
10/1/21

1

Mariusz Wzorek
IDA/AIICS

TDDC17
Robotics/Perception II

1

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

2

10/1/21

2

Robotics – application perspective
3TDDC17 Robotics/Perception II

Application

Base Platform

Sensors

Autonomy,
modes of
operation

Computer systems
Software architecture
Communication:
• WiFi, 4G/5G,

dedicated comm
links

Purpose/Task
Environment
Budget

Mobility:
• Wheels, belts,

legs, propellers,
rotors?

Manipulators:
• arms, grippers?

Accuracy
Range
Reliability
Redundancy

…

3

Sensors

Summary of most commonly used sensors for mobile robots.

4TDDC17 Robotics/Perception II

Any
weather

Any
light

Detection
in 15m

Fast
response Weight Affordable

CCD Camera/stereo/
Omnidirectional/o. flow C C C C

Ultrasonic C C C C
Scanning laser
(LiDAR, LRF) C C C C

3D Scanning laser C C C*
Millimeter Wave Radar C C C C

* scanning laser on a tilting unit

4

10/1/21

3

Sensors cont’d
5TDDC17 Robotics/Perception II

waymo.com

5

Sensors cont’d
6TDDC17 Robotics/Perception II

tesla.com

6

10/1/21

4

Sensors - common interfaces

• analog - voltage level
• digital:
• serial connections e.g.:
• RS232
• I2C
• SPI
• USB

• Ethernet
• pulse width modulation - PWM
• …

7TDDC17 Robotics/Perception II

7

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

8

10/1/21

5

Computer systems

Many challenges and trade-offs!
• power consumption
• size & weight
• computational power
• robustness
• different operational conditions moisture, temperature, dirt,

vibrations, etc.
• cloud computing?

9TDDC17 Robotics/Perception II

9

Computer systems cont’d

PC104 - standardised form factor
• industrial grade
• relatively small size
• highly configurable
• >200 vendors world-wide
• variety of components
• variety of processors

10TDDC17 Robotics/Perception II

~10x10cm

10

10/1/21

6

Computer systems cont’d

Custom made embedded systems
• with integrated sensor suite
• micro scale, light weight
• fitted for platform design

11TDDC17 Robotics/Perception II

• fitted for platform design

11

Computer systems cont’d

Example system design:

12TDDC17 Robotics/Perception II

!"#$
• !"#$!%&'!()*+,-./!

• !"!%0!12/!

• !"!%0!3456!789:)!

%&#$
• !;<<!/&'!()*+,-!===!

• !>?@!/0!12/!

• !?">!/0!3456!789:)!

'%#$
• !;<<!/&'!()*+,-!===!

• !>?@!/0!12/!

• !?">!/0!3456!789:)!

AB6)8*)B!

CD9BE6!

FFG!FHIH8!

F4-)84!

J6)8-4I!

F4-)84!

(4*!

J9IB!

K*9B!

L4-464!1/2M!NL2CO!L2FCP!

048H-)B89E!(8)55,8)!2I+-)B)8!

%(C!1)E)9:)8!

Q45)8!14*R)!S9*7)8!

/H7,I)!

AB6)8*)B!T97)H!C)8:)8!

U<>#""V!W98)I)55!0897R)!

%C/!/H7)-5!

()8E)X+H*!C)*5H8!C,9B)!

FH--,*9E4+H*!/H7,I)!

(SF!C)*5H8!C,9B)!

CB)8)H.T959H*!

/H7,I)!

(HD)8!/4*4R)-)*B!K*9B!

AB6)8*)B!

1C>Y>!

2*4IHR!

S98)D98)!

/9*9GT!

1)EH87)85!

