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Why Study Board Games?
Board games are one of the oldest branches of AI 
(Shannon and Turing 1950).

• Board games present a very abstract and pure form of 

competition between two opponents and clearly 
require a form of “intelligence”.


• The states of a game are easy to represent

• The possible actions of the players are well-defined


• Realization of the game as a search problem

• It is nonetheless a contingency problem, because 

the characteristics of the opponent are not known in 
advance



Challenges
Board games are not only difficult because they are contingency problems, 
but also because the search trees can become astronomically large.

Good game programs have the properties that they

• delete irrelevant branches of the game tree,

• use good evaluation functions for in-between states, and

• look ahead as many moves as possible.

Examples:

• Chess: On average 35 possible actions from every position,  

100 possible moves/ply (50 each player):  nodes in the 
search tree (with “only”  distinct chess positions (states)).


• Go: On average 200 possible actions with circa 300 moves: 
 nodes.

35100 ≈ 10150

1040

200300 ≈ 10700

More generally: Adverserial Search
• Multi-Agent Environments 


• agents must consider the actions of other agents and how these agents 
affect or constrain their own actions.


• environments can be cooperative or competitive.

• One can view this interaction as  a “game” and if the agents are 

competitive, their search strategies may be viewed as “adversarial”.

• Most often studied: Two-agent, zero-sum games of perfect information

• Each player has a complete and perfect model of the environment and 
of its own and other agents actions and effects


• Each player moves until one wins and the other loses, or there is a draw.

• The utility values at the end of the game are always equal and opposite, 

thus the name zero-sum.

• Chess, checkers, Go, Backgammon (uncertainty)



Games as Search
• The Game


• Two players: One called MIN, the other MAX. MAX moves first.

• Each player takes an alternate turn until the game is over.

• At the end of the game points are awarded to the winner, penalties to the 

loser.

• Formal Problem Definition:


• Initial State:  –  Initial board position


• TO-MOVE(s) - The player whose turn it is to move in state s

• ACTION(s) - The set of legal moves in state s

• RESULT(s,a) - The transition model: the state resulting from taking action a in 

state s.

• IS-TERMINAL(s) - A terminal test. True when game is over. 

• UTILITY(s,p) – A utility function. Gives final numeric value to player p when the 

game ends in terminal state s. 

• For example, in Chess: win (1), lose (-1), draw (0):

S0

(Partial) Game Tree for Tic-Tac-Toe

• Game trees can be infinite

• Often large! Chess has: 


•  distinct states

• average of  moves

•  average b-factor of 
•   nodes

1040

50
35

35100 = 10154

•  terminal nodes

•  distinct states

≈ 9! = 362,880
5,478



Optimal Decisions in Games: Minimax Search

1. Generate the complete game tree using depth-first 
search.


2. Apply the utility function to each terminal state.


3. Beginning with the terminal states, determine the utility of 
the predecessor nodes (parent nodes) as follows:


1. Node is a MIN-node 
Value is the minimum of the successor nodes


2. Node is a MAX-node 
Value is the maximum of the successor nodes


4. From the initial state (root of the game tree), MAX chooses 
the move that leads to the highest value (minimax decision).

Note: Minimax assumes that MIN plays perfectly. Every 
weakness (i.e. every mistake MIN makes) can only improve 

the result for MAX.

Minimax Tree

•  Interpreted from MAX’s perspective

•  Assumption is that MIN plays optimally

• The minimax value of a node is the utility for MAX

•  MAX prefers to move to a state of maximum value and MIN prefers 

minimum value

What move should MAX make from the Initial state?



MAX utility values

Minimax Algortihm

Recursive algorithm that proceeds all the way down to the

leaves of the tree and then backs up the minimax values 


through the tree as the recursion unwinds

Assume max depth of the tree is  

and  legal moves at each point:

• Time complexity: 

• Space complexity:


• Actions generated at same time: 

• Actions generated one at a time: 


m
b

O(bm)

O(bm)
O(m)

Serves as a basis for mathematical analysis

of games and development of approximations 

to the minimax algorithm



Alpha-Beta Pruning
• Minimax search examines a number of game states 

that is exponential in the number of moves (depth 
in the tree).


• Can be improved by using  Alpha-Beta Pruning.

• The same move is returned as  minmax would

• Can effectively cut the number of nodes visited in 

half (still exponential, but a great improvement).

• Prunes branches that can not possibly influence 

the final decision.

• Can be applied to infinite game trees using 

cutoffs.

The General idea

Consider a node  somewhere in the tree

Such that the player has a choice of moving to 

n
n

If the player has a better choice at the same level ,

or a better choice at any point higher up in the 


tree , then  (and the subtree below) will never

be chosen (searched)

m′￼

m n

How do we determine when  is 

a better choice than ?

m, m′￼

n



Alpha-Beta Values

alpha – the value of the best (i.e., highest value) choice we 
have found so far at any choice point along the path for MAX. 

