
TDDC17
Seminar 5 (and 6)

Ch. 7

Knowledge Representation I

Logical Agents

Intuitions

Propositional Logic

Propositional Theorem Proving:

DPLL

(Resolution Theorem Proving)

Some additional help: (click “literature” on the IDA course web page)

https://www.ida.liu.se/~TDDC17/info/literature/szalas-cugs-lectures.pdf

Or on the LISAM Documents page.

Patrick Doherty

Dept of Computer and Information Science

Artificial Intelligence and Integrated Computer Systems Division

1

Model-based, Goal-Directed Agents

Keeps track
of world-

states

Has knowledge
about the ways

of the world

It is goal

directed

Anticipates by internal simulation/inference
2

2

Representing States/Knowledge

So far:

Uninformed search

Heuristic search

Constraints

Today/Next Seminar:

Propositional Logic

1st-Order Logic

Answer Set Programs

3

3

Generic Model-based Agent

KB

TELL

ASK

ASK for next

action

Reason about

what is best

Make a

Decision

TELL what

action is decided

Observe

Internalize

Observation

Execute

Action

Loop

Advice Taker [McCarthy 1958]

Declarative Approach: Specify “What”, not “How”!

Programs with common sense

4

4

Knowledge Representation and Logic

What is our representation language?

How is it grounded causally in the world?

Truth preservation (soundness) guarantees fidelity

of entailments to the world under the assumption

that observation sentences (sensing) are correct, in

addition to background knowledge in the KB.

Observations

Observation

Sentences +

Knowledge implicit in our KBKnowledge explicit in our KB

5

5

Knowledge Representation Hypothesis

Any mechanically embodied intelligent process
will be comprised of structural ingredients that

a) we as external observers naturally take to
represent a propositional account of the
knowledge that the overall process exhibits,
and

b) independent of such external semantical
attribution, play a formal but causal and
essential role in engendering the behavior that
manifests that knowledge. [Brian Smith, 1982]

Characterizes our assumptions about such systems

6

Recall the

Physical Symbol

System hypothesis!

6

One useful perspective: Knowledge as Constraints!

Set of
Sentences

Knowledge Base Possible Worlds

Actual World

Interpretations

Inference

Constrain what worlds satisfy

all sentences in the set

Syntax
Δ ⊢ α

Entailment

Constrain what sentences can be true

Semantics
Δ ⊧ α

Δ

Intended

Interpretation

7

7

Logic as a Representation Language

What is Logic?
Given a set of facts Δ taken to hold as true about the ”world”

and given an assertion about the ”world”, is there a good

argument for believing that holds based on the initial set of
facts ?

α
α

Δ

Logic in the general sense is about making distinctions

between good arguments and bad arguments and the different

criteria that may be used in making this distinction.

Deduction is one such criteria. (There are others!)

Logic in the more restricted sense is about the study

of mathematical theories for formalizing the distinction

between good/bad arguments and mechanizing ways to make

these distinctions

Logic is about

Reasoning

8

Logic is about

Thought

8

Wumpus World
The Wumpus World is a cave consisting of rooms connected by passageways.

Lurking somewhere in the cave is a Wumpus, a beast that eats anyone who

enters its room. The Wumpus can be shot by an agent, but the agent only has

one arrow. Some rooms contain bottomless pits that will trap anyone who
wanders into such a room. There is also the possibility of finding a heap of gold.

This is the goal of anyone who enters the Wumpus World. Find the Gold and
bring it back to the start cell!

9

9

The Task Environment
Performance Measure

• +1000 for picking up gold,

• -1000 for falling into a pit or

being eaten by a Wumpus,

• -1 for each action taken, and

• -10 for using an arrow.

Environment

4x4 grid of rooms. Square [1,1] is initial state with agent facing to
the right. Locations of gold, and wumpus are chosen randomly,
with a uniform distribution, from all squares but [1,1].

Each square other than [1,1] can contain a pit with probability
0.2.

10

10

The Task Environment
Actuators

• The agent can Move forward, Turn right
or Turn left by 90 degrees

• Grab can be used to pick up an object in
the same square as the agent.

• Shoot can be used to shoot the single
arrow in a straight line until it hits
something (Wumpus or a boundary wall)

Sensors

• A stench is perceived in the square containing a Wumpus or
in those directly adjacent (not diagonal) to the Wumpus

• A breeze is perceived in a square directly adjacent to a pit

• A glitter is perceived in a square with gold in it.

• A bump is perceived if an agent walks into a wall.

• When the wumpus dies it emits a horrible scream.

11

11

An Example: Wumpus World

Reality Agent A’s View

12

12

Let’s Explore through Reasoning!

In , there is no breeze or stench:

Consequently, and are safe:

Rm1,1

Rm2,1 Rm1,2

KB:

¬B1,1 ∧ ¬S1,1

OK2,1 ∧ OK1,2

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

13

13

KB

A moves to and feels a breeze:Rm2,1

Partial Observability as disjunctive information

B2,1

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2
B2,1

What can A conclude about pits in

its vicinity?

