TDDC78 Lab Series

Sehrish Qummar, 2023 Credit to: August Ernstsson

Outline

• Organization:

Workflow, demonstrations, reports, resources

• Assignments:

Description of each lab and some hints

Organization

Lab Groups

- Group A: Sehrish Qummar (course assistant)
- **Group B**: Sehrish Qummar (course assistant)
- Send reports to your assigned assistant.
- Only one assistant guaranteed present per session.

Lab Assignments

- Lab 1: Image filters
 - a) Pthreads (shared memory)
 - b) MPI (distributed memory)
- Lab 2: Heat solver, OpenMP (shared memory)
- Miniproject: **Particle simulation**, MPI (distributed memory)
 - Written report and mandatory use of DDT, ITAC

Lab Structure

Title	Lab 1a	Lab 1b	Lab 2	Miniproject	
Торіс	Image	filtering	Heat propagation	Particle simulation	
Concepts	Pthreads	MPI	OpenMP	MPI	
Tools (DDT / ITAC)	Encouraged	Encouraged	Encouraged	Mandatory	
Demonstration	n Yes Yes		Yes	Yes	
Written report	No	No	No	Yes	
Sched. time	4 hours	4 hours	4 hours	6 hours	
Soft deadline	12/4 A 13/4 B			17/5 A 16/5 B	

Workflow

- Terminal on IDA computers -> log in to Sigma
 - ssh username@sigma.nsc.liu.se
- Also possible to use ThinLinc to access Sigma desktop env.
- Sometimes possible to develop locally (shared memory)
- Usage of own computer
 - Log in to Sigma as usual
 - Local development may require installing e.g. OpenMPI

Demonstrations

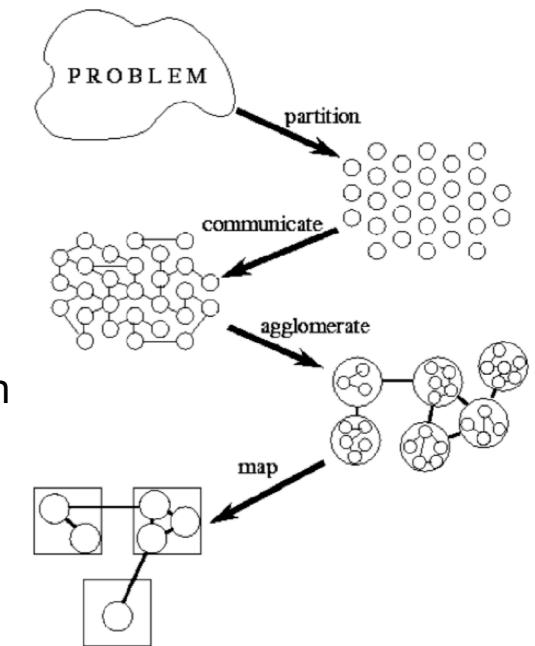
- Lab 1 a+b (separate or together), 2, and miniproject.
- Show and explain your code to the assistant.
 - **Illustrations** can help explaining!
- Performance measurements: Have **plots** ready from multiple runs to show scaling.
- Be prepared to do at least one test run live.

Miniproject

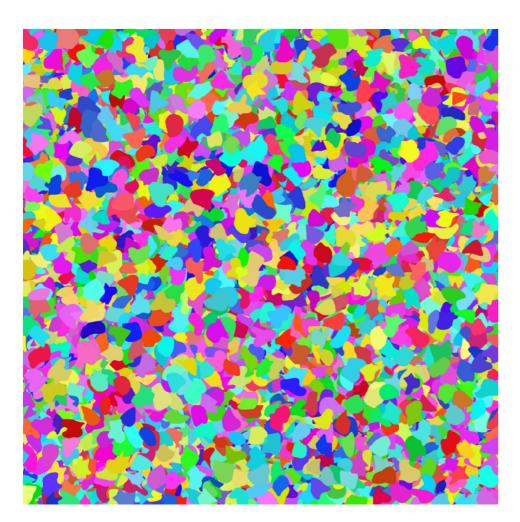
- Demonstrate your program as usual (You get a "D" in WebReg)
- Write a report (aim for *at least* 5 pages including figures and code snippets) explaining your approach to solving the problem.
- Suggested outline on the course web page.
- Try to follow the PCAM model
- An image says more than a thousand words! Make illustrations that
 - Show your problem decomposition, etc
 - Show performance results
- Send via email to your assistant, title "TDDC78: Report" (write LiU IDs and WebReg group number in email and document)

