Thread-level Parallelism

Mikhail Chalabine

Linkdping University

© 2011

TDDC 78 Labs: Memory-based Taxonomy

Distributed 1 MPI
Posix threads

Shared 2 3 OpenMP

Distributed 4 MPI

LAB 5 (tools) at every stage; save your time

Lab 3 — Stationary Heat Equation

o Problem

< Find stationary temperature distribution in a square given
some boundary temperature distribution

© SHMEM, OpenMP
o Serial code in Fortran

- Solution
- Requires solving differential equation
o lterative Jacobi method
< Algorithm detailed in Compendium

~ Primary concern
~ Synchronize access
> O(N) extra memory

¢

[¢

(

Why multithreading?

Improve application responsiveness
< 1/O in parallel with other tasks

Use multiprocessors more efficiently
> Parallel threads in parallel processes (unbound!)

Use fewer system resources than processes
© Athread is faster to create/terminate than a process
© Less time to context switch
~ Efficient memory utilization: local and global SHMEM

Easier to program and debug
~ Shared-memory vs. Distributed-memory model

Process vs. Thread

- Process
< Running program, UNIX environment created with fork

< Unit of resource ownership
< Virtual address space
© Control of resources (I/O, file system, etc.)
< Unit of dispatching / scheduling (system)

© A process execution can be interleaved with execution of other
processes

~ The process has an execution state and a dispatching priority

o~ Thread

- Sequence of instructions executed within the context of
a process

Simultaneous multithreading = N threads + N hardware threads + superscalar architecture

PThreads and OpenMP

Threads and Shared Memory

e ® %o M
o ey
° / private

b Hvate All threads have access to the globally shared memory
Data can be either shared or private:
Shared data is visible to all threads
Private data is visible to one thread only

Data transfer is transparent to the programmer

PThreads and OpenMP

Thread Taxonomy (1)

o Thread libraries
© Solaris threads

- Native implementations, e.g., Native POSIX Thread
Library (NPTL) on Linux
~ POSIX is a standard (free to implement)

o Thread levels
o Application-level threads (user-level)
< Visible to the application programmer

< Lightweight processes (LWP) (kernel threads)

~ Visible to the operating system kernel
< Virtual CPUs (> physical CPUs)
< Thread libraries schedule threads on LWPs

PThreads and OpenMP

Thread Taxonomy (2)

. . o Contention scope shows how
Process-wide threads compete for system resources
(e.g., scheduling)

RN -

contention scope

User space

T

: System-wide
| contention scope

Unbound Bound

TL schedules threads Threads contend with other

) processes in the system.
to available LWPs All are scheduled by the kernel.

Kernel space

1
1
|
1
1
|

PThreads and OpenMP

Thread Taxonomy (3)

- Solaris threads

< Many-to-many mapping between CPUs, LWPs and
Threads (N:M)
© Fast context switch between threads
© No kernel system calls required
< Complex implementation to schedule N user threads
onto M kernel threads while preserving efficiency
© Priority inversion can be a serious issue

Thread Taxonomy (4)

o Linux threads

- One-to-one mapping (bound threads only)
~ One thread per LWP, i.e., 1:1 Thread-to-LWP mapping
~ Threads are schedulable entities (systemwide contention scope)
-~ PTHREAD SCOPE_PROCESS not supported:
<~ NGPT IBM (Next Generation POSIX Threading) development
stopped in 2003
< NPTL (Native POSIX Thread Library) Red Hat, > Kernel 2.6
Threads look as processes to the kernel, i.e.,
Bound threads only
> Need for clone() system call to create a thread
Better kernel support
Simpler implementation than for N:M
Simpler scheduling algorithms (efficiency, speed)

NPTL

< POSIX compliance

~ Effective Use Of SMP

~ Low Startup Cost

© Low Link-In Cost

~ Hardware Scalability

- Software Scalability

<~ NUMA Support

© Integration With C++

< Higher cost for context switch than for unbound

< 1:1 mapping implies simpler handling of
< Priority inversion; Race conditions; etc.

