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Robotics — application perspective
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Mobility:
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legs, propellers,

rotors?
Manipulators:
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Sensors

Summary of most commonly used sensors for mobile robots.
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Ultrasonic ) N & o
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3D Scanning laser & S*
Millimeter Wave Radar & & )

* scanning laser on a tilting unit
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Sensors cont’d
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Sensors - common interfaces
. fal I—v—wmm«mw-m»:n)
« analog - voltage level il
fury
. . i
« digital: ;i Ean
* Seria]‘ ConneCtions e'g’: 010 20 30 40 50 6§ 0100110 10130 140 150
« RS232 ’
& If the Baud Rate = 9600 bps,
° I2C :.'; then the Time/Bit = 1/9600 s ;E
OSPI +5V:C:§:i::i::
- USB Yoot
TRIVEE N S R D
* Ethernet SV O O O
iedifeioiniofoiod |
* pulse width modulation-PWM ~ * * * * o
. Vih of the bigh kel (ON)
e | %‘
v

Outline

* Sensors - summary

* Computer systems

* Robotic architectures

* Navigation:
* Mapping and Localization
* Motion planning
* Motion control




TDDC17 Robotics/Perception Il 9

Computer systems

Many challenges and trade-offs!
* power consumption
* size & weight
» computational power
* robustness

« different operational conditions moisture, temperature, dirt,
vibrations, etc.

* cloud computing?

LINKOPING
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Computer systems cont’d

PC104 - standardised form factor
* industrial grade
* relatively small size
* highly configurable
* >200 vendors world-wide
* variety of components

* variety of processors

~10x10cm

II LINKOPING
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Computer systems cont’d

Custom made embedded systems
« with integrated sensor suite
* micro scale, light weight
« fitted for platform design

11

« fitted for platform design
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Computer systems cont’d

Example system design:

12

DRC PFC

* 1.4 GHz Pentium-M * 700 MHz Pentium Il

*1GBRAM
*+ 1GB flash drive

* 256 MB RAM
+512 MB flash

~ ’

Ethernet
Switch

Sersreanaseand ‘ Barometric Pressure Altimeter

IPC
+ 700 MHz Pentium 11l
+256 MB RAM

©512 MBflash drive  peressesesssssmssssesssssasesessensensens

’—{ Yamaha RMAX (YAS, YACS) ‘ )
—‘ Power Management Unit ‘
drive
H —{ GPS Receiver ‘

PFC Sensor Suite

n {

Ethernet Video Server

L - + 802.11b Wireless Bridge ‘

GSM Modems

}_.

Perception Sensor Suite

1
1
A |
/1 Communication Module
1 Stereo-Vision CCD Color | ..
1
N Module Pan Camera
1 Tilt
i = — = Ethernet
Laser Range Finder Unit Thermal MiniDV RS232
Module Camera Recorders | Analog
----- Firewire
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Ground Robo'giAIlQ LiU

LINKOPING
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Base platform

* Husky unmanned ground
vehicle by Clearpath

run time: up to 3h

Max speed: 1 m/s
Weight: 50 kg
» Max payload: 75 kg




Robot Arm UR5 — Universal
Robotics

* Weight: 20.6 kg
» Max payload: 5 kg

* Working radius: 850 mm
* 6 DOF

Gpper — Weiss Robotics Battery pack for arm

+ Weight: 1.2 kg :
« Max payload: 8 kg ! ~ 2 \(:',‘.,’%’"o ™~

»

LiDAR (Light Detection and
Ranging) sensor - Velodyne

* Range: 100m
» Vertical FOV: 30deg
* Horizontal FOV: 360deg

15

GPU — Jetson TK1 B ==

Stereo camera

Robot arm power
and control system
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Telesystems/Telemanipulators

Local

Control

Display -

Communication

Operator

I

Delay

Remote

Sensor
Control

Effector

Power

Robot
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Telepresence

Experience of being fully present at live event without actually
being there

* see the environment through robot’s cameras
« feel the surrounding through robot sensors