Information Resources

- Lab compendium
- Source files
- NSC + TDDC78 lecture, lesson slides
- NSC website + other online resources (e.g. MPI docs)
- Quick reference sheet (handout)


Suggestions

- Create Makefiles for compiling
- Create scripts for performance measurements (Somewhat outside the course scope, but it can be very powerful)
- Establish a good (automated?) plotting workflow
- Use Git for managing files across IDA and Sigma
 - LiU Gitlab: <u>https://gitlab.liu.se</u>


Assignments

"PCAM" model

- Partitioning
 - Domain decomposition
 - Functional decomposition
- Communication + synchronization
- Agglomeration
- Mapping + Load balancing

Lab 1: Image filters

Threshold

 Task partitioning. Consider different approaches.

Lab 1 a: Pthreads

```
struct thread_data {
    int threadId;
    char *msg;
};
```

struct thread_data thread_data_array[NUM_THREADS];

```
void *PrintHello(void *tParam) {
    struct thread_data *myData;
    myData = (struct thread_data *) tParam;
    taskId = myData->threadId;
    helloMsg = myData->msg;
}
```

```
int main (int argc, char *argv[]) {
```

Lab 1 a: Pthreads

#include<pthread.h>

}

```
pthread_mutex_t count_mutex = ... ;
long count;
```

```
void increment_count() {
    pthread_mutex_lock(&count_mutex);
    count = count + 1;
    pthread_mutex_unlock(&count_mutex);
```

```
}
long get_count() {
    long c;
    pthread_mutex_lock(&count_mutex);
    c = count;
    pthread_mutex_unlock(&count_mutex);
    return (c);
```

Lab 1 b: MPI

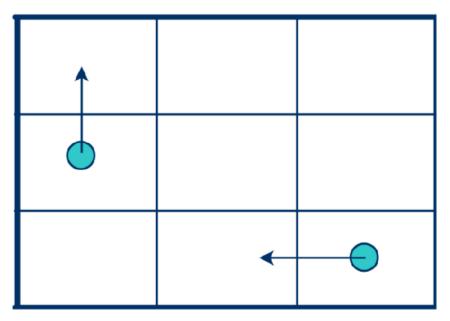
- MPI concepts: (Refer to lectures and documentation)
 - Define type (a Pixel type)
 - Send / Receive
 - Broadcast
 - Scatter / Gather

MPI Type

typedef struct {
 int id;
 double data[10];
} buf_t; // Composite type
buf_t item; // Element of the type

MPI_Datatype buf_t_mpi; // MPI type to commit
int block_lengths [] = { 1, 10 }; // Lengths of type elements
MPI_Datatype block_types [] = { MPI_INT, MPI_DOUBLE }; //Set types
MPI_Aint start, displ[2];

MPI_Get_address(&item, &start); MPI_Get_address(&item.id, &displ[0]); MPI_Get_address(&item.data[0], &displ[1]); displ[0] -= start; // Displacement relative to address of start displ[1] -= start; // Displacement relative to address of start MPI_Type_create_struct(2, block_lengths, displ, block_types, &buf_t_mpi); MPI_Type_commit(&buf_t_mpi);


Lab 2: Heat solver

- **Problem**: Find stationary temperature distribution in a (NxN) square given some boundary temperature distribution
- Solution: Requires solving differential equation
 - Iterative Jacobi method Detailed algorithm in Compendium
- Primary concerns:
 - Shared memory, OpenMP (Refer to lectures)
 - Synchronize access
 - O(N) extra memory

T = 0 T = 1

Miniproject

- Moving particles
- Validate the pressure law: pV = nRT (how?)
- Dynamic interaction patterns:
 # of particles that fly across borders is not static.
- Approximations: when to check for collisions? Your baseline sequential comparison needs to apply the same approximations!
- You need advanced domain decomposition. Motivate your choice!
- Use debugging tools, tracing, software counters to convince yourselves that the approach is good

MPI Topologies (1)

int dims[2]; // 2D matrix / grid dims[0] = 2; // 2 rows dims[1] = 3; // 3 columns