Given , there may be a Pit in either

 or : Rm2,2 Rm3,1 P2,2 ∨ P3,1

B2,1

KB¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

B2,1 P2,2 ∨ P3,1

14

14

What can A infer about the Wumpus and

Pits in the vicinity?

Since there may be a Pit in either or :

A decides to move back to and then to .

A then senses a stench in :

Rm2,2 Rm3,1

Rm1,1 Rm1,2

Rm1,2 S1,2

P?

P?

P2,2 ∨ P3,1

KB¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

B2,1, P2,2 ∨ P3,1, S1,2

15

15

KB

P?

P?
W?

W?

Given , there may be a Wumpus in

either or :

S1,2
Rm1,3 Rm2,2

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

B2,1, P2,2 ∨ P3,1, S1,2

If there was a Wumpus in , then

A would have sensed a stench in ,

but it didn’t. So there is no Wumpus in

:

Rm2,2
Rm2,1

Rm2,2 ¬W2,2

W1,3 ∨ W2,2

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

B2,1, P2,2 ∨ P3,1, S1,2,
KBW1,3 ∨ W2,2

B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2,
¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

¬W2,2
KB

16

16

KB

P?

P?

W?

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2

ResolutionW1,3 ∨ W2,2 ¬W2,2

W1,3

Modus

Ponens

¬W2,2 ¬W2,2 → W1,3

W1,3

W1,3 ∨ W2,2 ¬W2,2
W1,3

But and

imply , so there is a Wumpus in R1,3

W!

17

17

KB

If there was a Pit in , then A would
have sensed a breeze in , but it
didn’t. So there is no Pit in :

Rm2,2
Rm1,2

Rm2,2

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2

B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2

But and

imply , so there is a Pit in R3,1

¬P2,2P2,2 ∨ P3,1
P3,1

¬P2,2

W!

P?

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2
B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2
¬P2,2

P?
¬P2,2,

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2
B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2P

P3,1
18

18

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2
B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2

¬P2,2, P3,1,
KB

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2
B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2

¬P2,2, P3,1, OK2,2, OK2,3, OK3,2

A chooses to move to . Since
there is no stench or breeze in

, Both and are

ok to move to:

Rm2,2

Rm2,2 Rm2,3 Rm3,2
OK2,3 ∧ OK3,2

OK

OK
W!

P

OK2,2

Since there is no pit and no Wumpus, ,

in , it is ok:

¬P2,2 ∧ ¬W2,2
Rm2,2 OK2,2

OK

19

19

A chooses to move to and  
senses a breeze, stench,

and gold:

Rm2,3

A picks up the gold, generates a motion plan

to get back to [1,1] and wins the game!

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2
B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2

¬P2,2, P3,1, OK2,2, OK2,3, OK3,2

KB

OK

B2,3, S2,3, G2,3

¬B1,1, ¬S1,1, OK1,1, OK2,1, OK1,2
B2,1, P2,2 ∨ P3,1, S1,2, W1,3 ∨ W2,2, ¬W2,2

¬P2,2, P3,1, OK2,2, OK2,3, OK3,2

KB

20

20

Logic as a Representation Language

Propositional Logic Default/
Nonmonotonic

Reasoning

Answer Set
Programming

21

First-Order Logic

Restricted

First-Order Logic

Resolution
Theorem Proving

Resolution
Theorem Proving

Sat Solving

DPLL - Model Checking

21

Propositional Logic

22

22

Propositional Logic
The elements of the language:
Atoms: Two distinguished atoms T and F and the countably
infinite set of those strings of characters that begin with a capital letter,
for example, P, Q, R, . . ., P1, Q1, ON_A_B, etc.

Connectives: ∧, ∨, ⊃, and, ¬, called �and�, �or�, �implies�, and �not�.
$
Syntax of well-formed formulas (wffs), also called sentences:
•  Any atom is a wff
•  if ω1, ω2 are wffs, so are
•  ω1 ∧ ω2 (conjunction)
•  ω1 ∨ ω2 (disjunction) Parentheses will be used
•  ω1 ⊃ ω2 (implication) extra-linguistically grouping wffs
•  ¬ω1 (negation) into sub wffs according to recursive defs

→

→

23

23

Semantics
Semantics is about associating elements of a logical

language with elements of a domain of discourse.

In the case of propositional logic, the domain of discourse

is propositions about the world.

One associates atoms in the language with propositions.

An interpretation associates

an atomic proposition with each atom

and a value (True or False)

What do sentences mean?

Atoms

Propositions

P1,2

There is a pit in Rm1,2

If atom α is associated with proposition P, then
we say that α has value True just in case P is
true of the world; otherwise it has value False

α

P

24

24

The Truth Table Method
Truth tables can be used to compute the truth value of any wff

given the truth values of the constituent atoms in the formula.

