
© 2011

Mikhail Chalabine

Linköping University

Thread-level Parallelism

 PThreads and OpenMP

TDDC 78 Labs: Memory-based Taxonomy

Memory Lab(s) Use

Distributed 1 MPI

Shared 2 3
Posix threads

OpenMP

Distributed 4 MPI

LAB 5 (tools) at every stage; save your time

 PThreads and OpenMP

Lab 3 – Stationary Heat Equation

Problem

Find stationary temperature distribution in a square given
some boundary temperature distribution

SHMEM, OpenMP

Serial code in Fortran

Solution

Requires solving differential equation

Iterative Jacobi method

Algorithm detailed in Compendium

Primary concern

Synchronize access

O(N) extra memory
 PThreads and OpenMP

Why multithreading?

Improve application responsiveness

I/O in parallel with other tasks

Use multiprocessors more efficiently

Parallel threads in parallel processes (unbound!)

Use fewer system resources than processes

A thread is faster to create/terminate than a process

Less time to context switch

Efficient memory utilization: local and global SHMEM

Easier to program and debug

Shared-memory vs. Distributed-memory model

 PThreads and OpenMP

Process vs. Thread

Process

Running program, UNIX environment created with fork

Unit of resource ownership

Virtual address space

Control of resources (I/O, file system, etc.)

Unit of dispatching / scheduling (system)

A process execution can be interleaved with execution of other
processes

The process has an execution state and a dispatching priority

Thread

Sequence of instructions executed within the context of
a process

Simultaneous multithreading = N threads + N hardware threads + superscalar architecture

 PThreads and OpenMP

Threads and Shared Memory

T1

Tn

M

private

M

private

M
shared

All threads have access to the globally shared memory

Data can be either shared or private:

Shared data is visible to all threads

Private data is visible to one thread only

Data transfer is transparent to the programmer

 PThreads and OpenMP

Thread Taxonomy (1)

Thread libraries

Solaris threads

Native implementations, e.g., Native POSIX Thread
Library (NPTL) on Linux

POSIX is a standard (free to implement)

Thread levels

Application-level threads (user-level)

Visible to the application programmer

Lightweight processes (LWP) (kernel threads)

Visible to the operating system kernel
Virtual CPUs (> physical CPUs)
Thread libraries schedule threads on LWPs

 PThreads and OpenMP

Thread Taxonomy (2)

Thread library User space

Kernel space

Unbound
TL schedules threads

to available LWPs

Bound
Threads contend with other

processes in the system.
All are scheduled by the kernel.

Contention scope shows how
threads compete for system resources
(e.g., scheduling)

System-wide
contention scope

Process-wide
contention scope

 PThreads and OpenMP

Thread Taxonomy (3)

Solaris threads

Many-to-many mapping between CPUs, LWPs and
Threads (N:M)

Fast context switch between threads

No kernel system calls required

Complex implementation to schedule N user threads
onto M kernel threads while preserving efficiency

Priority inversion can be a serious issue

 PThreads and OpenMP

Thread Taxonomy (4)

Linux threads

One-to-one mapping (bound threads only)
One thread per LWP, i.e., 1:1 Thread-to-LWP mapping

Threads are schedulable entities (systemwide contention scope)

PTHREAD_SCOPE_PROCESS not supported:

NGPT IBM (Next Generation POSIX Threading) development
stopped in 2003

NPTL (Native POSIX Thread Library) Red Hat, > Kernel 2.6

Threads look as processes to the kernel, i.e.,

Bound threads only

Need for clone() system call to create a thread

Better kernel support

Simpler implementation than for N:M

Simpler scheduling algorithms (efficiency, speed)

 PThreads and OpenMP

NPTL

POSIX compliance

Effective Use Of SMP

Low Startup Cost

Low Link-In Cost

Hardware Scalability

Software Scalability

NUMA Support

Integration With C++

Higher cost for context switch than for unbound

1:1 mapping implies simpler handling of

Priority inversion; Race conditions; etc.