12

10/1/21

7

Ground Robot at AIICS LiU
13TDDC17 Robotics/Perception II

13

14TDDC17 Robotics/Perception II

Base platform
• Husky unmanned ground

vehicle by Clearpath
• run time: up to 3h
• Max speed: 1 m/s
• Weight: 50 kg
• Max payload: 75 kg

14

10/1/21

8

15TDDC17 Robotics/Perception II Robot Arm UR5 – Universal
Robotics

• Weight: 20.6 kg
• Max payload: 5 kg
• Working radius: 850 mm
• 6 DOF

LiDAR (Light Detection and
Ranging) sensor - Velodyne

• Range: 100m
• Vertical FOV: 30deg
• Horizontal FOV: 360deg

Battery pack for arm

Gripper

Gripper – Weiss Robotics
• Weight: 1.2 kg
• Max payload: 8 kg

15

16TDDC17 Robotics/Perception II

Network switch Stereo camera

Inertial
Measurement Unit

GPS antenna

WiFi router
Robot arm power

and control system

Intel NUC i7 computer

GPU – Jetson TK1

16

10/1/21

9

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

17

Telesystems/Telemanipulators
18TDDC17 Robotics/Perception II

Delay

18

10/1/21

10

Telepresence

Experience of being fully present at live event without actually
being there
• see the environment through robot’s cameras
• feel the surrounding through robot sensors

• Realised by for example:
• stereo vision
• sound feedback
• cameras that follow the operator’s head movements
• force feedback and tactile sensing
• VR system

19TDDC17 Robotics/Perception II

19

Reactive systems

Robot responses directly to sensor stimuli.
Intelligence emerges from combination of simple behaviours.
For example - subsumption architecture (Rodney Brooks, MIT):
• concurrent behaviours
• higher levels subsume behaviours of lower layers
• no internal representation
• finite state machines

20TDDC17 Robotics/Perception II

Sense Act

https://www.youtube.com/watch?v=9u0CIQ8P_qk

20

https://www.youtube.com/watch?v=9u0CIQ8P_qk

10/1/21

11

Limitations of Reactive Systems

• Agents without environment models must have sufficient
information available from local environment
• If decisions are based on local environment, how does it take

into account non-local information (i.e., it has a “short-term”
view)
• Difficult to make reactive agents that learn
• Since behaviour emerges from component interactions plus

environment, it is hard to see how to engineer specific agents
(no principled methodology exists)
• It is hard to engineer agents with large numbers of behaviours

(dynamics of interactions become too complex to understand)

21TDDC17 Robotics/Perception II

21

Hierarchical Systems

Sensors

22TDDC17 Robotics/Perception II

Sense ActPlan

Actuators

Extract
features

combine features
into model Plan task Execute

task
Control
motors

22

10/1/21

12

Hierarchical Systems (Shakey Example)

Shakey (1966 - 1972)
• Developed at the Stanford Research Institute
• Used STRIPS planner (operators, pre and post conditions)
• Navigated in an office environment, trying to satisfy a goal

given to it on a teletype. It would, depending on the goal and
circumstances, navigate around obstacles consisting of large
painted blocks and wedges, push them out of the way, or push
them to some desired location.
• Primary sensor: black-and-white television camera
• Sting symbolic logic model of the world in the form of first

order predicate calculus
• Very careful engineering of the environment

23TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=GmU7SimFkpU

23

Hybrid systems (three-layer architecture)
24TDDC17 Robotics/Perception II

Sense Act

Plan

24

https://www.youtube.com/watch?v=GmU7SimFkpU

10/1/21

13

Hybrid systems (Minerva Example)

Tour guide at the Smithsonian's National
Museum of American History (1998)

25TDDC17 Robotics/Perception II

http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

25

Hybrid systems (HDR3 – AIICS/IDA @ LiU Example)
26TDDC17 Robotics/Perception II

26

http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

10/1/21

14

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

27

Navigation
Mapping – Localization – SLAM – State Estimation – Control

28TDDC17 Robotics/Perception II

Navigation

Mapping

Create a model of the
environment.
Assumes that we know
where the robot and
its sensors are.

Localization SLAM

Motion
Planning Control

State
Estimation

How do I safely get from
point A to B?

