Outline

- **Organization**
- **Lab Assignments**
 - Lab1: Test pattern generation
 - Lab2: Design For Test
 - Lab3: Board testing using Boundary Scan
 - Lab4: Boundary Scan in Action
- **Preliminary exams**
- **Tools**
 - Leonardo Spectrum
 - FastScan
 - DFTAdvisor
 - Trainer1149
 - TSTAP- Studio
Organization

Contact information

- Dimitar Nikolov
- E-mail: dimitar.nikolov@liu.se * start subject line with TDDC33
- Homepage: http://www.ida.liu.se/~dimni
- Office: B 3D:437
Organization

- Course homepage:
 - http://www.ida.liu.se/~TDDC33/

- Lab web-pages:

- Register in WebReg
 - https://www.ida.liu.se/webreg/TDDC33-2012/REGISTRATION

- The labs are mandatory part of the course and have to be solved individually
Organization

Important dates:

- Registration deadline: 2011-09-12
- Deadlines for submitting lab reports:
 - LAB 1: Wednesday 19th September 2012
 - LAB 2: Monday 1st October 2012
 - LAB 3: Monday 15th October 2012
 - LAB 4: *requires no lab report
- Updates to returned lab reports must be handed in within 7 days after receiving the notification emails
- Preliminary exams (dugga)
 - Preliminary exam I: Wednesday 19th September 2012
 - Preliminary exam II: Wednesday 10th October 2012
Organization

What do you get for doing the labs?

- All points you gain will be counted into your mark of the final examination
- **0-5 points** for each preliminary exam (DUGGA)
- Up to **10 points** for doing the labs (5 from each preliminary exam)
- Up to **40 points** for the final exam
 (30 points for written exam + 10 points for labs)
Organization

- Examination of labs
 - Preliminary exam ("dugga") ~20 minutes
 - Oral presentation (prepare to answer questions and to show that you can handle the tools)
 - Written report (one for each lab*) containing the results from the lab.
 - Use the Laboration report covers found in the printing rooms.

- Personal experience of the lab. **Not graded.** Comments on:
 - level of difficulty,
 - instructions, tools, effort and time, etc.

Lab 4 does not require a written report
Organization

<table>
<thead>
<tr>
<th></th>
<th>Lab session 1-2</th>
<th>Lab session 3-4</th>
<th>Lab session 5-6</th>
<th>Lab session 7-8</th>
<th>Lab session 9-10</th>
<th>Lab session 11-12</th>
<th>Extra Lab sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lab Exercise 1</td>
<td>Lab Exercise 2</td>
<td>Lab Exercise 3</td>
<td>Lab Exercise 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00-12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wednesday</td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15:00-19:00</td>
</tr>
<tr>
<td>13:00-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Organization

Lab Assignments
- Lab1: Test pattern generation
- Lab2: Design For Test
- Lab3: Board testing using Boundary Scan
- Lab4: Boundary Scan in Action

- Preliminary exams

- Tools
 - Leonardo Spectrum
 - FastScan
 - DFTAdvisor
 - Trainer1149
 - TSTAP- Studio
Lab 1: Test Pattern Generation

- **Objective**
 - To get experience and knowledge about test pattern generation for combinatorial and sequential circuits.

- **Input**
 - Two designs c17 and s27 described in VHDL

- **Assignment 1: Manual test pattern generation**
 - Number of test patterns used
 - Achieved fault coverage
 - Test patterns

- **Assignment 2: Automatic test pattern generation**
Lab 1: Test Pattern Generation

- Challenging task:
 - Try to achieve high fault coverage with minimal set of test patterns
 - The results will be published on the course web-page

- Lab Report expectations:
 - Report the manually generated test patterns
 - Report the achieved fault coverage
 - Report the fault coverage when using the patterns obtained by the Automatic Test Pattern Generation
Lab 2: Design For Test

- **Objective**
 - To get experience and knowledge about different design for test techniques.

- **Input**
 - One sequential design s27 described in VHDL

- **Assignment 1: Manual test point insertion**
 - Number of test points added
 - Achieved fault coverage before adding test points
 - Achieved fault coverage after adding test points

- **Assignment 2: Automatic scan chain insertion**
Lab 2: Design For Test

- Lab Report Expectations:

<table>
<thead>
<tr>
<th></th>
<th>No DFT</th>
<th>Manual Test Point Insertion</th>
<th>Full-Scan</th>
<th>Partial-Scan</th>
<th>Partial-Scan + Manual Test Point Insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Assignments</td>
<td>Report Fault Coverage</td>
<td>Report Fault Coverage + number of test points used</td>
<td>Report Fault Coverage</td>
<td>Report Fault Coverage + number of Scan Cell used</td>
<td>Report Fault Coverage + number of test points used</td>
</tr>
</tbody>
</table>

- Discuss the results
Lab 3: Board testing using Boundary Scan

- **Objective**
 - To get experience and knowledge about board testing using boundary scan.