* Realised by for example:
* stereo vision
» sound feedback
« cameras that follow the operator’s head movements
» force feedback and tactile sensing
* VR system

LINKOPING
II." UNIVERSITY
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Reactive systems

Sense Act

Robot responses directly to sensor stimuli.
Intelligence emerges from combination of simple behaviours.
For example - subsumption architecture (Rodney Brooks, MIT):

* concurrent behaviours
* higher levels subsume behaviours of lower layers
* no internal representation

manipulate world
build maps\\&
SENSORS ~—u explore ACTUATORS
~ avoid collisiM
locomotion

Il. b','leV%';‘le% https://www.youtube.com/watch?v=9u0CIQ8P gk

+ finite state machines

20
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Limitations of Reactive Systems

» Agents without environment models must have sufficient
information available from local environment

« If decisions are based on local environment, how does it take
into account non-local information (i.e., it has a “short-term”
view)

« Difficult to make reactive agents that learn

* Since behaviour emerges from component interactions plus
environment, it is hard to see how to engineer specific agents
(no principled methodology exists)

» It is hard to engineer agents with large numbers of behaviours
(dynamics of interactions become too complex to understand)

LINKOPING
II." UNIVERSITY
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Hierarchical Systems

Sense Plan Act
Sensors
Extract combine features Execute Control
. =—> Plan task =—>
features into model task motors
Actuators

II LINKOPING
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Hierarchical Systems (Shakey Example)

Shakey (1966 - 1972)
* Developed at the Stanford Research Institute
» Used STRIPS planner (operators, pre and post conditions)

» Navigated in an office environment, trying to satisfy a goal
given to it on a teletype. It would, depending on the goal and
circumstances, navigate around obstacles consisting of large
painted blocks and wedges, push them out of the way, or push
them to some desired location.

* Primary sensor: black-and-white television camera

« Sting symbolic logic model of the world in the form of first
order predicate calculus

* Very careful engineering of the environment

Il.u Hml}\%g% https://www.youtube.com/watch?v=GmU7SimFkpU
23
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Hybrid systems (three-layer architecture)
Plan
Sense Act
Deliberative layer (planning)
Executive layer (sequencing)
Reactive layer (skills, control)
T
24
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Hybrid systems (Minerva Example)

Tour guide at the Smithsonian's National
Museum of American History (1998)

high-level control and learning
(mission planning, scheduling)
human interaction modules

(“emotional” FSA, Web interface)

navigation modules
(localization, map learning, path planning)
hardware interface modules
(motors, sensors, Internet)

Table 1: Minerva’s layered software architecture

25
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http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

25
TDDC17 Robotics/Perception Il 26
Hybrid systems (HDR3 — AlICS/IDA @ LiU Example)
§ - .
§
1’
Deliberative i v g
° w/ ° o g Hierarchical Concurrent State Machines i '§
° ° o o Low-lavel
@
tgnrroorciod &5
(a) The concentric view (b) The layered view
v
26
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Where am I?
Application of state

to calculate robot location
(e.g. x, y, orientation - *
pose).
Create a model of the
environment.
Assumes that we know
where the robot and
its sensors are.
I 1
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Navigation

Mapping — Localization — SLAM — State Estimation — Control

estimation

=
e

Estimate position (pose) of How do | safely get from
arobot in the environment, point Ato B?

or poses of landmarks in the

environment — sensor data

can be noisy

How do | execute planned
motion?

E.g. generate control signals
to follow planned trajectory
(velocity, position
commands, etc.)