NPTL on Windows

~ No native support
o CYGWIN implementation
o pthreads-win32

- Windows threads are claimed to be
~ More efficient (Windows)
< Simpler to program

Concurrency vs. Parallelism

- Parallel
< Two or more threads are executing simultaneously
~ Not possible on uniprocessor machines

o Concurrent
< Two or more threads are making progress
< More generic situation, can include time-slicing
© Tasks run in any order and possibly in parallel

Main Concept: Synchronization

Different from MPI's Send-Receive

(

Thread safety = protect shared data

(

- Deterministic behavior

~ Synchronization objects:
o Mutex Locks (Mutual Exclusion)
© Serialize access to shared resources
¢ Condition Variables
© Block a thread until a (global) condition is true
¢ Semaphores
© Block a thread until count is positive

#include <pthread.h> He"o WOl'ld

#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 4

void *PrintHello(void *threadId) {
long tId;
tId = (long)threadld;
printf("Hello World! It's thread #%ld!\n", tId);
pthread_exit(NULL);
}

int main(int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int ret;
long t;
for(t=0;t<NUM_THREADS; t++){
printf("In main: creating thread %ld\n", t);
ret = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (retd{
printf("ERROR! Return code: %d\n", ret);
exit(-1);
}

}
pthread_exit(NULL);
}

Passing a single parameter
|

long *param[NUM_THREADS];

for(t=0; t<NUM_THREADS; t++)

{
param[t] = (long *) malloc(sizeof(long));
*param[t] = t;
printf("Creating thread %¥ld\n", t);
ret = pthread_create(&threads[t], NULL, PrintHello, (void *) param[t]);
}
5% [EAED © o oed Some thread can modify content at
the ¶m address before all
for(t=0; t<NUM_THREADS; t++) threads are reated!
printf("Creating thread %ld\n", t);
ret = pthread_create(&threads[t], NULL, PrintHello, (void *) ¶m);
}

int threadld;
char *msg;

IH

struct thread_data{ PaSSing mUItiple parameters
|

struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *tParam)
{
struct thread_data *myData;

myData = (struct thread_data *) tParam;
taskId = myData->threadId;
helloMsg = myData->msg;

}

int main (int argc, char *argv[])

{

thread_data_array[t].threadld = t;

thread_data_array[t].Msg = msgPool[t];

rc = pthread_create(&threads[t], NULL, PrintHello,
(void *) &thread_data_array[t]);

Mutex lock example
#include<pthread.}—

pthread_mutex_t count_mutex;
long count; Attach locks to
resources
void increment_count(){
pthread_mutex_lock(&count_mutex);
count = count + 1;
pthread_mutex_unlock(&count_mutex);

}
long get_count(){
long c;
pthread_mutex_lock(&count_mutex);
C = count;

pthread_mutex_unlock(&count_mutex);
return (c);

Conditional variables example

pthread_mutex_t count_lock;
pthread_cond_t count_positive;
long count;

decrement_count() {
pthread_mutex_lock(&count_lock);
while (count <= @)
pthread_cond_wait(&count_positive, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);
}

increment_count() {
pthread_mutex_lock(&count_lock);
count = count + 1;
if (count > @)
pthread_cond_signal(&count_positive);
pthread_mutex_unlock(&count_lock);
}

Semaphores

> Coordinate access to resources
> Initialize to the number of free resources
~ Atomically increment the count when resources are added

> Atomically decrement the count when resources are
removed.

< Threads block wait on decrement until the count becomes
greater than zero.

