TDDC17

Seminar 5 (and 6)

Ch. 7
Knowledge Representation |
Logical Agents
Intuitions
Propositional Logic
Propositional Theorem Proving:
DPLL
(Resolution Theorem Proving)

Some additional help: (click “literature” on the IDA course web page)
https://www.ida.liu.se/~TDDC17/info/literature/szalas-cugs-lectures.pdf

Or on the LISAM Documents page.

Patrick Doherty
Dept of Computer and Information Science
Artificial Intelligence and Integrated Computer Systems Division
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Model-based, Goal-Directed Agents
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Representing States/Knowledge
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Today/Next Seminar:

Propositional Logic
1st-Order Logic
Answer Set Programs
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Generic Model-based Agent

t<—t+1

KB, aknowledge base

t, a counter, initially 0, indicating time

return action

function KB-AGENT( percept) returns an action
persistent:

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action <— ASK(K B, MAKE-ACTION-QUERY(?))
TELL(KB,MAKE-ACTION-SENTENCE(action, t))

—Observe

Internalize
Observation
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EASK for nexté
. action
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éReason about§
~ what is best

TELL
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Advice Taker [McCarthy 1958]

Make a Execute

Decision Action
~ TELLwhat ] Y....
action is decided. 5 0(1)




Knowledge Representation and Logic

Knowledge explicit in our KB Knowledge implicit in our KB
(%Zifg]ac“e‘;”+3entences) : ™ Sentence
I Entails
Representation ® %
‘ 3 e
|V} Y}
____________ 1 SRS I N —

? @

World
Observations

Aspects of the ™ Aspect of the
real world Follows real world

What is our representation language”?
How is it grounded causally in the world?

Truth preservation (soundness) guarantees fidelity
of entailments to the world under the assumption
that observation sentences (sensing) are correct, in
addition to background knowledge in the KB.
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Knowledge Representation Hypothesis

Characterizes our assumptions about such systems

Any mechanically embodied intelligent process
will be comprised of structural ingredients that

a) we as external observers naturally take to
represent a propositional account of the
knowledge that the overall process exhibits,
and

b) independent of such external semantical
attribution, play a formal but causal and

essential role in engendering the behavior that | et
manifests that knowledge. [Brian Smith, 1982]
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One useful perspective: Knowledge as Constraints!

Knowledge Base Possible Worlds

O
O 0 ®
O Actual World

A Constrain what worlds satisfy
all sentences in the set

<« —

Constrain what sentences can be true

Set of
Sentences

Interpretations

Syntax Semantics Intendod
A I_ a A I: a Interpretation
“ Inference Entailment
RS :
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Logic as a Representation Language

. . Logic is about jLogic is about
What is Logic? Thought

Given a set of facts A taken to hold as true about the "world”
and given an assertion a about the "world”, is there a good
argument for believing that a holds based on the initial set of
facts A?

Logic in the general sense is about making distinctions
between good arguments and bad arguments and the different
criteria that may be used in making this distinction.

Deduction is one such criteria. (There are others!)

Logic in the more restricted sense is about the study

of mathematical theories for formalizing the distinction
between good/bad arguments and mechanizing ways to make
these distinctions

LINKOPING
IIQ" UNIVERSITY 8

8



Wumpus World

SRS e

The Wumpus World is a cave consisting of rooms connected by passageways.
Lurking somewhere in the cave is a Wumpus, a beast that eats anyone who

f enters its room. The Wumpus can be shot by an agent, but the agent only has
one arrow. Some rooms contain bottomless pits that will trap anyone who
'wanders into such a room. There is also the possibility of finding a heap of gold.

This is the goal of anyone who enters the Wumpus World. Find the Gold and
ﬁbring it back to the start cell! -

nup, iR S s Sl s
4 S Tl PIT
ZBreszs |
il o 1B
h - Brego —
3 \S\lePcI > "z =
AT g
SSS ZBlogsg ~
2 {S(encf?é /‘@
1 gl e R
START
I LINKOPING ! 2 8 4
Io" UNIVERSITY 9
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The Task Environment

s |sssss | Performance Measure
tencl e . .
® +1000 for picking up gold,

. " (om .1 000 for falling into a pit or
ity - being eaten by a Wumpus,

\_ & .
— e -1 for each action taken, and
2 7o “Bresze = e -10 for using an arrow.
1 gzl riT R
START
1 2 3 4

Environment
4x4 grid of rooms. Square [1,1] is initial state with agent facing to
the right. Locations of gold, and wumpus are chosen randomly,
with a uniform distribution, from all squares but [1,1].
Each square other than [1,1] can contain a pit with probability
0.2.
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ask Environment