(actual value is at least alpha)....lower bound


beta - the value of the best (i.e., lowest value) choice we have 
found so far at any choice point along the path for MIN. 

(actual value is at most beta)...upper bound


Lower bound      [ , ]      Upper boundα β

Associate lower and upper bounds 

on values of nodes in the search tree

Alpha-Beta Progress

At most 3

At most 3

B exactly 3

α = β

At least 3

At most  2

But B = 3, so MAX would never choose C

Because its value is at most 2 and could be worse

No need to search in the subtrees (terminal nodes)



Alpha-beta progress

At most 14

At most 14 14>3 so keep

searching

2nd successor is 5

5 > 3, so keep


Searching
3rd successor is 2

D exactly 2

α = β

Max moves to B

Giving value of 3

Minimax is a depth-first search, so we only 

need to think of nodes/values along single paths

when recursing values upwards.

Alpha-Beta Search

Similar to Minimax search.

Functions are the same except


Bounds are maintained 

on variables  and α β

Returns a move for MAX

Effectiveness of  
pruning is sensitive to


to order in which states

are examined.

α-β

With perfect move-ordering 
scheme, alpha-beta uses 

 nodes to pick a move 

rather than Minimax’s  

nodes. But perfect move-ordering

is not possible. One can get close


though.

O(bm/2)
O(bm)

Minimax with alpha-beta pruning

is still not adequate for games

like chess and Go due to the

huge state spaces involved. 


Need something better! 



Heuristic Alpha-Beta Search
Intuition:


Due to limited computation time, cutoff the search early 
and apply a heuristic evaluation function to states,

Effectively treating non-terminal nodes as if they were terminal 

Recall MINIMAX(s)

Heuristic Alpha-Beta Search

• Replace the  fn with an  fn which estimates the 
expected utility of state  to player .


• Replace the  test with an  
test which must return true for terminal states, but is otherwise free to decide  
when to cut off the search, possibly using search depth so far or any other 
state properties deemed useful.

UTILITY(s, p) EVAL(s, p)
s p

IS-TERMINAL(s) IS-CUTOFF(s, d)

EVAL(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) =
n

∑
i=1

wi fi(s)
Example (Chess):

where each  represents the material value of a chess piece (bishop = 3, queen=9) 
and the weights  represent how important a feature is in a state. Weights should be 
normalised so their sum is between range of: loss(0) to a win(+1)

fi
wi



Modify Alpha-Beta Search

if game . IS-CUTOFF(state, depth) then return game . EVAL(state, player), null

if game . IS-CUTOFF(state, depth) then return game . EVAL(state, player), null

Add bookkeeping so current 

depth is incremented on 


each recursive call

The Game of GO

• Two major weaknesses of Alpha-Beta Search:

• GO has a branching factor starting at 361


•  limiting alpha-beta search to 4-5 ply (ply is a half move taken by 1 player)

• Difficult to figure out a good evaluation function for GO


• Material value not a strong indicator and most positions in flux until the  
end of the game

Modern GO programs instead use:

Monte Carlo Search (MCTS)
+ Lots of other techniques!



MCTS Strategy
• MCTS does not use a heuristic evaluation function:


• The value of a state is estimated as the average utility over a number of simulations of 
complete games starting from the state.


• Average utility could be win percentage for example


• Simulations (also called playouts or rollouts)


• Chooses moves first for one player and then the other until a terminal node is reached.


• Simple policy: choose randomly 


• How do we choose moves during playouts??


• MCTS uses playout policies which are mappings between states and actions


• Playout policies bias moves toward good ones


• For GO and other games, playout policies can be learned from self-play using Neural 
Networks (Deep Learning) 

MCTS Strategy
• Given a playout policy: 


• From what positions do we start the playouts?


• How many playouts do we allocate to each position?


• Pure Monte Carlo search:


• Do N simulations starting from each child in the current state of the game (determine quality of direct 
children (without a selection policy) and then select a move, repeat, until time runs out)


• Focus is symmetric


• For most games this is not adequate.


• Selection Policy selectively focuses computational resources on important parts of the game tree


• Builds an asymmetric tree (capitalises on rich parts of search area)


• Balances: 


• Exploitation (states that have done well in past playouts)


• Exploration ( states that have had few playouts)


• One popular and effective selection policy is UCT (upper confidence bounds applied to trees)



4 Steps in MCTS
MCTS maintains a search tree and grows 

it on each iteration using the following steps:

Starting at the root of the search  
tree, choose a move using the 

selection policy, repeating the 


process until a leaf node is reached 

Grow the search tree

by generating a new


child/children.

Perform a playout

from a child using


the playout policy. These 

moves are not recorded 


in the search tree

Use the simulation result

to update the utilities of

the nodes going back


up to the root.

After X times: Choose the best move from start state

One Iteration of MCTS• White has previously moved. 