ω1 "ω2 " ω1 ∧ ω2 " ω1 ∨ ω2 "¬ω1 " ω1 ⊃ ω2 "

True True True True False True
True False False True False False
False True False True True True
False False False False True True

If an agent describes its world using

features (corresponding to propositions) and

these features are represented as atoms in

the agent’s model of the world then there

are ways the world can be as far as the
agent can discern/express.

n

n

2nP is False

Q is False

R is True

Interpretation

[(𝖯 → 𝖰) → 𝖱] → 𝖯

→

25

25

Satisfiability and Models
An interpretation satisfies a wff if the wff is assigned the value True

under the interpretation.

An interpretation that satisfies a wff (set of wffs) is called a model

of the wff (set of wffs).

Find an interpretation that is a model of: 𝖯1,2 ∨ 𝖶1,2 → ¬𝖮𝖪1,2

A wff is said to be inconsistent or unsatisfiable if there are no
interpretations that satisfy it. (Likewise for sets of sentences)

𝖯1,2 ∧ ¬𝖯1,2 {𝖯1,2 ∨ 𝖶1,2, 𝖯1,2 ∨ ¬𝖶1,2, ¬𝖯1,2 ∨ 𝖶1,2, ¬𝖯1,2 ∨ ¬𝖶1,2}

26

26

Validity and Entailment
A wff is said to be valid if it has value True under all
interpretations of its constituent atoms.

Are the following valid sentences? ¬(P1,2 ∧¬ P1,2) ¬(P1,2 ∧¬ W1,2)

If a wff ω has value True under all those interpretations for which each of

the wffs in a set has value True, then we say that logically entails
and that ω logically follows from and that is a logical consequence of

 . We use the symbol to denote logical entailment and write

Δ Δ ω
Δ ω

Δ ⊧ Δ ⊧ ω

Require an efficient means of
testing whether sentences are
True in an interpretation and
whether sentences are entailed
by sets of sentences.

{𝖯1,2} ⊧ 𝖯1,2 {} ⊧ ¬(𝖯1,2 ∧ ¬𝖯1,2)

{𝖯1,2, 𝖯1,2 → 𝖶1,2} ⊧ 𝖶1,2

𝖥𝖺𝗅𝗌𝖾 ⊧ ω where ω is any wff!
27

27

An Entailment Example
Lets restrict ourselves to the blue cells:

[1,1], [2,1], [3,1],[1,2],[2,2]

We want to reason about PITS in:

[1,2],[2,2],[3,1]

There are 8 possibilities: pit or no pit.

Consequently, 8 possible models for
the presence/non-presence of pits

But our percepts together with the rules of the game

restrict us to three possible models satisfying the KB

¬𝖡1,1, ¬𝖲1,1, 𝖮𝖪1,1, 𝖮𝖪1,2, 𝖮𝖪2,1, 𝖡2,1, 𝖯2,2 ∨ 𝖯3,1

𝖮𝖪x,y → ¬𝖯x,y 𝖮𝖪x,y → ¬𝖲x,y
Rules of

The game: ….
28

28

Wumpus Possible Worlds

Is α1 entailed by KB?

α1 = ¬𝖯1,2

KB ⊧ α1

Suppose:

YES!
29

29

Wumpus Possible Worlds

Is α2 entailed by KB?

α2 = ¬𝖯2,2

Suppose:

KB ⊧ α2NO!
30

30

Truth Table Enumeration
Entailment checking by enumeration• Enumerate all models

• Check that the query is 
is true in all models that 
satisfy the KB

• Recursively build 
tree where each 
leaf is a model.

• Check that:

• Each model that 

makes KB true,  
makes query true.

Model checking approach

31

31

A:True A:False

B:True B:False B:FalseB:True

C:True C:TrueC:TrueC:TrueC:False C:FalseC:FalseC:False

A:True

B:True

C:True

A:True

B:True

C:False

A:True

B:False

C:True

A:True

B:False

C:False

A:False

B:True

C:True

A:False

B:True

C:False

A:False

B:False

C:True

A:False

B:False

C:False

32

32

Proof Theory
Straightforward model-checking approaches are generally

not efficient since the number of models grows exponentially

with the number of variables.

Can we find a more efficient “syntactic” means of  
of showing semantic consequence without the

need to generate models?

We also have to “guarantee” that the syntactic approach

is equivalent to the semantic approach.