 PThreads and OpenMP

NPTL on Windows

No native support

CYGWIN implementation

pthreads-win32

Windows threads are claimed to be

More efficient (Windows)

Simpler to program

 PThreads and OpenMP

Concurrency vs. Parallelism

Parallel

Two or more threads are executing simultaneously

Not possible on uniprocessor machines

Concurrent

Two or more threads are making progress

More generic situation, can include time-slicing

Tasks run in any order and possibly in parallel

 PThreads and OpenMP

Main Concept: Synchronization

Different from MPI’s Send-Receive

Thread safety = protect shared data

Deterministic behavior

Synchronization objects:

Mutex Locks (Mutual Exclusion)
Serialize access to shared resources

Condition Variables

Block a thread until a (global) condition is true

Semaphores

Block a thread until count is positive

 PThreads and OpenMP

Hello world#include <pthread.h>

#include <stdio.h>
#include <stdlib.h>

#define NUM_THREADS! 4

void *PrintHello(void *threadId) {
 long tId;

 tId = (long)threadId;
 printf("Hello World! It's thread #%ld!\n", tId);

 pthread_exit(NULL);
}

int main(int argc, char *argv[]) {

pthread_t threads[NUM_THREADS];
int ret;

long t;
for(t=0;t<NUM_THREADS;t++){

 printf("In main: creating thread %ld\n", t);
 ret = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

 if (ret){
 printf("ERROR! Return code: %d\n", ret);

 exit(-1);
 }

 }
pthread_exit(NULL);

}
 PThreads and OpenMP

Passing a single parameter

long *param[NUM_THREADS];

...
for(t=0; t<NUM_THREADS; t++)

{
 param[t] = (long *) malloc(sizeof(long));

 *param[t] = t;
 printf("Creating thread %ld\n", t);

 ret = pthread_create(&threads[t], NULL, PrintHello, (void *) param[t]);
 ...

}

long param = ...;

...
for(t=0; t<NUM_THREADS; t++)

{
 printf("Creating thread %ld\n", t);

 ret = pthread_create(&threads[t], NULL, PrintHello, (void *) ¶m);
 ...

}

Some thread can modify content at
the ¶m address before all
threads are reated!

 PThreads and OpenMP

Passing multiple parametersstruct thread_data{

! int threadId;
! char *msg;

! };

! struct thread_data thread_data_array[NUM_THREADS];

! void *PrintHello(void *tParam)
! {

! struct thread_data *myData;
! ...

! myData = (struct thread_data *) tParam;
! taskId = myData->threadId;

! helloMsg = myData->msg;
! ...

! }

! int main (int argc, char *argv[])
! {

! ...
! thread_data_array[t].threadId = t;

! thread_data_array[t].Msg = msgPool[t];
! rc = pthread_create(&threads[t], NULL, PrintHello,

! (void *) &thread_data_array[t]);
! ...

! } PThreads and OpenMP

Mutex lock example
#include<pthread.h>

pthread_mutex_t count_mutex;

long count;

void increment_count(){

 pthread_mutex_lock(&count_mutex);

 count = count + 1;

 pthread_mutex_unlock(&count_mutex);

}

long get_count(){

 long c;

 pthread_mutex_lock(&count_mutex);

 c = count;

 pthread_mutex_unlock(&count_mutex);

 return (c);

}

Attach locks to
resources

 PThreads and OpenMP

Conditional variables example

pthread_mutex_t count_lock;

pthread_cond_t count_positive;

long count;

decrement_count() {

 pthread_mutex_lock(&count_lock);

 while (count <= 0)

 pthread_cond_wait(&count_positive, &count_lock);!

 count = count - 1;

 pthread_mutex_unlock(&count_lock);

}

increment_count() {

 pthread_mutex_lock(&count_lock);

 count = count + 1;

 if (count > 0)

 pthread_cond_signal(&count_positive);

 pthread_mutex_unlock(&count_lock);

}

 PThreads and OpenMP

Semaphores

Coordinate access to resources

Initialize to the number of free resources

Atomically increment the count when resources are added

Atomically decrement the count when resources are
removed.

Threads block wait on decrement until the count becomes
greater than zero.