Actuators
® The agent can Move forward, Turn right
or Turn left by 90 degrees
e Grab can be used to pick up an object in
the same square as the agent.
® Shoot can be used to shoot the single
arrow in a straight line until it hits
something (Wumpus or a boundary wall)

Sensors
® A stench is perceived in the square containing a Wumpus or
in those directly adjacent (not diagonal) to the Wumpus
® A breeze is perceived in a square directly adjacent to a pit
® A glitter is perceived in a square with gold in it.
® A bump is perceived if an agent walks into a wall.
® \\Vhen the wumpus dies it emits a horrible scream.
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An Example: Wumpus World

Reality

Agent A's View

1,4 2,4 3,4 4,4
/\/
S Snen AT
Z Breazg 1,3 2,3 3,3 4,3
T T
é\S\tepcpé /&e//
/[ Gola B~
172 22 3,2 4.2
/\/
Sithie e
OK
1,1 2,1 3,1 4,1
“Beeze — | T | “Beeze ]
START OK OK
1 2 3 4
KT R 12
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= Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P =Pit
S = Stench
V = Visited
W = Wumpus

Let's Explore through Reasoning!

In Rm, {, there is no breeze or stench:

B =Breeze

G = Glitter, Gold
OK = Safe square
P =Pit

S = Stench

V = Visited

W = Wumpus

1,4 2.4 34 4.4 B A =S
1,1 1,1
Consequently, Rm, | and Rm, , are safe:
1,3 23 33 43
OK, | A OK| ,
1,2 2,2 3,2 42
OK KB:
1,1 2,1 3,1 4.1
[ -B 1,781, 0K, 1, 0K, 1, 0K, , )
OK OK
v 13
13
= Agent

A moves to Rm, | and feels a breeze: B, |

1,4 2,4 3,4 4,4
1,3 2,3 3,3 4,3
12 2,2 3,2 4,2
P?
OK
1,1 2,1 31 by |41
v B
OK OK

_'31,1, "51,1, 0K1,1, OKZ,I’ 0K1,2 KB
B2,1

What can A conclude about pits in
its vicinity?

Given , B, ; there may be a Pit in either
Rmy,or Rmy @ Py V Py

_'Bl,l’ _'51,1’ 0K1,1’ 0K2,1’ 0K1,2 KB
By, P,V Py,

Partial Observability as disjunctive information

14

14




= Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P =Pit
S = Stench
V = Visited
W = Wumpus

Since there may be a Pit in either Rm, , or Rmj | -

Py, V Py

A decides to move back to Rm, ; and then to Rm, ,.

A then senses a stench in Rmy 5: S| ,

1,4 2,4 3,4 4.4
1,3 2,3 33 4,3 _'Bl,l’ _'51,1, 0K1,1, OKz’l, OKLQ KB
B, ,P,VP31,5,
1,2 2,2 P? 352 4.2
S
OK
1,1 2,1 B 3,1 4.1 )
What can A infer about the Wumpus and
M i P? Pits in the vicinity?
OK OK ! Y
15
15
= Agent
B = Breeze
G = Glitter, Gold
OK = Safe square (
B 7By 1,781, 0Ky 1, 0K, 1, OK
S = Stench KB
V = Visited B21,P22VP31,S12
W = Wumpus \_ i i > i
14 2,4 3,4 4.4 Given § ,, there may be a Wumpus in
either le,:)) or Rmz’z: W1’3 \Y4 W272
1,3 25 8 4.3
=B, {,7S,,,0K, ,OK, {,OK
W2 1,1 1,1 1,1 2,1 1,2 KB
By 1, PyoV P31, 81 ,Wi 3V W),
1.2 22 P? |32 4,2
If there was a Wumpus in Rm, ,, then
OK A would have sensed a stench in Rm, ;,
but it didn’t. So there is no Wumpus in
1,1 21 4 3,1 4,1 Rmy,: =Wy,
v v P?
OK OK =B, ,7S,,,0K, ,0K, ,0K, ,

KB
By 1, PyoV Py 1,815, W3V W0 W, ,
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= Agent
B = Breeze
G = QGlitter, Gold
OK = Safe square
P =Pit
S = Stench
V = Visited
W = Wumpus