Estimate position (pose) of
a robot in the environment,
or poses of landmarks in the
environment – sensor data
can be noisy

Where am I?
Application of state
estimation
to calculate robot location
(e.g. x, y, orientation -
pose).

One of the basic
functionalities required
for any real world
deployment:
• need to know where

we are
• what the

environment looks
like

Simultaneous Localization
and Mapping

How do I execute planned
motion?
E.g. generate control signals
to follow planned trajectory
(velocity, position
commands, etc.)

28

10/1/21

15

0o

View from top

LiDAR – recap

Active sensor based on time of flight principle
• emits light waves from a laser
• measures the time it took for the signal to return to calculate the

distance

29TDDC17 Robotics/Perception II

29

View from top

LiDAR – recap cont’d
SICK LMS (single line sensor):
• Range (d): 80m
• Field of View - horizontal (a):

0o-180o

• Angular resolution - horizontal (b):
0.25o-1o

30TDDC17 Robotics/Perception II

a
b

d

View from side

Velodyne Puck (multi-line sensor):
• Range (d): 100m
• Field of View - horizontal (a):

360o

• Angular resolution - horizontal (b):
0.1o-0.4o

• Field of View - vertical (g): ±15o

• Angular resolution - vertical (f): 2o

g

f

30

10/1/21

16

LiDAR – recap cont’d
31TDDC17 Robotics/Perception II

Velodyne:
https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSE8I

SICK LMS stationary
range data at certain height

SICK LMS with tilt
mechanism

Velodyne stationary

31

Mapping
Assume we use a mobile robot platform equipped with a LiDAR sensor
Simple idea: combine measurement of robot motion with LiDAR sensor readings

Measurement of robot motion - state estimation, e.g. odometry, dead reckoning
• Simple odometry - wheel encoders that calculate how many times wheels turned
• Visual odometry etc. – e.g. optical flow sensor, or use sensor fusion to produce more

accurate estimation of motion
There will always be a measurement error when calculating the state - depending on the
technique/sensor used it can be smaller or larger

32TDDC17 Robotics/Perception II

Scan at x0,y0 Scan at x1,y1 Scans added
y

x

32

https://www.youtube.com/watch?v=WPtHRVdWXSI
https://www.youtube.com/watch?v=KxWrWPpSE8I

10/1/21

17

Mapping cont’d
33TDDC17 Robotics/Perception II

Based only on odometry + LiDAR range data

33

Scan matching
Calculate rotation and translation between two consecutive LiDAR scans, which will correct for
odometry error.

Iterative Closest Point (ICP) – iteratively minimize the sum of square differences between two
pairs of points which are selected from reference and a source scan.
Input: reference scan (blue), source scan (red).
Output: rotation and translation between reference and source scans.

34TDDC17 Robotics/Perception II

https://en.wikipedia.org/wiki/Iterative_closest_point

?

34

https://en.wikipedia.org/wiki/Iterative_closest_point

10/1/21

18

Mapping cont’d
35TDDC17 Robotics/Perception II

Based only on odometry + LiDAR range data + scan matching (ICP)

35

Mapping cont’d
36TDDC17 Robotics/Perception II

Based only on odometry + LiDAR range data + scan matching (ICP)

36

10/1/21

19

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

37

Robotic perception

Robot perception viewed as temporal inference from sequences of
actions and measurements→ dynamic Bayes network of first order
Markov process
Example: localization - holonomic robot with range sensor, estimate pose
while moving

next belief state? → Bayesian inference problem

38TDDC17 Robotics/Perception II

Xt = (xt, yt, q) – state of the robot at time t -> not observable

Zt = (range1, range2, range3, …) – sensor reading at time t -> observable

At = (vt, wt) – known action executed at time t

P(Xt) = P(Xt |z1:t , a1:t-1) – current believe state (captures past)