• What should blacks move be (2nd level)?

• White has won 37 out of 100 playouts  

(37/100) done so far

• Suppose we will do 1000 iterations. What 

does the 101th iteration look like?

• Black selects a node 
where it has won 60  
of 79 playouts (60/79)


• Uses UCT selection metric

• Selection continues to a leaf  

node where black has won 27  
out of 35 playouts (27/35)

• Generate a new child node 
labeled 0/0


• Execute a playout

• Black wins this simulation

• Results of the simulation are 
back propagated up the tree 
branch.


• Black won, so black nodes are 
incremented in  
# of wins/# of playouts


• White loses, white nodes are 
incremented in number of  
playouts only.

White

Black

Black

White

# of wins/# of playouts

White (current state of game)

Black moves

White moves

Black moves



UCT: A Selection Policy

UCB1(n) =
U(n)
N(n)

+ C ×
ln N(Parent(n))

N(n)

UCT: upper confidence bound applied to trees
Ranks each possible move based on an upper confidence bound formula called UCB1:

• : Total utility of all playouts that go through 

• : The number of playouts through node 

• : The parent node of node 


•  -term: is the exploitation term. The average utility of . For example win percentage.


•  - term : is the exploration term.

• Numerator:  of the number of times we have explored the parent


• If  is selected some non-zero % of the time, the exploration term goes to zero as the counts 
increase, and eventually the playouts are given to the node with the highest average utility.


• Denominator: count 

• The exploration term will be high for nodes only explored a few times


• : Constant that balances  exploitation and exploration. 

• Theoretically,  is best value for , but this constant is often learned or chosen through trial and 

error.

•  would choose the  (more exploitation) node in the example during Selection, while 

 would choose the  node (more exploration) during Selection.

U(n) n
N(n) n
Parent(n) n
U(n)
N(n)

n

ln
n

N(n)

C
2 C

C = 1.4 60/79
C = 1.5 2/11

MCTS Algorithm

• When iterations terminate, the node with the highest number of playouts (less uncertainty)  
is returned rather than highest average utility.

• The UCT/UCB1 selection strategy ensures that the node with the most playouts is almost  

always the node with the highest win percentage

• The time to complete a playout is linear in the depth of the game tree, so there is time for  

multiple playouts

• Example: game with branching factor of 32, where average game is 100 ply:


• Suppose we have computational power to consider a billion states before moving 

• Minimax can search 6 ply deep

• Alpha-Beta Pruning can search 12 ply deep with perfect move ordering

• Monte Carlo search can do 10 million playouts



MCTS Algorithm Schematic
Start

Current =

Root state

Current =

First new 

child node

For each available 
action from Current, 
add a new state to 

the tree

Is Current a 
leaf node?

Is 
visit count 
for Current 

0?

For each available 
action from Current, 
add a new state to 

the tree

Current =

First new 

child node

Tree Traversal

(Selection step) Back-propagation Rollout


(Simulate)

No
Yes

Yes

No

Some Observations
ALPHAGO [2016] put four ideas together:

• Visual pattern recognition

• Reinforcement learning

• Neural networks

• Monte Carlo search

Defeated:

• Lee Sedol (by a score of 4-1 in 2015)

• Kie Jie ( by a score of 3-0 in 2016)

“After humanity spent thousands of years improvising 
our tactics, computers tell us that humans are completely 
wrong. I would go as far as to say not a single human has  

touched the edge of the truth of Go.”

Kie Jie

Lee Sedol

Lee Sedol retired from Go lamenting:


“Even if I became number 1, there is an entity that can not be defeated”

2018: ALPHAZERO surpassed ALPHAGO at Go!!

• Also defeated top programs in chess and Shogi

• Learns through self-play without human expert  

knowledge and without access to past games

• Uses reinforcement and deep learning



Timeline
• 1952 - Computer masters Tic-Tac-Toe


• 1994 - Computer masters Checkers


• 1997 - IBM’s Deep Blue defeats Garry Kasparov in Chess


• 2011 - IBM’s WATSON defeats human Jeopardy champions


• 2014 - Google’s algorithms learn to play Atari Games


• 2015 - Wikipedia - “ Thus it is very unlikely that it will be possible to program a reasonably fast algorithm 
for playing the Go endgame flawlessly, let alone the whole Go game”.


• 2015 - Google’s AlphaGo defeats Fan Hui (2-dan player) in Go


• 2016 - Google’s AlphGo defeats Lee Sedol 4-1 (9-dan player) in Go


• 2017 - Google’sAlphaZero defeats STOCKFISH (2017 TCEC computer chess champion) 


• 2018 -  Google’s AlphaZero surpasses AlphGo  at Go (no human expertise, just self play)


• 2019 - Deep Mind’s ALPHASTAR program ranks in top 0.02% of officially ranked human players for 
StarCraft