MPI_Dims_create(nproc, 2, dims); int periods[2]; periods[0] = 1; // Row-periodic periods[1] = 0; // Column-non-periodic

int reorder = 1; // Re-order allowed

MPI_Comm grid_comm; MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &grid_comm);

MPI Topologies (2)

int my_coords[2]; // Cartesian Process coordinates
int my_rank; // Process rank
int right_nbr[2];
int right_nbr_rank;

MPI_Cart_get(grid_comm, 2, dims, periods, my_coords); MPI_Cart_rank(grid_comm, my_coords, &my_rank);

right_nbr[0] = my_coords[0]+1; right_nbr[1] = my_coords[1]; MPI_Cart_rank(grid_comm, right_nbr, &right_nbr_rank);

DDT

orm FORGE	Arm DDT - Arm Forge 19.0.2		(+ 2	×
<u>File Edit View Control</u>	Tools <u>W</u> indow <u>H</u> elp			
🕨 🚺 📲 👎	📑 👫 📑 📫 📕 😫 🤤 💿			
Current Group: All	Focus on current: Group O Process O Thread D Step Threads Together			
All	0 1 2 3 4 5 6 7 8 9			
Create Group				
Project Files	Impi_blur.c ★ I gaussw.c ★		nt Line(s) Current Stack	
Search (Ctrl+K)		Locals	0	×
🖻 🔳 Application Code	7 #include <math.h></math.h>	Name	Value	
	<pre>weights(int n weights(int n</pre>	argc argv my_id mp com ⊕ info colmax ⊕ src ⊕ w	4 0x7ffc835dda68 9 10 1140850688 0 0x49656e69756e6547	
Input/Output Breakpoi	nts Watchpoints Stacks (All) Tracepoints Tracepoint Output Logbook		Evaluate	X
Input/Output		@ X	Name Value	
Has read the image: 30 After first step: 25.5	00 x 3000, generating coefficients 378 secs			
Note: Arm DDT can only se	end input to the srun process with this MPI implementation			
Type here ('Enter' to send)	:	<u>M</u> ore -		- 34

ITAC

Conception of the local division of the	🚾 File Options Project Windows Help						+ - 0 ×			
	<u>C</u> harts <u>N</u> avigate <u>A</u> dvance		Seconds 💌	🛃 All_Processes	МРІ	expand	ed in (Major Function (Groups) 🏑	🍸 🖄 🕕 🖄 🔀 🔏 🛠	
PO	Application				Ap	1PI_Sc	atterv	A	pplication	^
Ρ1	MPI_Bcast				Ap	4PI_So	attery Applicat	ion		
P2	MPI_Bcast				ArM	PI_Sca	atterv	Appli	cation	
PЗ	MPI_Bcast				Ap	1PI_Sc	atterv	Applicat	tion	
Р4	MPI_Bcast				Арр	MPI_S	catterv	Appli	cation	
Р5	MPI_Bcast				Apr	MPI_S	catterv	Ap	olication	
P6	MPI_Bcast				Apr	MPI_S	catterv	Ap	plication	
P7	MPI_Bcast				App	MPI_S	catterv	Ар	plication	
P8	MPI_Bcast				Арр	MPI_S	catterv	Ар	plication	
P9	MPL Bcast				Apr	MPL S	cattery	An	plication	
	t Profile Load Balance Processes	Call Tree Call	Graph				Performance Issue Late Broadcast Show advanced.	Duration (%) 760.13%	Duration 4.46412 s	
Name	•	TSelf	TSelf	TTotal	#Call	s T				
	All_Processes Group Application MPI_Bcast MPI_Wtime MPI_Scatterv	197.064e-3 275.107e-3 5e-6 115.106e-3	s s	587.282e-3 s 275.107e-3 s 5e-6 s 115.106e-3 s		0 12 1 323	Description A Select performance i	ffected Process ssue to see de		s)

How much parallelism?

- Always measure parallel code on 1 thread/process
 - Reference for speedup
 - Note: Not the same as measuring sequential code!
- Then measure on at least "powers of 2" threads/procs.
 - 1, 2, 4, 8, 16, ...
 - Shared memory: Up to all the available processor cores
 - Distributed memory: Up to at least 2 nodes, at most 4 nodes

Questions?