Producer-consumer Example (1)

Submit tasks

i CF

Loop | PRODUCER
DF

Buffer

Slot 1

Slot i w

Slot n

RE Loop

Process tasks

Producer-consumer Example (2)

< Synchronization requirements

~ Mutual exclusion

> When working with the buffer
-~ Among producers

~ Waiting for an available slot
Among consumers

< Waiting for an available task

Producer-consumer Example (3)

Buffer data structure

typedef struct {
char buf[BSIZE];
int nextin;
int nextout;
pthread_mutex_t mutex;
sem_t occupied;
sem_t empty;

} buffer_t;

/*
/*
/*
/*
/*

Slots */

Next slot to be used by producer */
Next slot to be used by consumer */
Buffer access mutex */

Number of occupied slots */

Number of empty slots */

Producer-consumer Example (4)

Initialization

sem_init(&buffer.occupied, 0, 0);
sem_init(&buffer.empty, @, BSIZE);

buffer.nextin = buffer.nextout = 0;
pthread_mutex_init(&buffer.mutex, NULL);

pthread_attr_t tattr;
pthread_attr_init(&tattr);

// Set to no tasks
// Set to all slots free

// Set start to buffer top
// Init mutex

// Set thread attributes

pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

pthread_t tid;
void* start_routine(void*);
void* arg;

pthread_create (&tid, &tattr, start_routine, arg); /* Create */

Producer-consumer Example (5)

Producer

void producer(buffer_t *b, char item) {
sem_wait(&b->empty); // Wait for empty slot
pthread_mutex_lock(&b->mutex); // Lock the buffer
b->buf[b->nextin] = item; // Put an item into buffer
b->nextin++; // Set new buffer top

b->nextin %= BSIZE;

pthread_mutex_unlock(&b->mutex); // Release the lock
sem_post(&b->occupied); // Wake up consumer

Producer-consumer Example (5)

Consumer

char consumer(buffer_t *b) {

char item; // Item to process
sem_wait(&b->occupied); // Wait for task
pthread_mutex_lock(&b->mutex); // Lock the buffer

item = b->buf[b->nextout]; // Get item

b->nextout++; // Set new buffer top (out)

b->nextout %= BSIZE;
pthread_mutex_unlock(&b->mutex); // Release the lock
sem_post(&b->empty); // Signal empty slot
return(item);

Compiling and linking

- Don't forget to include
¢ pthread.h, semaphore.h

~ Link with
o -lpthread, -1lposix4

Typical problems

o Uninitialized variables

< Uninitialized synchronization objects lead to strange
behavior
~ Tip: check the return codes!

- Deadlocks (>= 2 waiting for each other)
- Race conditions (one misbehaves)

- Poor performance

~ To many synchronizations
~ Cache effects kill gains of using multiprocessors

Deadlock example (1)

- Suppose we have a shared array of items and
we need to process two items at a time

typedef struct {
pthread_mutex_t mutex;
} item_t;
void proc(unsigned i, unsigned j) {
item_t tmp;
pthread_mutex_lock(&Carray[i].mutex));
pthread_mutex_lock(&Carray[j].mutex));

pthread_mutex_unlock(&(array[i].mutex));
pthread_mutex_unlock(&(array[j].mutex));
}
item_t array[ASIZE];

Deadlock example (2)

lock
proc(l,3) L

wait

%proc(?;,@
wai

proc(4,1) /I

wait

Order resources to be locked!

Deadlock example (3)

void proc(unsigned i, unsigned j) {
item_t tmp;
int itmp;

/* keep indices in order ! */
ifCi>3){

itmp = 1i;

i=73;

j itmp;
}
pthread_mutex_lock(&(array[i].mutex));
pthread_mutex_lock(&(array[j].mutex));

pthread_mutex_unlock(&(array[i].mutex));
pthread_mutex_unlock(&Carray[j].mutex));

Order resources to be locked!

Summary and goals for your lab

~ Understand
© Threads and their use
< Synchronization vs. Send / Receive
< Resource ordering

~ Low level parallelism vs. Higher-level specification in
OpenMP

o Implement
o Filters as in Lab 1