_'Bl,la _'Sl,lv 0K1,1’ 0K2,1, 0K1,2

By 1, PysV P31, 815, W3V W0, aW,,

1,4 2.4 3,4 4,4
BUt W1,3VW2’2 and _'Wz,z
imply W, 3, so there is a Wumpus in R13
1,3 23 3,3 43
W!
' WisvWo, W :
, , 22
Resolution
1 ,2 29 3,2 4,2 Wi
S P?
OK
o o o i Wy, W, > Wis Modus
H ki B H L) W
v \% P? 1.3 Ponens
OK OK
17
17
= Agent
B = Breeze
G = Glitter, Gold
(;Kzi;fequare —|B1,1’—|Sl’1,0K1,1,0K2,1,0K1,2
S = Stench
v - Vvited By 1, Py V Py 1,810, W3V W,0, W, , KB
W = Wumpus
If there was a Pit in Rm, ,, then A would
14 2.4 3.4 4.4 hgve sensed a t.)reeze.m. Rm 5, butit
didn't. So there is no Pitin Rm, 5: 7P, 5
=B, 1,781, 0K, 1, 0K, |, 0K, ,
1,3 2,3 3,3 4.3 . i ’ ’ ’
By 1, Py VP31, 80, W5V W0, W, ,
1,2 2,2 82 4.2
But P,,V Py and =P,,
S imply P, sothere is a Pitin Ry
OK
1,1 21 5 |3 4,1 7By 1, 7511, 0Ky, 0Ky 1, 0K
vV v By 1, PyoV Py 1,85, W3V W0, W, ,
OK OK —|P2’2, P3,1
18
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= Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P =Pit
S = Stench
V = Visited
W = Wumpus

Since there is no pit and no Wumpus, 7P, , A 7 W, ,,

in Rmy, 5, itis ok: OK,

By 1, PyoV Py 1,815, W3V Wy, aW,,
-P 2,25 P 3,1° OKz,z

_'Bl,b _'Sl,l’ 0K1,1a 0K2,1’ 0K1,2
KB

1,4 2,4 3,4 4,4 _
A chooses to move to Rm, 5. Since
there is no stench or breeze in
Rm, ,, Both Rm, » and Rm, , are
1,3 2,3 3,3 43 2,2 23 3,2
Wi ok to move to: OK, 5 A OK;,
0K
1’2 2,2 3,2 4.2 _|B1,1’ _ISI,l’ OKI,I’ 0K2’1, 0K1’2
S B, 1, Py V P31,810, W3V Wy, =W,
OK |OK OK
—Py5, P34, 0K, 5, 0K, 3, 0K
1,1 2,1 3,1 4,1
B
A\ A% P
OK OK
19
19
= Agent
B =Breeze 4+ |sssss el PIT
G = Glitter, Gold e
OK = Safe square Bz ]
= Pi Sl PiT NS
g :glttench e s —B, 1,781, 0K, 1, 0K, 1, OK, » KB
W i | @ |sEE P By 1 PynV Py 1,810, WiV Wy, m W),
PR B 7P, P31, 0K, 5, OK, 5, OK;
START
T R A chooses to move to Rm, 5 and
senses a breeze, stench,
and gold:
1,4 2,4 34 44
158 s N
-B BARE 0K, , 0K, ,, 0K,
R ENREEEE By 1 Pyn VP31 510 Wiz V Woy, = Wosl KB
i~ 7P, P 1, OK; 5, 0Ky 5, 0K
B2, 5., G
1,2 S 2,2 3,2 4,2 Y 2,3>~273 2.3 )
v A\
OK OK OK
1,1 2,1 B 3,1 P! 41 . .
v . : A picks up the gold, generates a motion plan
OK OK to get back to [1,1] and wins the game!

20
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_ogic as a Representation Language

Sentences = Sentence
Entails
Representati ® g
(prcscnt(m()n 3 3
__________ N [ S T R S ——
3 5
World . @ i .

Aspects of the ™ Aspect of the
real world Follows real world

[Propositional Logicj [ First-Order Logic ] N D"“Nl :

(' DPLL - Model Checking ) [ ——— ] R :
( Sat Solving ) First-Order Logic Answer Set
Programming

Resolution Resolution
Theorem Proving . Theorem Proving
vz 2

21

Propositional Logic
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Propositional Logic

The elements of the language:
Atoms: Two distinguished atoms T and F and the countably
infinite set of those strings of characters that begin with a capital letter,

for example, P, Q, R, . . ., P1,

Q1, ON_AL_B, etc.

Connectives: A, V,—>, and, —, called “and”, “or”, “implies”, and “not”.

Syntax of well-formed formulas (wffs), also called sentences:

* Any atom is a wff
* if w1, w2 are wifs, so are

« ol A2 (conjunction)
* ol v w2 (disjunction)
* wl—>w2 (implication)

Parentheses will be used
extra-linguistically grouping wifs

e -owl (negation) into sub wffs according to recursive defs
LINKOPING
IIO" UNIVERSITY 23
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Semantics

What do sentences mean?

_Adoms_>

\ 4

P2

l

There is a pit in Rmi,»

< Q

LINKOPING
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Semantics is about associating elements of a logical
language with elements of a domain of discourse.

In the case of propositional logic, the domain of discourse
is propositions about the world.

One associates atoms in the language with propositions.