P(Xt+1 |z1:t+1 , a1:t) = ? given P(Xt) and new observation zt+1

38

10/1/21

20

Graphical Model
39TDDC17 Robotics/Perception II

known actions

unknown

sensor readings

M known map

39

Recursive filtering equation

using Bayes’ rule, Markov assumption, theorem of total probability

Motion model: deterministic state prediction + noise
Sensor model: likelihood of making observation zt+1 when robot is in state
Xt+1

40TDDC17 Robotics/Perception II

P(Xt+1 |z1:t+1 , a1:t) = ! P(zt+1 |Xt+1) ∫ P(Xt+1 | xt, at) P(Xt | z1:t, a1:t-1) dxt

sensor model motion model previous
believe state

40

10/1/21

21

Motion and sensor model

Assume Gaussian noise in motion prediction, sensor range measurements

41TDDC17 Robotics/Perception II

41

Graphical Model
42TDDC17 Robotics/Perception II

known actions

unknown

sensor readings

sensor model

motion model

M known map

42

10/1/21

22

Localization algorithms

Particle filter (Monte Carlo localization):
• belief state - a collection of particles that correspond to states
• belief state sampled, each sample weighted by likelihood it assigns to

new evidence, population resampled using weights

Kalman filter:
• belief state - a single multivariate Gaussian
• each step maps a Gaussian into a new Gaussian, i.e. it computes a new

mean and covariance matrix from the previous mean and covariance
matrix

• assumes linear motion and measurement models (linearisation
→extended KF)

43TDDC17 Robotics/Perception II

43

Global Localization (Particle Filter Examples)
44TDDC17 Robotics/Perception II

P(Xt+1 |z1:t+1 , a1:t) = ! P(zt+1 |Xt+1)

∫ P(Xt+1 | xt, at) P(Xt | z1:t, a1:t-1) dxt

sensor model

motion model previous believe state

44

10/1/21

23

Global Localization (Particle Filter Examples)
45TDDC17 Robotics/Perception II

Intuitive explanation:
• initialize particles
• execute known action
• apply motion model
• update particle

weights based on
sensor model

• resample based on
weights

• repeat

45

Global Localization (Particle Filter Examples)
46TDDC17 Robotics/Perception II

After several iterations – two likely robot
position estimates:

After more iterations – converged to a single
robot position estimation:

46

10/1/21

24

Global Localization
(Particle Filter Examples; sonar vs laser)

47TDDC17 Robotics/Perception II

47

Extended Kalman Filter (EKF) - example
48TDDC17 Robotics/Perception II

48

10/1/21

25

EKF example
49TDDC17 Robotics/Perception II

49

SLAM

Localization: given map and observed landmarks, update pose distribution
Mapping: given pose and observed landmarks, update map distribution
SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:
add landmark locations L1, . . . , Lk to the state vector, proceed as for
localization

Problems:
• dimensionality of map features has to be adjusted dynamically
• identification of already mapped features

50TDDC17 Robotics/Perception II

50

10/1/21

26

SLAM Example
51TDDC17 Robotics/Perception II

https://youtu.be/F8pdObV_df4
http://wiki.ros.org/hector_slam

51

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

52

https://youtu.be/F8pdObV_df4
http://wiki.ros.org/hector_slam

10/1/21

27

Motion Planning

Motion types:
• point-to-point
• compliant motion (screwing, pushing boxes)

Representations: configuration space vs workspace
Kinematic state: robot’s configuration (location, orientation, joint angles), no
velocities, no forces

Path planning: find path from one configuration to another
Problem: continuous state space, can be high-dimensional

53TDDC17 Robotics/Perception II

53

Motion Planning - representations

Workspace - physical 3D space (e.g. joint positions)
Robot has rigid body of finite size
Well-suited for collision checking

Problem: linkage constraints (not all workspace coordinates attainable) makes
path planning difficult in workspace

Configuration Space (C-space) - space of robot states (e.g. joint angles)
Robot is a point, obstacles have complex shapes

Problem: tasks are expressed in workspace coordinates, obstacle representation
problematic