28

One of the basic
functionalities required
for any real world
deployment:

* need to know where
we are

what the
environment looks
like

Simultaneous Localization
and Mapping

II LINKOPING
[ UNIVERSITY
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LiDAR —recap

Active sensor based on time of flight principle

* emits light waves from a laser
» measures the time it took for the signal to return to calculate the

distance
View from top
LINKOPING
II.“ UNIVERSITY
29
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H ’
LiDAR — recap cont’d
SICK LMS (single line sensor): Velodyne Puck (multi-line sensor): .
+ Range (d): 8om » Range (d): 100m
 Field of View - horizontal (a): * Field of View - horizontal (a.): " :

0°-180° 360°
« Angular resolution - horizontal (B): » Angular resolution - horizontal (B):

0.25°-1° 0.1%-0.4°

 Field of View - vertical (y): +15°
» Angular resolution - vertical (¢): 2°
LY
View from top View from side
II LINKOPING
[ ) UNIVERSITY
30
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LiDAR — recap cont’d

SICK LMS stationary SICK LMS with tilt Velodyne stationary
range data at certain height mechanism

. Velodyne:
LINKOPING . v=
II." ONIVERSITY https://www.youtube.com/watch?v=WPtHRVdWXSI|
https://www.youtube.com/watch?v=KxWrWPpSE8I

31
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Mapping

Assume we use a mobile robot platform equipped with a LIDAR sensor
Simple idea: combine measurement of robot motion with LiDAR sensor readings

Measurement of robot motion - state estimation, e.g. odometry, dead reckoning
» Simple odometry - wheel encoders that calculate how many times wheels turned

» Visual odometry etc. — e.g. optical flow sensor, or use sensor fusion to produce more
accurate estimation of motion

There will always be a measurement error when calculating the state - depending on the
technique/sensor used it can be smaller or larger
Scan at Xg,Yo Scan at x; y; Scans added

II LINKOPING
) UNIVERSITY

32
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Mapping cont’d

Based only on odometry + LiDAR range data

LINKOPING
II." UNIVERSITY
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Scan matching

Calculate rotation and translation between two consecutive LiDAR scans, which will correct for
odometry error.

Iterative Closest Point (ICP) - iteratively minimize the sum of square differences between two
pairs of points which are selected from reference and a source scan.

Input: reference scan (blue), source scan (red).

Output: rotation and translation between reference and source scans.

¥

¥

Ilo LINKOPING https://en.wikipedia.org/wiki/lterative closest point

34
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Mapping cont’d

Based only on odometry + LiDAR range data + scan matching (ICP)

LINKOPING
II." UNIVERSITY

35

TDDC17 Robotics/Perception Il 36

Mapping cont’d

Based only on odometry + LiDAR range data + scan matching (ICP)

II LINKOPING
) UNIVERSITY
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Robotic perception

Robot perception viewed as temporal inference from sequences of
actions and measurements — dynamic Bayes network of first order
Markov process

Example: localization - holonomic robot with range sensor, estimate pose
while moving

X, = (xi, Vi, 0) — state of the robot at time t -> not observable
Z. = (range,, range,, range,, ...) — sensor reading at time t -> observable
A = (v, &) — known action executed at time t

P(X,) = P(X. |Z.:t , a:-1) — current believe state (captures past)

next belief state? — Bayesian inference problem
P(Xis1 |Zi:t41 , A1) = ? given P(X,) and new observation z.,

II LINKOPING
[ UNIVERSITY
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Graphical Model

Ay A A known actions

unknown

known map

o —> —> } sensor readings

M

LINKOPING
II." UNIVERSITY
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Recursive filtering equation

P(Xti1|Zoitsr » A1) = @ P(Zeer [Xein) f P(Xei | X a)  P(Xi | Zat, i) dXe
L ] ] L J
! ! Y
sensor model motion model previous

believe state

using Bayes’ rule, Markov assumption, theorem of total probability

Motion model: deterministic state prediction + noise

Sensor model: likelihood of making observation z,, when robot is in state
Xt+1

LINKOPING
II.“ UNIVERSITY

40
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Motion and sensor model

S w, At

Assume Gaussian noise in motion prediction, sensor range measurements

LINKOPING
II." UNIVERSITY
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Graphical Model