An interpretation associates
an atomic proposition with each atom
and a value (True or False)

If atom a is associated with proposition P, then
we say that a has value True just in case P is
true of the world; otherwise it has value False

24
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The Truth Table Method

Truth tables can be used to compute the truth value of any wff
given the truth values of the constituent atoms in the formula.

ol w2 ol A ®2 ol v w2 -mwl wl—mw2
True True True True False True
True False False True False False
False  True False True True True
False  False False False True True

If an agent describes its world using n
[(P>Q)—>R]—>P features (corresponding to propositions) an.d

these features are represented as n atoms in
the agent’s model of the world then there

P is False
) _ are 2" ways the world can be as far as the
Q is False Interpretation -
, agent can discern/express.
R is True
[ R TR 25

25

Satisfiability and Models

An interpretation satisfies a wif if the wif is assigned the value True
under the interpretation.

An interpretation that satisfies a wff (set of wffs) is called a model
of the wif (set of wifs).

Find an interpretation that is a model of: P, , vV W, = 20K,

A wif is said to be inconsistent or unsatisfiable if there are no
interpretations that satisfy it. (Likewise for sets of sentences)

P1,2 A _'P1,2 {P1aVW5,Pio VAW, 5, 7P, VW, 5, 2P, VAW, )

LINKOPING
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Validity and Entailment

A wif is said to be valid if it has value True under all
interpretations of its constituent atoms.

Are the following valid sentences?  =(P,, A= P,,) =(P, A= W,,)

If a wif w has value True under all those interpretations for which each of
the wifs in a set A has value True, then we say that A logically entails @
and that w logically follows from A and that @ is a logical consequence of
A . We use the symbol E to denote logical entailment and write A F @

{P1,2} F Pl,z {}F _'(P1,2 A _'Pl,z) Require an efficient means of
testing whether sentences are
True in an interpretation and

{P1,2’ Pi,— W1,2} FWi» :
whether sentences are entailed
by sets of sentences.

False E w where wis any wff!

LINKOPING
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An Entailment Example

4 24 34 4 Lets restrict ourselves to the blue cells:
[1,1], [2,1], [3,1],[1.,2],[2,2]
1,3 2,3 3,3 4,3
We want to reason about PITS in:
1,2 2’21” 3,2 4,2 [1’2]’[2’2]’[3’1]
OK There are 8 possibilities: pit or no pit.
ik 2,1 31 py |41 Consequently, 8 possible models for
v B the presence/non-presence of pits
OK OK

But our percepts together with the rules of the game
restrict us to three possible models satisfying the KB

_'Bl,1’ —ISM, OKl,la OKLQ, OKQ’I, BZ,I’ P2,2 Vv P3’1

Rules of OK N _'P OK R _IS
0 . X, P, ,
ILwsss,  The game: y 7 g xy xy xy

28




Wumpus Possible Worlds

Suppose:
a; =P,

Is o, entailed by KB?
YES! KB F o

LINKOPING
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Wumpus Possible Worlds

Suppose:

Is O, entailed by KB?
NO! KB F a,

LINKOPING
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Truth Table Enumeration

Enumerate all models
* Check that the query is

Entailment checking by enumeration

is true in all models that Model checking approach

satisfy the KB

Recursively build
tree where each
leaf is a model.
Check that:
* Each model that
makes KB true,
makes query true.

LINKOPING
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function TT-ENTAILS?(K B, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

symbols < a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, a, symbols,{ })

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(c«, model)
else return true // when KB is false, always return true
else
P < FIRST(symbols)
rest <— REST(symbols)
return (TT-CHECK-ALL(KB, a, rest, model U {P = true})
and
TT-CHECK-ALL(KB, a, rest, model U{P = false }))

31

31

C:True

A:True
B:True
C:True

C:False

B:False

C:False C:True C:False

A:True A:True A:True A:False A:False A:False A:False

B:True B:False B:False B:True B:True B:False B:False

C:False C:True C:False C:True C:False C:True C:False
32
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Proof Theory

Straightforward model-checking approaches are generally
not efficient since the number of models grows exponentially
with the number of variables.

Can we find a more efficient “syntactic” means of
of showing semantic consequence without the
need to generate models?

We also have to “guarantee” that the syntactic approach
IS equivalent to the semantic approach.

LINKOPING
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For when | am presented with a false theorem, | do not
need to examine or even to know the demonstration,
since | shall discover its falsity a posteriori by means of
an easy experiment, that is by calculation, costing no
more than paper and ink, which will show the error no
matter how small itis...

And if someone would doubt my results, | should say to
him:

“Let us calculate, Sir”, and thus by taking paper to pen
and ink, we should soon settle the question

—Gottfried Wilhelm Leibniz [1677]

Calculus Ratiocinator

LINKOPING
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Rules of Inference and Proofs

Now that we have a feeling for the intuitions behind entailment and its
potential, the next step is to find syntactic characterizations of the
reasoning process (inference) to make this functionality feasible for
use in intelligent agents. We require a proof theory.

