrollers 0 0

requests.storage 0 4Gi

resourcequotas 1 1

secrets 2 5

services.loadbalancers 0 0

services.nodeports 0 0

Deploy a simple Hello World applica�on

This is a loose adoption of the HelloMinikube tutorial from Kubernetes documentation,
which you probably should read. Let's deploy a simple Hello World application to the cluster
and see if we can access it from our web browser. In this Lab, we'll use .yaml files to specify
our deployment particulars.

Create the deployment

You can create and manage a Deployment by using the Kubernetes command line
interface, kubectl. Kubectl uses the Kubernetes API to interact with the cluster. In this
section, you'll learn the most common kubectl commands needed to create Deployments
that run your applications on a Kubernetes cluster.

The common format of a kubectl command is: kubectl action resource

This performs the specified action (like create, describe, or delete) on the
specified resource (like node or deployment). You can use --help after the subcommand
to get additional info about possible parameters (for example: kubectl get nodes --
help).

Check that kubectl is configured to talk to your cluster, by running the kubectl
version command.

Now, we need to create a file, hello-deployment.yaml that will hold the details of our
deployment specifications. Since the formatting of this file is important as Kubernetes
validates JSON/YAML files before deployment, we will run the following command to directly
fetch the file,

wget https://www.ida.liu.se/~TDDC88/labs/Labs2023/Lab2/hello-
deployment.yaml

Once you fetch this file, open it using your desired text editor and analyze all the parameters
that are involved in the deployment. This will be useful for the examination tasks at the end.
The file contents should look something like this (If you get any validation errors, delete the
file, and fetch it again using the command above).

https://kubernetes.io/docs/tutorials/hello-minikube/

(Do not copy this file. For understanding purposes only)

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hello-deployment

 labels:

 app: hello

spec:

 replicas: 1 # How many replicas we want

 selector: # How do we indentify pods we should manage?

 matchLabels:

 app: hello # Match all nodes with this label

 template: # How should pods within this deployment be created?

 metadata:

 labels:

 app: hello # Specify a label, used in the above selector

 spec:

 containers:

 - name: hello

 image: crccheck/hello-world #Specify what image we want to

use

 ports:

 - containerPort: 8000 # Specify what port our container is

listening on.

 protocol: TCP

 resources: # Specify what resources we need...

 limits: # ...both absolute limits...

 cpu: 100m

 memory: 80Mi

 requests: # ...and what we probably will get by with.

 cpu: 10m

 memory: 42Mi

Now that we have a specification for our deployment, let’s apply it!

$ kubectl apply -f hello-deployment.yaml

deployment.apps/hello-deployment created

Now, Kubernetes will pull the container specified in your deployment, and start it according
to our specifications. We can check the state using:

$ kubectl get all

NAME READY STATUS RESTARTS AGE
pod/hello-deployment-69f546bc9c-jctpw 1/1 Running 0 2m8s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hello-deployment 1/1 1 1 6m42s

NAME DESIRED CURRENT READY AGE
replicaset.apps/hello-deployment-69f546bc9c 1 1 1 2m8s

This command shows you a lot of information about the current state of your work. Note
that if you run it directly after your kubectl apply, your STATUS might be something other
than Running, like for example ContainerCreating. If something looks weird, start by
checking the logs given by

$ kubectl get events

Create the service

A Service in Kubernetes is an abstraction which defines a logical set of Pods and a policy by
which to access them. Services enable a loose coupling between dependent Pods. A Service
is defined using YAML or JSON, like all Kubernetes object manifests. The set of Pods targeted
by a Service is usually determined by a label selector.

Although each Pod has a unique IP address, those IPs are not exposed outside the cluster
without a Service. Services allow your applications to receive traffic. Services can be exposed
in different ways by specifying a type in the spec of the Service.

• ClusterIP (default) - Exposes the Service on an internal IP in the cluster. This type makes
the Service only reachable from within the cluster.