33

33

–Gottfried Wilhelm Leibniz [1677]

For when I am presented with a false theorem, I do not
need to examine or even to know the demonstration,
since I shall discover its falsity a posteriori by means of
an easy experiment, that is by calculation, costing no
more than paper and ink, which will show the error no

matter how small it is…

And if someone would doubt my results, I should say to
him:

“Let us calculate, Sir”, and thus by taking paper to pen
and ink, we should soon settle the question

Calculus Ratiocinator

34

34

Rules of Inference and Proofs
Now that we have a feeling for the intuitions behind entailment and its

potential, the next step is to find syntactic characterizations of the

reasoning process (inference) to make this functionality feasible for

use in intelligent agents. We require a proof theory.

Rules of inference permit us to produce additional wffs

from others in a sound or truth-preserving manner.

If what comes in is true, then what comes out is true

Some Examples:

ω1, ω2

ω1 ∧ ω2

ω1, ω1 → ω2

ω2
35

35

Definition of a Proof
The sequence of wffs is called a proof (or deduction)

of from a set of wffs iff each in the sequence is either

• in , or

• can be inferred from a wff (or wffs) earlier in the sequence by using 

one of the rules of inference (in the proof theory).

{ω1, ω2, …, ωn}
ωn Δ ωi

Δ

If there is a proof of ωn from Δ , we say that ωn is a theorem of the
set Δ . The following notation will be used for expressing that ωn can be proved
from Δ :
 Δ |-- ωn (Δ |--ℜ ωn, where ℜ refers to a set of inference rules)

Δ ⊢ ωn
Δ ⊢ℛ ωn ℛ(or , where refers to a set of inference rules

Proof of Q ∧ R
from Δ#

Δ = {𝖯, 𝖱, 𝖯 → 𝖰}

{𝖯, 𝖯 → 𝖰, 𝖰, 𝖱, 𝖰 ∧ 𝖱}

Natural DeductionΔ ⊢ 𝖰 ∧ 𝖱
36

36

Soundness and Completeness

If, for any set of wffs, Δ , and wff, ω, Δ |--ℜ ω implies Δ |= ω , we say
that the set of inference rules, ℜ , is sound.

If, for any set of wffs, Δ , and wff, ω, it is the case that whenever Δ |= ω,
there exists a proof of ω from Δ using the set of inference rules, ℜ , we say that
ℜ is complete.

 Syntactic characterizations of Entailment

 Soundness -- not too strong!

Completeness -- not too weak!

37

37

Some Important Meta-Theorems

Can transform a question of entailment into a question of validity

Reductio ad absurdum

If the set Δ has a model but Δ ∪ {¬ω} does not, then Δ |= ω$

Proof by Refutation: To prove that Δ |= ω , show that Δ ∪ {¬ω}
has no model.

The Deduction Theorem

if {ω1, ω2, . . ., ωn } |= ω then (ω1 ∧ ω2 ∧ . . . ωn) ⊃ ω is
valid and vice-versa.

→

[Unsatisfiable]

38

Can transform a question of entailment into a question of satisfiability!

38

Efficient Propositional
Model Checking

DPLL

39

39

Clauses and Normal Forms
A literal is an atom (positive literal) or

the negation of an atom (negative literal)

A clause is an expression of the form:
l1 ∨ l2 ∨ … ∨ lk

where each is a literalli

A wff written as a conjunction of clauses is said to be in
conjunctive normal form (CNF).

A wff written as a disjunction of conjunctions of literals

 is said to be in disjunctive normal form (DNF).

Any propositional formula can be converted into

an equivalent CNF or DNF form

B2,3, ¬P3,4

P3,1 ∨ ¬W2,2 ∨ B1,3

(P3,1 ∨ ¬W2,2 ∨ B1,3) ∧ (¬B2,3 ∨ W3,3) ∧ S2,2

40

40

Converting to CNF or DNF form
1. Eliminate implication connectives by using the equivalent form with , .

2. Reduce the scope of connectives by applying DeMorgan’s laws 

and by eliminating double negations () if they arise.

3. Convert to CNF(DNF) by using associative and distributive laws.

¬
¬

¬¬

∨

¬(ω1 ∨ ω2) ≡ ¬ω1 ∧ ¬ω2
¬(ω1 ∧ ω2) ≡ ¬ω1 ∨ ¬ω2

ω1 ∧ (ω2 ∨ ω3) ≡ (ω1 ∧ ω2) ∨ (ω1 ∧ ω3)
ω1 ∨ (ω2 ∧ ω3) ≡ (ω1 ∨ ω2) ∧ (ω1 ∨ ω3)

DeMorgan Laws

Distributive Laws

(ω1 ∧ ω2) ∧ ω3 ≡ ω1 ∧ (ω2 ∧ ω3)
(ω1 ∨ ω2) ∨ ω3 ≡ ω1 ∨ (ω2 ∨ ω3)

Associative Laws

41

41

An Example
¬(𝖯 → 𝖰) ∨ (𝖱 → 𝖯)