54TDDC17 Robotics/Perception II

54

10/1/21

28

Workspace vs. Configuration Space
55TDDC17 Robotics/Perception II

55

Workspace vs. Configuration Space
56TDDC17 Robotics/Perception II

56

10/1/21

29

Cfree

Workspace vs. Configuration Space
57TDDC17 Robotics/Perception II

O

Cobs

O

x x

yy

q – a robot configuration e.g. (x1,y1,q1)
A(q) – set of points on the robot in configuration q

.

x1

y1
q1

x1

y1

A(q)

W – workspace world eitherℝ2 orℝ3

O – obstacle region, O⊂W
C – all possible robot configurations
Cobs = {q : q ∈ C and A(q) ∩O ≠ {} }
Cfree=C – Cobs

57

Motion Planning - representations

Free space (attainable configurations) ->occupied space (not attainable
configurations, obstacles)
Planner may generate configuration in configuration space, apply kinematics
and check in workspace for obstacles

58TDDC17 Robotics/Perception II

Workspace Configuration
Space

Inverse kinematics
(often hard and ill-posed problem)

Forward Kinematics
(simple, well-posed problem)

58

10/1/21

30

Path Planning

Basic problem: convert infinite number of states into finite state space

Cell decomposition:
• divide up space into simple cells,
• each of which can be traversed “easily”

Skeletonization:
• identify a finite number of easily connected points/lines
• form a graph such that any two points are connected by a path

Graph search and colouring algorithms
Assumptions: motion deterministic, localization exact, static scenes
Not robust with respect to small motion errors, does not consider limits due to
robot dynamics

59TDDC17 Robotics/Perception II

59

Cell Decomposition
60TDDC17 Robotics/Perception II

Grayscale shading - cost from the grid
cell do the goal

60

10/1/21

31

Cell Decomposition

Problem: may be no path in pure free space cells
Soundness

(wrong solution if cells are mixed)
vs.

Completeness
(no solution if only pure free cells considered)

Solution: recursive decomposition of mixed (free+obstacle) cells or exact
decomposition. Doesn’t scale well for higher dimensions.

61TDDC17 Robotics/Perception II

61

Skeletonization

Visibility graphs: find lines connecting obstacle vertices through free space,
build and search graph; not for higher dimensions
Voronoi graphs: find all points in free space equidistant to two or more
obstacles, build and search graph; maximizes clearance, creates unnecessarily
large detours, does not scale well for higher dimensions
Sample-based path planners.
Probabilistic roadmaps (PRM):

• generate randomly large number of configurations in free space, build
graph (construction phase)

• search graph (query phase)
Rapidly exploring Random Trees (RRT):

• generate a tree rooted in start configuration by random sampling of free
space until goal configuration is reached (query phase)

Scales better to higher dimensions but incomplete

62TDDC17 Robotics/Perception II

62

10/1/21

32

Visibility and Voronoi Graph
63TDDC17 Robotics/Perception II

63

PRM and RRT planning procedure example
64TDDC17 Robotics/Perception II

64

10/1/21

33

PRM Example
(construction phase)

65TDDC17 Robotics/Perception II

Generate random
configurations

Make connectionsGenerate random
configurations

Resulting free space graph
representation

65

PRM Example
(query phase)

66TDDC17 Robotics/Perception II

Add start and goal
configurations to the
roadmap

A* search
(+optional postprocessing)

start

goal

start

goal

start

goal

66

10/1/21

34

PRM Example
67TDDC17 Robotics/Perception II

67

RRT
68TDDC17 Robotics/Perception II

https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree

RAND_CONF – samples random configuration from free space qrand.
NEAREST_VERTEX – find qnear i.e. the closest vertex in existing graph G from qrand.
NEW_CONF – select new configuration qnew by moving at incremental distance Dq from qnear in
the direction of qrand.

qrand1

qnear

qrand2

qnew1

qnew2

Dq

Dq

Demo: https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

68

https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree
https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

10/1/21

35

RRT*

Asymptotically optimal: Converges to the optimal solution as more and more milestones are sampled.

69TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=YKiQTJpPFkA

69

PRM/RRT - Post Processing Example

Example curve replacement and path optimization:

70TDDC17 Robotics/Perception II

Transformation from linear to cubic (smooth) path segments:

Alignment of nodes for improved path quality:

70

https://www.youtube.com/watch?v=YKiQTJpPFkA

10/1/21

36

Outline
• Sensors - summary
• Computer systems
• Robotic architectures
• Navigation:
•Mapping and Localization
•Motion planning
•Motion control

71

Motion Control

• Path following involves forces: friction, gravity, inertia,
• Dynamic state: kinematic state + robot’s velocities
• Transition models expressed as differential equations
• Path planner assumes robot can follow any path
• Robot’s inertia limits manoeuvrability

• Problem: including dynamic state in planners makes motion planning
intractable

• Solution: simple kinematic planners + low-level controller for force
calculation

• Other solution: motion control without planning: potential field and reactive
control

72TDDC17 Robotics/Perception II

72

10/1/21

37

Controllers

• Techniques for generating robot controls in real time
using feedback from the environment to achieve a control
objective
• Reference controller: keep robot on pre-planned path

(reference path)
• Optimal controller: controller that optimises a global cost

function, e.g. optimal policies for MDPs
• Stable: small perturbations lead to bounded error between

robot and reference signal
• Strictly stable: able to return to reference signal

73TDDC17 Robotics/Perception II

73

Closed-loop control

Performance of controller:
• stability
• overshoot ← inertia
• steady-state error ← friction
• rise time
• settling time

P controller:

74TDDC17 Robotics/Perception II

74

10/1/21

38

PID Example
75TDDC17 Robotics/Perception II

x0=0; v0=0 xgoal=15

e(t0)=xgoal-x0=15

present

past

future

75

Closed-loop control

PD controller:
• decreases overshoot
• decreases settling time

PID controller:
• eliminates steady-state error

76TDDC17 Robotics/Perception II

76

10/1/21

39

Closed-loop control
77TDDC17 Robotics/Perception II

P control:
KP= 1.0

P control:
KP= 0.1

PD control:
KP= 0.3 KD=0.3

77

Model Predictive Control

1. At time k, solve open loop optimal control problem over a specified finite time horizon
2. Apply first input
3. At time k+1, repeat from step 1.

78TDDC17 Robotics/Perception II

https://en.wikipedia.org/wiki/Model_predictive_control

78

https://en.wikipedia.org/wiki/Model_predictive_control

10/1/21

40

Model Predictive Control
79TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=dL_ZFSvLXlU

Optimizer

Predictor
(Model)

Reference
trajectory

Predicted outputs

+

-

Future errors Process

Cost
function

Constraints

Output

Future
inputs

MPC

Predictor/Model: fundamental or empirical
Constraints e.g. on inputs, outputs, state are respected

79

MPC – simple example
80TDDC17 Robotics/Perception II

https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
https://github.com/cipher982/MPC-vehicle-controller

80

https://www.youtube.com/watch?v=dL_ZFSvLXlU
https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
https://github.com/cipher982/MPC-vehicle-controller

10/1/21

41

MPC and Learning
81TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0

https://doi.org/10.3384/diss.diva-163419

81

MPC and Learning
82TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0

https://doi.org/10.3384/diss.diva-163419

82

https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0
https://doi.org/10.3384/diss.diva-163419
https://www.youtube.com/watch?v=QYYknZ20Zcw
https://www.youtube.com/watch?v=xa53w1tyZl0
https://doi.org/10.3384/diss.diva-163419

10/1/21

42

MPC and Learning
83TDDC17 Robotics/Perception II

https://www.youtube.com/watch?v=dL_ZFSvLXlU

83

Questions?

84

https://www.youtube.com/watch?v=dL_ZFSvLXlU