• NodePort - Exposes the Service on the same port of each selected Node in the cluster
using NAT. Makes a Service accessible from outside the cluster
using <NodeIP>:<NodePort>. Superset of ClusterIP.

• LoadBalancer - Creates an external load balancer in the current cloud (if supported)
and assigns a fixed, external IP to the Service. Superset of NodePort.

• ExternalName - Maps the Service to the contents of the externalName field
(e.g. foo.bar.example.com), by returning a CNAME record with its value. No

proxying of any kind is set up. This type requires v1.7 or higher of kube-dns, or
CoreDNS version 0.0.8 or higher.

Now, on top of our Deployment, we want a Service to encapsulate it. Similarly, as before
we need a file, hello-service.yaml that will hold the details of our service specification.
Since the formatting of this file is important as Kubernetes validates JSON/YAML files before
deployment, we will run the following command to directly fetch the file,

wget https://www.ida.liu.se/~TDDC88/labs/Labs2023/Lab2/hello-
service.yaml

Once you fetch this file, open it using your desired text editor and analyze all the parameters
that are involved in the service formation. The file contents should look something like this
(If you get any validation errors, delete the file, and fetch it again using the command above).

(Do not copy this file. For understanding purposes only)

apiVersion: v1

kind: Service

metadata:

 labels:

 app: hello

 name: hello-service

spec:

 ports:

 - name: web # This port is named `web`...

 port: 80 # ... and should be exposed on port 80, ...

 protocol: TCP # ... using TCP ...

 targetPort: 8000 # ... to expose port 8000 of internal pods ...

 selector: # ... designated by the selector 'hello' ...

 app: hello

 type: ClusterIP # ... to an internal cluster IP address

Let's apply this service definition:

$ kubectl apply -f hello-service.yaml

service/hello-service created

$ kubectl get all

NAME READY STATUS RESTARTS AGE
pod/hello-deployment-69f546bc9c-jctpw 1/1 Running 0 12m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/hello-service ClusterIP 10.64.215.97 <none> 80/TCP 4s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hello-deployment 1/1 1 1 17m

NAME DESIRED CURRENT READY AGE
replicaset.apps/hello-deployment-69f546bc9c 1 1 1 12m

Try opening the CLUSTER-IP given to the service in a web browser. It won't work!

Let's fix that - To reach the service from our web browser, we need to configure ingress,
telling the Kubernetes cluster to redirect traffic to your service. For this, we need a file,
hello-ingress.yaml that holds the details of our ingress specifications. Again, since the
formatting of this file is important as Kubernetes validates JSON/YAML files before
deployment, we will run the following command to directly fetch the file,

wget https://www.ida.liu.se/~TDDC88/labs/Labs2023/Lab2/hello-
ingress.yaml

Once you fetch this file, open it using your desired text editor and analyze all the parameters
that are involved in the ingress formation. The file contents should look something like this

(Do not copy this file. For understanding purposes only)

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 kubernetes.io/ingress.class: nginx-public

 name: hello-public

 labels:

 app: hello

spec:

 rules:

 - host: namespace.kubernetes-public.it.liu.se

 http:

 paths:

 - pathType: Prefix

 path: /

 backend:

 service:

 name: hello-service

 port:

 number: 80

Pods that are running inside Kubernetes are running on a private, isolated network. By
default, they are visible from other pods and services within the same Kubernetes cluster,
but not outside that network. When we use kubectl, we're interacting through an API
endpoint to communicate with our application.

IMPORTANT:

Note the host parameter in the hello-ingress.yaml file. You need to change this
parameter as per the instruction below! Use a text editor of your choice to do so. The easiest
way would be to use the Kate text editor as kate hello-ingress.yaml

You can get the YOUR_NAMESPACE parameter from the configuration file we created at the
beginning of this lab. If your namespace was tddc88-ht23-test-group-0, then the host
parameter will become

tddc88-ht23-test-group-0.kubernetes-public.it.liu.se

In accordance with your personal configuration file, change the host parameter to
YOUR_NAMESPACE.kubernetes-public.it.liu.se and then save the file. Note that Kate
does not auto-save the file like Visual Studio.