¬(¬𝖯 ∨ 𝖰) ∨ (¬𝖱 ∨ 𝖯) Eliminate implication connectives

(𝖯 ∧ ¬𝖰) ∨ (¬𝖱 ∨ 𝖯) Apply DeMorgan’s Law

(𝖯 ∨ ¬𝖱 ∨ 𝖯) ∧ (¬𝖰 ∨ ¬𝖱 ∨ 𝖯) Apply Distributive Law

(𝖯 ∨ ¬𝖱) ∧ (¬𝖰 ∨ ¬𝖱 ∨ 𝖯) Factor (remove duplicates)

(𝖯 ∨ ¬𝖱) ∧ (¬𝖰 ∨ ¬𝖱 ∨ 𝖯)

CNF Form
¬(𝖯 → 𝖰) ∨ (𝖱 → 𝖯) ≡

A conjunction of clauses42

42

Davis Putnam Algorithm
• The Davis-Putnam Algorithm (1960)

• In a seminal paper, they described an effective satisfiability checking
algorithm

• Satisfiability by search

• Takes as input a formula in conjunctive normal form (set of clauses)

• The Davis, Putnam, Logeman, Loveland Algorithm (1962) DPLL
• An extension of the DP algorithm with better space efficiency

• Essentially a recursive, depth-first enumeration of possible models with three
improvements over TT-ENTAILS

• Early Termination

• Pure Symbol Heuristic

• Unit Clause Heuristic

• Most modern SAT solvers are still based on ideas from DPLL

43

43

A partial assignment is a weak autarchy for F if:φ φ * F ⊆ F
If φ is a weak autarchy for F, then φ * F is satisfiability equivalent to F

φ * FIf I can satisfy the remaining clauses in then is satisfiable tooF

Some notation
A partial assignment is a mapping

from a set of variables to truth values : φ : V → {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾}

An application of a partial assignment

to a clause set F is denoted by: φ * F

It results in the clause set obtained from F by first removing

all clauses satisfied by , and then removing from the remaining

clauses all literal occurrences which are falsified by

φ
φ

(𝖠 ∨ ¬𝖡) ∧ (¬𝖡 ∨ ¬𝖢) ∧ (𝖢 ∨ 𝖣)φ : {𝖠 : 𝗍𝗋𝗎𝖾, 𝖣 : 𝖿𝖺𝗅𝗌𝖾}
(𝗍𝗋𝗎𝖾 ∨ ¬𝖡) ∧ (¬𝖡 ∨ ¬𝖢) ∧ (𝖢 ∨ 𝖿𝖺𝗅𝗌𝖾)

(¬𝖡 ∨ ¬𝖢) ∧ (𝖢 ∨ 𝖿𝖺𝗅𝗌𝖾)
(¬𝖡 ∨ ¬𝖢) ∧ (𝖢)

44

{{¬B, C}, {C}}

{{A, ¬B}, {¬B, C}, {C, D}}

44

Early Termination

(𝖠 ∨ 𝖡 ∨ 𝖣) ∧ (𝖠 ∨ ¬𝖤 ∨ 𝖥) ∧ (𝖠 ∨ 𝖦)
If A is true in an assignment then

is true without knowing the assignment of other variables.

φ : {𝖠 : 𝗍𝗋𝗎𝖾}

(𝗍𝗋𝗎𝖾 ∨ 𝖡 ∨ 𝖣) ∧ (𝗍𝗋𝗎𝖾 ∨ ¬𝖤 ∨ 𝖥) ∧ (𝗍𝗋𝗎𝖾 ∨ 𝖦)

If A and G are false in an assignment then
(𝖠 ∨ 𝖡 ∨ 𝖣) ∧ (𝖠 ∨ ¬𝖤 ∨ 𝖥) ∧ (𝖠 ∨ 𝖦)

is false without knowing the assignment of other variables.

φ : {𝖠 : 𝖿𝖺𝗅𝗌𝖾, 𝖦 : 𝖿𝖺𝗅𝗌𝖾}

(𝖠 ∨ 𝖡 ∨ 𝖣) ∧ (𝖠 ∨ ¬𝖤 ∨ 𝖥) ∧ (𝖿𝖺𝗅𝗌𝖾 ∨ 𝖿𝖺𝗅𝗌𝖾)
(𝖠 ∨ 𝖡 ∨ 𝖣) ∧ (𝖠 ∨ ¬𝖤 ∨ 𝖥) ∧ (𝖿𝖺𝗅𝗌𝖾)

45

45

Pure Symbol Heuristic
A “pure” symbol is a symbol that always appears with the

same sign in all clauses

(𝖠 ∨ ¬𝖡) ∧ (¬𝖡 ∨ ¬𝖢) ∧ (𝖢 ∨ 𝖠)
A is pure, B is pure and C is not

Assigning a pure symbol the value that makes it true

will never make the original clause false

(𝖳𝗋𝗎𝖾 ∨ ¬𝖡) ∧ (¬𝖡 ∨ ¬𝖢) ∧ (𝖢 ∨ 𝖳𝗋𝗎𝖾)
(¬𝖡 ∨ ¬𝖢)

φ : {𝖠 : 𝗍𝗋𝗎𝖾}

φ is a weak autarchy for F : φ * F is satisfiability equivalent to F

φ is a weak autarchy for F : φ * F is unsatisfiability equivalent to F
46

46

Unit Clause Heuristic

Unit clause in resolution: A clause with one literal

Unit clause in DPLL: also means clauses in which

all literals but one are already assigned false by the model

For a unit clause to be true, it must have one assignment.