 PThreads and OpenMP

Producer-consumer Example (1)
Submit tasks

Process tasks

Slot 1

Slot i

Slot n

Buffer

 PThreads and OpenMP

Producer-consumer Example (2)

Synchronization requirements

Mutual exclusion
 When working with the buffer

Among producers

Waiting for an available slot

Among consumers

Waiting for an available task

 PThreads and OpenMP

Producer-consumer Example (3)

typedef struct {

! char buf[BSIZE]; ! /* Slots */

 int nextin; /* Next slot to be used by producer */

! int nextout; !! !! /* Next slot to be used by consumer */

! pthread_mutex_t mutex;! /* Buffer access mutex */

! sem_t occupied; ! ! /* Number of occupied slots */

! sem_t empty; !! !! /* Number of empty slots */

! } buffer_t;

Buffer data structure

 PThreads and OpenMP

Producer-consumer Example (4)

sem_init(&buffer.occupied, 0, 0);! // Set to no tasks

sem_init(&buffer.empty, 0, BSIZE); ! ! // Set to all slots free

buffer.nextin = buffer.nextout = 0; ! // Set start to buffer top

pthread_mutex_init(&buffer.mutex, NULL); // Init mutex

pthread_attr_t tattr;!! ! // Set thread attributes

pthread_attr_init(&tattr);

pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

pthread_t tid;! ! ! ! !

void* start_routine(void*);

void* arg;

pthread_create (&tid, &tattr, start_routine, arg); /* Create */

Initialization

 PThreads and OpenMP

Producer-consumer Example (5)

void producer(buffer_t *b, char item) {

 sem_wait(&b->empty);! ! ! // Wait for empty slot

 pthread_mutex_lock(&b->mutex); ! // Lock the buffer

 b->buf[b->nextin] = item;! // Put an item into buffer

 b->nextin++;!! ! ! // Set new buffer top

 b->nextin %= BSIZE;

 pthread_mutex_unlock(&b->mutex); // Release the lock

 sem_post(&b->occupied);!! // Wake up consumer

}

Producer

 PThreads and OpenMP

Producer-consumer Example (5)

char consumer(buffer_t *b) {

 char item;! ! ! ! // Item to process

 sem_wait(&b->occupied);! // Wait for task

 pthread_mutex_lock(&b->mutex); // Lock the buffer

 item = b->buf[b->nextout];! // Get item

 b->nextout++;! ! ! ! // Set new buffer top (out)

 b->nextout %= BSIZE;

 pthread_mutex_unlock(&b->mutex);! // Release the lock

 sem_post(&b->empty);!! ! // Signal empty slot

 return(item);

}

Consumer

 PThreads and OpenMP

Compiling and linking

Don't forget to include

 pthread.h, semaphore.h

Link with

-lpthread, -lposix4

 PThreads and OpenMP

Typical problems

Uninitialized variables

Uninitialized synchronization objects lead to strange
behavior

Tip: check the return codes!

Deadlocks (>= 2 waiting for each other)

Race conditions (one misbehaves)

Poor performance

To many synchronizations

Cache effects kill gains of using multiprocessors

 PThreads and OpenMP

Deadlock example (1)

Suppose we have a shared array of items and
we need to process two items at a time

typedef struct {

!

! pthread_mutex_t mutex;

! } item_t;

! void proc(unsigned i, unsigned j) {

! item_t tmp;

! pthread_mutex_lock(&(array[i].mutex));

! pthread_mutex_lock(&(array[j].mutex));

! ...

! pthread_mutex_unlock(&(array[i].mutex));

! pthread_mutex_unlock(&(array[j].mutex));

! }

! item_t array[ASIZE];

 PThreads and OpenMP

Deadlock example (2)

1

2

3

4

5

lock

wait

proc(3,4)

lock

wait

wait

lock

proc(1,3)

proc(4,1)

Order resources to be locked!

 PThreads and OpenMP

Deadlock example (3)

void proc(unsigned i, unsigned j) {

 item_t tmp;

 int itmp;

 /* keep indices in order ! */

 if(i > j) {

 itmp = i;

 i = j;

 j = itmp;

 }

 pthread_mutex_lock(&(array[i].mutex));

 pthread_mutex_lock(&(array[j].mutex));

 ...

 pthread_mutex_unlock(&(array[i].mutex));

 pthread_mutex_unlock(&(array[j].mutex));

}

Order resources to be locked!

 PThreads and OpenMP

Summary and goals for your lab

Understand

Threads and their use

Synchronization vs. Send / Receive

Resource ordering

Low level parallelism vs. Higher-level specification in
OpenMP

Implement

Filters as in Lab 1