Rules of inference permit us to produce additional wffs
from others in a sound or truth-preserving manner.

If what comes in is true, then what comes out is true

Some Examples:

a)l,a)z a)l,a)l —> 0)2

W1 A () 0)2

LINKOPING
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Definition of a Proof

The sequence of wffs {@{, ,, ..., w, } is called a proof (or deduction)
of w,, from a set of wifs A iff each w; in the sequence is either
« in A or

» can be inferred from a wif (or wifs) earlier in the sequence by using
one of the rules of inference (in the proof theory).

Proofof Q A R A ={P,R,P - Q}
from A
{P,P->Q,Q,R,QAR}

If there is a proof of 0, from A, we say that @, is a theorem of the
set A . The following notation will be used for expressing that @, can be proved

fromA: A o,

(or AlFg w, , where R refers to a set of inference rules

A R :
II "LINKOPING Q /\36 Natural Deduction
oW UNIVERSITY
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Soundness and Completeness

If, for any set of wifs, A , and wff, ®, A |- implies A |= 0 , we say
that the set of inference rules, N , is sound.

If, for any set of wffs, A , and wff, w, it is the case that whenever A |= w,
there exists a proof of ® from A using the set of inference rules, i , we say that

N is complete.

Syntactic characterizations of Entailment

Soundness -- not too strong!
Completeness -- not too weak!

LINKOPING
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Some Important Meta-Theorems

The Deduction Theorem

if {fol,w2,...,0n} = o then (Wl A W2A...0n)>w®Iis
valid and vice-versa.

Can transform a question of entailment into a question of validity

Reductio ad absurdum

If the set A has a model but A U {-w} does not, then A |= w

Proof by Refutation: To prove that A |= w , show that A U {—~w}
has no model. [Unsatisfiable]

Can transform a question of entailment into a question of satisfiability!

LINKOPING
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Efficient Propositional

Model Checking
DPLL

LINKOPING
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Clauses and Normal Forms

A literal is an atom (positive literal) or B.. =P
- T 2,3 134
the negation of an atom (negative literal)

A clause is an expression of the form:
LVLV..VI Py VoW, VB ;

where each [; is a literal

A wiff written as a conjunction of clauses is said to be in
conjunctive normal form (CNF).

(P31 VW, VB ) A(7By 3V W33) AS,,

A wif written as a disjunction of conjunctions of literals
is said to be in disjunctive normal form (DNF).

Any propositional formula can be converted into
Il." LINKOPING 40 @n equivalent CNF or DNF form

UNIVERSITY
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Converting to CNF or DNF form

Eliminate implication connectives by using the equivalent form with =1,V.
Reduce the scope of =1 connectives by applying DeMorgan’s laws
and by eliminating double negations (== ) if they arise.

3. Convert to CNF(DNF) by using associative and distributive laws.

N —

(@, A wy) = 0, V -, eMorgan Laws

@1 A\ (0, V3) = (0 Aw,) V(0] A w3)

_ Distributive Laws
@1V (0, Aw3) = (0] Vo) A(w)V m3)

(W] A @y)) A3 = o1 A (0y A @3)
(W V) Va;=w;V(w,V o)

Associative Laws

LINKOPING
II." UNIVERSITY 4
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An Example

“(P->QVR-=P)

“(="PVQ)V(-RVP) Eliminate implication connectives
(PA=Q)V(-RVP) Apply DeMorgan’s Law

(PV-RVP)A(-QV-RVP) ApplyDistributive Law

(PV-R)A(mQV-RVP) Factor (remove duplicates)

“-P->QVHR->P) = PV-RA(-QV-RVP)
CNF Form

Il U e 42 A conjunction of clauses
[ UNIVERSITY
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Davis Putnam Algorithm

The Davis-Putnam Algorithm (1960)

* In a seminal paper, they described an effective satisfiability checking
algorithm

 Satisfiability by search
* Takes as input a formula in conjunctive normal form ( set of clauses)

The Davis, Putnam, Logeman, Loveland Algorithm (1962) DPLL

* An extension of the DP algorithm with better space efficiency

Essentially a recursive, depth-first enumeration of possible models with three
improvements over TT-ENTAILS

e Early Termination
* Pure Symbol Heuristic
e Unit Clause Heuristic

* Most modern SAT solvers are still based on ideas from DPLL

vz 3
43
Some notation
A partial assignment is a mapping g V- {true, false}

from a set of variables to truth values :

An application of a partial assignment N
to a clause set Fis denoted by: % F

It results in the clause set obtained from F by first removing
all clauses satisfied by ¢, and then removing from the remaining
clauses all literal occurrences which are falsified by @