Unit Clause Heuristic: Assign all such symbols before
branching on the remainder

(¬𝖠 ∨ 𝖡 ∨ 𝖢) ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ 𝖥) ∧ 𝖦φ : {𝖠 : 𝗍𝗋𝗎𝖾, 𝖡 : 𝖿𝖺𝗅𝗌𝖾}

(𝖥𝖺𝗅𝗌𝖾 ∨ 𝖥𝖺𝗅𝗌𝖾 ∨ 𝖢) ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ 𝖥) ∧ 𝖦

47

47

Example

φ : {𝖠 : 𝗍𝗋𝗎𝖾, 𝖡 : 𝖿𝖺𝗅𝗌𝖾, 𝖦 : 𝗍𝗋𝗎𝖾}
𝖢 ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ ¬𝖥) ∧ 𝗍𝗋𝗎𝖾
𝖢 ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ ¬𝖥)

φ : {𝖠 : 𝗍𝗋𝗎𝖾, 𝖡 : 𝖿𝖺𝗅𝗌𝖾, 𝖦 : 𝗍𝗋𝗎𝖾, 𝖢 : 𝗍𝗋𝗎𝖾}

𝗍𝗋𝗎𝖾 ∧ (𝖣 ∨ 𝖤) ∧ (𝖿𝖺𝗅𝗌𝖾 ∨ ¬𝖥)
(𝖣 ∨ 𝖤) ∧ ¬𝖥

𝖢 ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ ¬𝖥)

(𝖣 ∨ 𝖤) ∧ 𝗍𝗋𝗎𝖾
φ : {𝖠 : 𝗍𝗋𝗎𝖾, 𝖡 : 𝖿𝖺𝗅𝗌𝖾, 𝖦 : 𝗍𝗋𝗎𝖾, 𝖢 : 𝗍𝗋𝗎𝖾, 𝖥 : 𝖿𝖺𝗅𝗌𝖾}

(𝖣 ∨ 𝖤)

(¬𝖠 ∨ 𝖡 ∨ 𝖢) ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ ¬𝖥) ∧ 𝖦
(𝖿𝖺𝗅𝗌𝖾 ∨ 𝖿𝖺𝗅𝗌𝖾 ∨ 𝖢) ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ ¬𝖥) ∧ 𝖦

φ : {𝖠 : 𝗍𝗋𝗎𝖾, 𝖡 : 𝖿𝖺𝗅𝗌𝖾}

𝖢 ∧ (𝖣 ∨ 𝖤) ∧ (¬𝖢 ∨ ¬𝖥) ∧ 𝖦

48

48

The DPLL Algorithm

Detects early termination for

partially completed models

Splitting Rule

Provides a skeleton of the search process.
Note1: Each application of a heuristic includes simplifying the clause set

Note2: Each application of a heuristic is satisfiability preserving
49

49

A:True A:False

B:True B:False B:FalseB:True

C:True C:TrueC:TrueC:TrueC:False C:FalseC:FalseC:False

A:True

B:True

C:True

A:True

B:True

C:False

A:True

B:False

C:True

A:True

B:False

C:False

A:False

B:True

C:True

A:False

B:True

C:False

A:False

B:False

C:True

A:False

B:False

C:False

DPLL is similar to TT-Entails
Recursive depth-first search

Uses heuristics so the whole tree may not 
need be expanded and searched. Stops 

when it finds a solution

Partial Assignments

50

50

Using DPLL for Inference
Want to know whether: Δ ⊧ α

Want to turn this into a satisfiability problem!

Deduction Theorem: If Δ ⊧ α then ⊧ Δ → α

Δ → α is valid iff ¬(Δ → α) (= Δ ∧ ¬α) is unsatisfiable

Let β be Δ ∧ ¬α in CNF form

If DPPL-Satisfiable?() is true then is false

If DPPL-Satisfiable?() is false then is true

Δ ⊧ α

Δ ⊧ αβ

β

51

51

Recent Extensions to DPLL
• Component Analysis

• Find independent subsets of unassigned variables (components) and solve each
component separately

• Variable and Value Ordering

• degree heuristic - choose a variable appearing most frequently among remaining

clauses

• choose true or false as an assignment heuristically

• Intelligent backtracking

• Also do conflict clause learning

• Random restarts

• If little progress in extending an assignment, random restart

• remember clauses assigned, change variable and value selection

• Clever indexing techniques

• acquiring clause types rapidly…

52

52

Axiomatizing the Wumpus World

(Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y))#

Physics of the Wumpus World:

Modeling is difficult with Propositional Logic

Schemas:

Def. of breeze in pos [x,y]

(Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y))# Def. of stench in pos [x,y]

 (W1,1 ∨ W1,2 ∨ … ∨ W4,4))" There is at least one wumpus!