- **Input**
 - A board design called TDDC33 consists of two chips, c17 and s27.

- **Assignment 1: Design modification for Boundary Scan**
 - Draw a new design of the board where the Boundary Scan interface (TDI, TDO, TMS, and TCK) is added.

- **Assignment 2: Interconnect test**
 - Write an interconnect program that detects at least one fault for each of the following four types of faults: Stuck-at 1, Stuck-at 0, Wired-AND short, and Wired-OR short.
 - Verify the test program by introducing faults in the design.
Lab 4: Boundary Scan in action

- **Assignment 1: Improving Boundary Scan fault coverage**
 - Create a project in TSTAP-Studio, generate test patterns, by using TSTAP’s pattern generation tool, modify the nodelist file in order to obtain better fault coverage. Run the tests generated from the TSTAP-PG pattern generation tool. Remember the boards have already been tested, and it is verified that the boards are working properly.

- **Assignment 2: Tests for diagnosing potential faults on the board**
 - Inject faults on the board
 - Use the TSTAP-RT tool to run different types of tests on the connected demo board. For the erroneous tests try to discover what may be the error.
Lab 4: Boundary Scan in action

TSTAP-Studio

Scanway-USB Controller

Demo Board
Outline

- Organization
- The scenario
- Lab Assignments
 - Lab1: Test pattern generation
 - Lab2: Design For Test
 - Lab3: Board testing using Boundary Scan
 - Lab4: Boundary Scan in Action
- Preliminary exams
- Tools
 - Leonardo Spectrum
 - FastScan
 - DFTAdvisor
 - Trainer1149
 - TSTAP- Studio
Preliminary exams

- Two preliminary exams

- Preliminary exam I will cover test pattern generation and design for testability techniques

- Preliminary exam II will cover 1149.1 JTAG specification and Boundary scan testing

- From each exam you can get up to 5 points which will be added to the overall mark
Outline

- Organization
- The scenario
- Lab Assignments
 - Lab1: Test pattern generation
 - Lab2: Design For Test
 - Lab3: Board testing using Boundary Scan
 - Lab4: Boundary Scan in Action
- Preliminary exams
- Tools
 - Leonardo Spectrum
 - FastScan
 - DFTAdvisor
 - Trainer1149
 - TSTAP- Studio
Leonardo Spectrum

- Used to synthesize a compiled design, described in VHDL, to a netlist (Verilog format)
- A cell core library is used as an external source in the synthesis process
- The netlist is the output of the synthesis process. It contains information about which cells are used and how they are connected among each other.
DFTAdvisor

- Used to insert scan-chains in the design
- Scan-chain is one of the techniques which is widely used in Design For Testability (DFT)
- The tool uses a Verilog netlist as input, and modifies it by inserting scan-chains.
- Cell core library is required
- Enables you to choose which kind of Scan architecture to use, either a Full-Scan design, or Partial-Scan design
FastScan

- Used for fault-simulation and test pattern generation
- Uses a Verilog netlist as input
- Gives you information about the fault-coverage and generates test patterns
Flow of using Mentor Graphics’ tools

1. **Start**
 - **Leonardo Spectrum**
 - **Insert Scan Chains**
 - **DFTAdvisor**
 - **FastScan**
 - **Improve FC by using other test patterns**
 - **Yes**
 - **Yes**
 - **End**
 - **No**
 - **No**
 - **Improve FC by inserting Scan Chains**
 - **Yes**
 - **Yes**
 - **End**
 - **No**
 - **No**
 - **Improve FC by inserting test points**
 - **Yes**
 - **Yes**
 - **End**
 - **No**
 - **No**
 - **Yes**
 - **No**
 - **No**

Tools
Trainer1149

- Used for Boundary Scan
- Performs interconnect tests
- Allows fault injection
- Helps understanding Boundary Scan
TSTAP-Studio

- Used for Board Testing
- Perform Boundary Scan tests
- Applicable for In-System Programming
- Applicable for Flash Programming
- Creating tests in BSL (Boundary scan Stimuli Language)
TDDC33
Design for Test of Digital Systems
Lesson1

Introduction to the lab series

Dimitar Nikolov, IDA/SaS ESLAB