@ : {A :true,D : false} (AV-B)A(-BV-C)A(CVD)
(true v B) A (0B VvV —-C) A (CV false)
{{A,=B},{=B,C},{C,D}} (=B Vv -C)A(CV false)
{{=B,C},{C}} (7BVv-C)A(C)
A partial assignment ¢ is a weak autarchy for F if: @ *F C F

If ¢ is a weak autarchy for F, then ¢ * F is satisfiability equivalentto F

If | can satisfy the remaining clauses in @ * Fthen F is satisfiable too
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Early Termination

If A is true in an assignment then
p:{A:true} (AVBVDY AAV-EVFHAAVG)
(true v BV D) A (truev =E Vv F) A (true v G)

is true without knowing the assignment of other variables.

If A and G are false in an assignment then
@ : {A:false,G: false} (AVBVD)AAV-EVF)AAVG)

(AVBVD)A(AV-EVF)A (false Vv false)
(AVBVD)A(AV-EVF)A (false)

is false without knowing the assignment of other variables.
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Pure Symbol Heuristic

A “pure” symbol is a symbol that always appears with the
same sign in all clauses

(AVB)A(-BV-C)A(CVA)

Ais pure, B is pure and C is not

Assigning a pure symbol the value that makes it true
will never make the original clause false

@ : {A:true} (Truev = B)A (7B VvV -C)A(CV True)
(-Bv-0)

@ is a weak autarchy for F: ¢ * F is satisfiability equivalentto F

@ 1s a weak autarchy for F: ¢ * F is unsatisfiability equivalent to F

LINKOPING
II." UNIVERSITY 46

46




Unit Clause Heuristic

Unit clause in resolution: A clause with one literal

Unit clause in DPLL: also means clauses in which
all literals but one are already assigned false by the model

@ :{A:true,B:false} (FAVBVCOAMDVE)A(RCVFAG
(False VFalse VCOA(DVE)A(RCVF)AG

For a unit clause to be true, it must have one assignment.

Unit Clause Heuristic: Assign all such symbols before
branching on the remainder
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Example

@ : {A :true,B : false} (-AVBVC)ADVE)A(-CV-F)AG
(false Vfalse VCOA(DVE)A(RCV-F)AG
CADVE)A(RCV-F)AG

@ : {A :true,B : false, G : true}
CA(DVE)A(2CV-aF)Atrue

CADVE)A(RCVAF)

@ : {A :true,B : false, G : true, C : true}
CADVE)A(-CVAF)
true A (D V E) A (false v =F)
(DVE)A-F
@ : {A :true,B : false, G : true, C : true, F : false}
(D VE) Atrue
I & (D VE)
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The DPLL Algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of s
symbols < a list of the proposition symbols in s
return DPLL(clauses, symbols, { })

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true Detects early termination for

if some clause in clauses is false in model then return false partially completted models

P, value < FIND-PURE-SYMBOL(symbols, clauses, model)

if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})

P, value < FIND-UNIT-CLAUSE(clauses, model)

if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})

P < FIRST(symbols); rest < REST(symbols)

return DPLL(clauses, rest, model U { P=true}) or
DPLL(clauses, rest, model U { P=false}))

Provides a skeleton of the search process.

Splitting Rule

Note1: Each application of a heuristic includes simplifying the clause set

Note2: Each application of a heuristic is satisfiability preserving
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DPLL is similar to TT-Entails
Recursive depth-first search

Partial Assignments

B:True B:False

C:True C:False C:False C:True C:False

A:True A:True A:True A:True A:False A:False A:False A:False
B:True B:True B:False B:False B:True B:True B:False B:False
C:True C:False C:True C:False C:True C:False C:True C:False

Uses heuristics so the whole tree may not
need be expanded and searched. Stops
when it finds a solution

50

50




Using DPLL for Inference

Want to know whether: A E «a

Want to turn this into a satisfiability problem!

Deduction Theorem: f AEFEathen FA - «a

A — aisvalid iff 7(A = a) (= A A —a) is unsatisfiable
Let g be A A—ain CNF form

If DPPL-Satisfiable?( f) is true then A E a is false

If DPPL-Satisfiable?( ) is false then A F a is true
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Recent Extensions to DPLL

- Component Analysis

* Find independent subsets of unassigned variables (components) and solve each
component separately

- Variable and Value Ordering

» degree heuristic - choose a variable appearing most frequently among remaining
clauses

» choose true or false as an assignment heuristically
- Intelligent backtracking
» Also do conflict clause learning
- Random restarts
* If little progress in extending an assignment, random restart
* remember clauses assigned, change variable and value selection
- Clever indexing techniques

- acquiring clause types rapidly...
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Axiomatizing the Wumpus World

Physics of the Wumpus World:
Modeling is difficult with Propositional Logic

Schemas:

(Byy <= (Pryi1 VP 1 VP yvPy)) Def. of breeze in pos [x,y]

(Syy = W, iy vW, v W vW, i) Def. of stench in pos [x,y]

X,y+ x+1,y

Wi vWio v vW,,)) There is at least one wumpus!