There is only one wumpus!..., etc.

53

53

Logical Wumpus Hybrid Agent
Successor state axioms, etc

Try to construct plans based

on goals with decreasing priority

ASK(KB, ¬𝖶x,y) = false

means that KB ⊧ ¬𝖶x,y is false
It does not mean that KB ⊧ 𝖶x,y is true

ASK(KB, ¬𝖮𝖪t
x,y) = false

means that KB ⊧ ¬𝖮𝖪t
x,y is false

It does not mean that KB ⊧ 𝖮𝖪t
x,y is true

Lt
x,y : Visited [x,y] at time t

Plan a route to an unvisited cell

through not unsafe cells

Plan a route to

To make safe cells

Plan a route to an unvisited cell through safe cells

Give up: Plan a route to start cell through safe cells

54

54

Local Search Algorithms for SAT
• Studied local search algorithms previously that combine both greediness and

randomness

• Hill climbing

• Simulated Annealing

• Stochastic Beam Search

• Local search can be applied directly to the SAT problem

• Find an assignment that satisfies all clauses

• Instances (states) are full assignments

• Children generated by flipping a variable’s assignment (T to F or F to T)

• Evaluation function -

• count the number of unsatisfied clauses (in the CNF)

• minimize that number

• Can be many local minima

• Use randomness to escape

55

55

WalkSAT
On each iteration: pick an unsatisfied clause and pick a symbol in it to flip

Two ways to choose the symbol to flip:

• min-conflicts: minimize the number of unsatisfied clauses

• random walk: pick the symbol randomly

56

56

WalkSAT: Completeness and Termination

• WalkSAT is sound

• When the algorithm returns a model it does satisfy the input clauses.

• WalkSAT is not complete

• When WalkSAT fails

• either the sentence is unsatisfiable, or

• the algorithm needs more time to find a solution

• max_flips = infinity and p > 0

• if a model exists, it will eventually find it (random walk)

• if a model does not exist, the algorithm never terminates.

• SAT is NP-Complete, so some problem instances will require exponential
runtime.

• Can we delineate the hard problem instances from the easy problem
instances?

57

57

Landscape of Random SAT Problems

91

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P(
sa

tis
fia

bl
e)

Clause/symbol ratio m/n

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4 5 6 7 8

R
un

tim
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.19 FILES: . (a) Graph showing the probability that a random 3-CNF sentence with n = 50
symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median run time
(measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF sentences. The most
difficult problems have a clause/symbol ratio of about 4.3.

(a) Graph showing the probability that a random 3-CNF sentence with n = 50 symbols is satisfiable, as a function of the clause/symbol ratio m/n.

(b) Graph of the median run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF sentences.

The most difficult problems have a clause/symbol ratio of about 4.3.
 CNF3(m,50)
Sentences with 50 variables

and 3 literals per clause
(¬𝖣 ∨ ¬𝖡 ∨ 𝖢) ∧ (𝖡 ∨ ¬𝖠 ∨ ¬𝖢)

∧ (¬𝖢 ∨ ¬𝖡 ∨ 𝖤) ∧ (𝖤 ∨ ¬𝖣 ∨ 𝖡) ∧ (¬𝖡 ∨ 𝖤 ∨ ¬𝖢)

5 symbols/5clauses:

Underconstrained

Overconstrained

58

58

Resolution Theorem
Proving

59

59

Resolution Theorem Proving
We considered the unit clause heuristic [1960 Davis Putnam] when
studying DPLL and found that it is a satisfiability/truth preserving
heuristic.

Robinson [1965], in a major breakthrough in automated theorem

proving, based his technique on the resolution inference rule and

also generalised it for the 1st-order case by introducing “on-demand”

grounding using a unification algorithm.

Let’s begin with Unit Resolution

A unit clause is a disjunction/clause consisting of a single literal

The unit resolution rule takes a clause and a unit clause

and returns a new clause called the resolvant.