Let's apply our configuration!

$ kubectl apply -f hello-ingress.yaml

Now, open our ingress in a web browser using the host parameter. We now have a complete
web application deployed via Kubernetes! This link should be accessible from anywhere in
the world!

Easy scaling

When you need to scale horizontally, it's as easy as the following (scale down the same way)

$ kubectl scale deploy hello-deployment --replicas=3

The load balancer will then manage everything for you. You can see the replicas using:

$ kubectl get all

$ kubectl get pods

Task: You are a software developer working for SJ (Statens Järnvägar). Management has
decided to create a new ticket booking system capable of dynamically handling peak time
network traffic. The system should also automatically use lesser resources when the network
traffic decreases. You’ve read about Kubernetes and it’s ability to automatically scale
applications (along with it’s load balancing capabilities). You make this suggestion to your
team, and they are impressed with your initiative – The only problem is that sometimes, the
applications running on the pods for long periods of time eventually transition to broken
states (due to memory leaks, resource corruption, concurrency issues, and so on). The only
way these applications can recover is if they are restarted. At the peak, you have 1000
Kubernetes pods running, and you cannot manually restart all of them. How would you fix
this problem? Also, implement your application recovery mechanism on the current LiU
Kubernetes cluster. (Please note that you don’t have to deploy a booking system. Find what
mechanism would work in this situation along with it’s corresponding YAML file and deploy
it to the cluster).

Once done with the above task, you are ready for the demonstration. You may also be asked
a few questions to test your knowledge of Kubernetes (sample questions are listed at the
end of this document).

I’ve finished demonstra�ng, now what?

(Only do this step when you have finished demonstrating to a Lab Assistant) To ensure that other
students in the lab can successfully deploy their applications to LiU’s Kubernetes Cluster, you
are required to delete your deployments, services, and ingresses. Run the following
commands (in order):

$ kubectl delete -f hello-ingress.yaml

$ kubectl delete -f hello-service.yaml

$ kubectl delete -f hello-deployment.yaml

$ kubectl get all

No resources found in tddc88-2023-group7 namespace.

(Also delete all deployments in connection with the task in a similar manner)

That’s it. You’re done with an introduction to Kubernetes, the world’s most popular and
widely used container/cluster orchestrator. We just fetched a container from the Docker
Hub, deployed it on LiU’s Kubernetes Instance and set up web ingress for worldwide access
to our application. We also scaled our application, which is normally done in the real world
to handle peak demand. Finally, we implemented a recovery mechanism in case something
goes wrong with our application during deployment.

The next step could be complete automated image building (using docker), automated
testing, and deployment using Gitlab CI/CD. While the basics on Docker were covered in the
first lab, the remaining aspects will be covered in the upcoming labs in the TDDC88 Series.

In case you need help with K8s parameters:

If you want more information on a specific parameter, try using explain:

$ kubectl explain deploy.spec.replicas

KIND: Deployment

VERSION: extensions/v1beta1

FIELD: replicas <integer>

DESCRIPTION:

 Number of desired pods. This is a pointer to distinguish

between explicit

 zero and not specified. Defaults to 1.

Examina�on

You should understand everything in each part deeply to be able to answer the questions
that assistants ask you. Furthermore, you must answer all questions. Contact your assistant
during a lab session and be ready to answer questions concerning what you did when
demonstrating. You don't need to hand in anything.

Ques�ons you must be prepared to answer:

• What is container/cluster orchestration in terms of Kubernetes (K8s)? Why is this so
important when it comes to DevOps?

• How are Kubernetes and Docker related?
• What is the difference between K8s nodes and pods?
• Can a single K8s cluster have more than one control plane?
• What is the function of a load balancer in K8s? Is this function activated automatically

when you scale your deployment?
• What is the difference between stateless and stateful applications in K8s?