...y €TC. There is only one wumpus!
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Logical Wumpus Hybrid Agent

function HYBRID-WUMPUS-AGENT( percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream)

persistent: KB, a knowledge base, initially the atemporal “wumpus physics” Successor state axioms, etc
t, a counter, initially O, indicating time
plan, an action sequence, initially empty
TELL(K B, MAKE-PERCEPT-SENTENCE( percept, t)) / Try to construct plans based
TELL the KB the temporal “physics” sentences for time ¢ on goals with decreasing priority
safe+ {[z,y] : ASK(KB,OK" ) = true}
if ASK(KB, Glitter') = true then
pl(m < [GT’(I,b] + PLAN-ROUTE(current, {[ 1,1 ]}, safe) + [Clzmb] function PLAN-ROUTE( current,goals,allowed) returns an action sequence
if pl(],n is empty then l Plan a route to an unvisited cell through safe cells l inputs: current, the "%gem's current position _
unvisited < {[z,y] : ASK(KB, Lf,) = false forall ¢’ < t} Plimted, st ofsqvaes thtcanform patof o

plan < PLAN-ROUTE(current, unvisited N safe, safe)

if plan is empty and ASK(KB, HaveArrow') = true then Pon aroute ‘OL
possible_wumpus < {[z,y] : ASK(KB,—~ W, ,) = false}| T make safe cel
plan <— PLAN-SHOT(current, possible_wumpus, safe)

problem <~ ROUTE-PROBLEM( current, goals,allowed)
return SEARCH(problem) // Any search algorithm from Chapter ??

—

if plan is empty then // no choice but to take a risk Plan a route to an unvisfed cell —
not_unsafe — {[l’, Z/] . ASK(KB, - OK;U) — false} through not unsafe gl ASK(KB, —-Wx’y) —false
plan <— PLAN-ROUTE(current, unvisited N not_unsafe, safe) means that KB E =W._ _is false
if pltm is empty then l Give up: Plan a route to start cell through safe cells l X,y
plan < PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb] It does not mean that KB E ny is true

action < POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))

t+—t+1 ;
return action ASK(KB, _'OKx,y) = false
L’ : Visited [xy] at time t means that KB F —=OKj, is false
Xy * )
.
Il v LINKOPING o It does not mean that KB F OK,, is true
[ ) UNIVERSITY
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Local Search Algorithms for SAT

» Studied local search algorithms previously that combine both greediness and
randomness

* Hill climbing
» Simulated Annealing
+ Stochastic Beam Search
» Local search can be applied directly to the SAT problem
» Find an assignment that satisfies all clauses
* Instances (states) are full assignments

» Children generated by flipping a variable’s assignment (T to F or Fto T)

Evaluation function -
» count the number of unsatisfied clauses (in the CNF)
* minimize that number

» Can be many local minima

* Use randomness to escape
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WalkSAT

On each iteration: pick an unsatisfied clause and pick a symbol in it to flip

function WALKS AT (clauses, p, max_flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk move, typically around 0.5
maz_flips, number of value flips allowed before giving up

model <— a random assignment of true/false to the symbols in clauses
for each i = 1 to maz_flips do

if model satisfies clauses then return model

clause <— a randomly selected clause from clauses that is false in model

if RANDOM(0, 1) < p then

flip the value in model of a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Two ways to choose the symbol to flip:
* min-conflicts: minimize the number of unsatisfied clauses
e random walk: pick the symbol randomly
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WalkSAT. Completeness and Termination

® WalkSAT is sound
® \When the algorithm returns a model it does satisfy the input clauses.
® WalkSAT is not complete
® \When WalkSAT fails
® cither the sentence is unsatisfiable, or
® the algorithm needs more time to find a solution
® max_flips = infinity and p > 0
® if a model exists, it will eventually find it (random walk)
® if a model does not exist, the algorithm never terminates.

® SAT is NP-Complete, so some problem instances will require exponential
runtime.

® Can we delineate the hard problem instances from the easy problem
instances?
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Landscape of Random SAT Problems

1 { +———+—+—+—+ 2000 1

08 | Underconstrained 1288 | WalkSAT ---5--- 1!
- 1400 1
< 06 £ 1200
2 'E 1000 A
304 & 800 |
= 600 -
0.2 1 Overconstrained 400 A
200 1

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Clause/symbol ratio m/n Clause/symbol ratio m/n
(a) (b)

(a) Graph showing the probability that a random 3-CNF sentence with n = 50 symbols is satisfiable, as a function of the clause/symbol ratio m/n.