60

60

Resolution Rules
l1 ∨ … ∨ lk, m

l1 ∨ … ∨ li−1 ∨ li+1 ∨ … ∨ lk

Unit Resolution Rule:

Example: 𝖠 ∨ 𝖡 ∨ 𝖢 ∨ 𝖣 ¬𝖢
𝖠 ∨ 𝖡 ∨ 𝖣

The rule resolves on complementary literals: li, m

Example: 𝖠 ∨ 𝖡 ∨ 𝖢 ∨ 𝖣 ¬𝖡
𝖠 ∨ 𝖢 ∨ 𝖣

61

61

Resolution Rules
The unit resolution rule can be generalised:

l1 ∨ … ∨ lk, m1 ∨ … ∨ mn

l1 ∨ … ∨ li−1 ∨ li+1 ∨ …lk ∨ m1 ∨ … ∨ mj−1 ∨ mj+1 ∨ … ∨ mn

where li and mj are complementary literals

𝖠 ∨ 𝖡 ∨ 𝖢 ∨ 𝖣 ¬𝖤 ∨ ¬𝖢 ∨ 𝖥
𝖠 ∨ 𝖡 ∨ 𝖣 ∨ ¬𝖤 ∨ 𝖥

Example:

62

62

Resolution

Note: The empty clause is False 𝖯, ¬𝖯
⊥

(¬𝖱 ∨ 𝖯) (¬𝖯 ∨ 𝖰)
(¬𝖱 ∨ 𝖰)

If 𝖱 → 𝖯 and 𝖯 → 𝖰 then 𝖱 → 𝖰

Forward Rule chaining is a special case of Resolution:

An empty disjunction is false by definition

We sometimes use {} also

63

63

Soundness of Resolution

l1 ∨ … ∨ lk, m1 ∨ … ∨ mn

l1 ∨ … ∨ li−1 ∨ li+1 ∨ …lk ∨ m1 ∨ … ∨ mj−1 ∨ mj+1 ∨ … ∨ mn

The Resolution Rule is Sound:

{l1 ∨ … ∨ lk, m1 ∨ … ∨ mn} ⊢ℛ

{l1 ∨ … ∨ li−1 ∨ li+1 ∨ …lk ∨ m1 ∨ … ∨ mj−1 ∨ mj+1 ∨ … ∨ mn}

Preserves Truth and Satisfiability
64

64

Completeness of Resolution
Resolution as is, is not complete!

𝖯 𝖱
𝖯 ∨ 𝖱 ?

{𝖯, 𝖱} ⊧ 𝖯 ∨ 𝖱 {𝖯, 𝖱} ⊢ℛ 𝖯 ∨ 𝖱and it is not the case that

Resolution can not be used

directly to decide all logical entailments….

But…..
65

65

Resolution Refutation is Complete

Reductio ad absurdum

If the set Δ has a model but Δ ∪ {¬ω} does not, then Δ |= ω$

Proof by Refutation: To prove that Δ |= ω , show that Δ ∪ {¬ω}
has no model.

Recall our meta-theorem:

We can show that the negation of

is inconsistent with

𝖯 ∨ 𝖱 (¬𝖯 ∧ ¬𝖱)
(𝖯) ∧ (𝖱)

𝖯, ¬𝖯
⊥

𝖱, ¬𝖱
⊥

Resolve on P or R to

generate a contradiction:

66

66

Resolution Refutation Procedure
To prove an arbitrary wff, ω, from a set of wffs Δ , proceed as follows:

1. Convert the wffs in Δ to clause form -- a (conjunctive) set of clauses.
2. Convert the negation of the wff to be proved, ω , to clause form.
3. Combine the clauses from steps 1 and 2 into a single set, Γ.
4. Iteratively apply resolution to the clauses in Γ and add the results to
 Γ either until there are no more resolvents that can be added or until
 the empty clause is produced.

The empty clause will be produced by the refutation resolution procedure
if Δ |= ω . We say that propositional resolution is refutation complete.

If Δ is a finite set of clauses and if Δ |≠ ω, then the resolution refutation
procedure will terminate without producing the empty clause. We say that
entailment is decidable for the propositional calculus by resolution refutation.

67

67

A Resolution Example
Suppose the agent is in [1,1] and there is no
breeze. Show that there is no pit in [1,2]

KB = {(𝖡1,1 ↔ (𝖯1,2 ∨ 𝖯2,1), ¬𝖡1,1}

KB ∧ ¬¬𝖯1,2Show that

is inconsistent

Prove ¬𝖯1,2

(¬ P2,1 ∨ B1,1)
(¬ B1,1 ∨ P1,2 ∨ P2,1) "
(¬ P1,2 ∨ B1,1)
¬ B1,1
P1,2

KB ∧ ¬¬𝖯1,2 in CNF form:

68

68

A Resolution Algorithm

No new clauses generated, no empty clause

69

69

Applying the Algorithm
Algorithm:

(¬ P2,1 ∨ B1,1)
(¬ B1,1 ∨ P1,2 ∨ P2,1) "
(¬ P1,2 ∨ B1,1)
¬ B1,1
P1,2

KB ∧ ¬¬𝖯1,2

1st iteration:

2nd iteration:

(¬ P1,2 ∨ B1,1) ¬ B1,1

¬ P1,2 P1,2

{}

Refutation Tree:

70

70