(b) Graph of the median run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF sentences.

The most difficult problems have a clause/symbol ratio of about 4.3. CNF3(m,50)
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5 symbols/5clauses:

(-Dv-BVC)A(BV-AvV-0C)
A(ﬂCv—nBvE)A(Ev—ID\/E)SB)/\(ﬂBvEv—|C)

Sentences with 50 variables
and 3 literals per clause
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Resolution Theorem
Proving
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Resolution Theorem Proving

We considered the unit clause heuristic [1960 Davis Putnam] when
studying DPLL and found that it is a satisfiability/truth preserving

heuristic.

Robinson [1965], in a major breakthrough in automated theorem
proving, based his technique on the resolution inference rule and
also generalised it for the 1st-order case by introducing “on-demand

grounding using a unification algorithm.

Let’s begin with Unit Resolution

A unit clause is a disjunction/clause consisting of a single literal

The unit resolution rule takes a clause and a unit clause
and returns a new clause called the resolvant.
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Resolution Rules

Unit Resolution Rule: LV..VvD, m

LV ..VL_ VL, V.. VI

The rule resolves on complementary literals:

AvBvCvD =C

Example:
AvBvD
Example: AvBvCvD -B
AvCvD
huaes, 61

[.,m

61

Resolution Rules

The unit resolution rule can be generalised:

Lv..Vvlh, mVv..vm,

ll\/ Vli_1Vli+1V lkal\/ ij_1ij+1V

where [; and m; are complementary literals

AvBvCvD -—-EvVv-CVF
AvBvDV-EVF

Example:
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Resolution

Note: The empty clause is False P, =P

An empty disjunction is false by definition 1
We sometimes use {} also

Forward Rule chaining is a special case of Resolution:

fR—->PandP - QthenR = Q

(-RVvP) (7PVv Q)
(-RVv Q)
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Soundness of Resolution

The Resolution Rule is Sound:

LV..VvlD, mV..vm,
ll\/ Vli—l\/li+lv ...lk\/ml\/ ij_IijHV an

Lv..vi,mv..vm}tg

{LV ..V Vg Vv m Y o N VoV my )

n

Preserves Truth and Satisfiability
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Completeness of Resolution

Resolution as is, is not complete!

{P,R} EPVR anditis not the case that {P, R} |—@ PVR

Resolution can not be used
directly to decide all logical entailments....
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Resolution Refutation is Complete

Recall our meta-theorem:

Reductio ad absurdum
If the set A has a model but A U {-w} does not, then A |= w

Proof by Refutation: To prove that A |= w , show that A U {-m}
has no model.

We can show that the negation of PV R (=P A 2R)
is inconsistent with  (P) A (R)

Resolve on P or R to R, =R P, P
generate a contradiction: 1 1
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Resolution Refutation Procedure

To prove an arbitrary wif, o, from a set of wifs A , proceed as follows:

1. Convert the wifs in A to clause form -- a (conjunctive) set of clauses.

2. Convert the negation of the wff to be proved, W , to clause form.

3. Combine the clauses from steps 1 and 2 into a single set, I

4. Iteratively apply resolution to the clauses in I' and add the results to
I" either until there are no more resolvents that can be added or until
the empty clause is produced.

The empty clause will be produced by the refutation resolution procedure
if A |= @ . We say that propositional resolution is refutation complete.

If A is a finite set of clauses and if A |# w, then the resolution refutation
procedure will terminate without producing the empty clause. We say that
entailment is decidable for the propositional calculus by resolution refutation.
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A Resolution Example

éSuppose the agentisin [1,1] and there is no
breeze. Show that there is no pitin [1,2]

KB ={(B;; < (P ,VPy)),7B;} Prove =P,

Show that KB A —|—||:>1,2 ---------------------------------

is inconsistent (= P2,l Vv Bl,l)
(= B1,1 v P1,2 v P2,1)

(= P12 vBy)
KB A ==P,, in CNF form: i i
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A Resolution Algorithm

function PL-RESOLUTION(K B, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A —~«
new < { }
while true do
for each pair of clauses C;, C; in clauses do
resolvents <— PL-RESOLVE(C;, C})
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false  Nonew clauses generated, no empty clause
clauses < clauses U new
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Applying the Algorithm

Algorithm:

=Py, Vv By “B VPp V Py =Py, VB -B, Py,
I st iteratio”»( ,\%

N
“By1 VP, VB, PiaV Py Vv oPy, =By, V Py, VB, PiaV Py VP =Py =P,
2nd iteration:
i B |
KB A—-P, ,

_________________________________ Refutation Tree:
(= P2 vBy)) - By

(= Py, vBy;) }
i _'B]’] | P1,2 B P],Z
Pz e S~
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