A A A known actions

unknown

sensor readings

sensor model

known map

II LINKOPING
) UNIVERSITY
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Localization algorithms

Particle filter (Monte Carlo localization):

* belief state - a collection of particles that correspond to states

* belief state sampled, each sample weighted by likelihood it assigns to
new evidence, population resampled using weights

Kalman filter:

* belief state - a single multivariate Gaussian

+ each step maps a Gaussian into a new Gaussian, i.e. it computes a new

mean and covariance matrix from the previous mean and covariance
matrix

 assumes linear motion and measurement models (linearisation
—extended KF)

LINKOPING
II." UNIVERSITY
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Global Localization (Particle Filter Examples)

-

Robot position
Robot position

Robot position

P(X:, |Z1:t+1 s a.) =a P(z, |Xt+1)jr' sensor model
f LP(}(tn | Xt, at)l KP(Xt | Z,:, al:t—l), dx;

motion model previous believe state

II LINKOPING
) UNIVERSITY
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Global Localization (Particle Filter Examples)

Intuitive explanation:

* initialize particles

* execute known action

* apply motion model

* update particle
weights based on
sensor model

* resample based on

weights
* repeat
2, we . ) ‘N:‘-
&
3 B
PN
b
LINKOPING
II." UNIVERSITY
45
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Global Localization (Particle Filter Examples)

After more iterations — converged to a single
robot position estimation:

After several iterations — two likely robot
position estimates:

Robot position
k)

Robot position

II LINKOPING
) UNIVERSITY
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Global Localization
(Particle Filter Examples; sonar vs laser)

LINKOPING
II.“ UNIVERSITY
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Extended Kalman Filter (EKF) - example

°f°‘. 3 ""’

landmark

II LINKOPING
[ UNIVERSITY
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EKF example

Bel(s) l

LINKOPING
II." UNIVERSITY
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SLAM

Localization: given map and observed landmarks, update pose distribution
Mapping: given pose and observed landmarks, update map distribution
SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:

add landmark locations L,, . . . , L to the state vector, proceed as for
localization

Problems:
+ dimensionality of map features has to be adjusted dynamically
« identification of already mapped features

LINKOPING
II.“ UNIVERSITY

50
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SLAM Example

http://wiki.ros.org/hector _slam

[T
* https://youtu.be/F8pdObV df4

51
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Motion Planning

Motion types:
* point-to-point
+ compliant motion (screwing, pushing boxes)

Representations: configuration space vs workspace

Kinematic state: robot’s configuration (location, orientation, joint angles), no
velocities, no forces

Path planning: find path from one configuration to another
Problem: continuous state space, can be high-dimensional

LINKOPING
II." UNIVERSITY
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Motion Planning - representations

Workspace - physical 3D space (e.g. joint positions)
Robot has rigid body of finite size
Well-suited for collision checking

Problem: linkage constraints (not all workspace coordinates attainable) makes
path planning difficult in workspace

Configuration Space (C-space) - space of robot states (e.g. joint angles)
Robot is a point, obstacles have complex shapes

Problem: tasks are expressed in workspace coordinates, obstacle representation
problematic

LINKOPING
II." UNIVERSITY
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Workspace vs. Configuration Space

%lb

¥shou

55

left wall

LINKOPING
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Workspace vs. Configuration Space

conf-3

conf-1
conf-2

56
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Workspace vs. Configuration Space

y

Yi-§----- H
Cfree
Xy X )‘(1 X
W — workspace world either R2 or R3 C - all possible robot configurations
O — obstacle region, OcW Cows={q:qeC and A(q)n O+ {}}
Cfree=C - Cobs
g — a robot configuration e.g. (x,,y:,6.)
A(q) — set of points on the robot in configuration g
TR

57
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Motion Planning - representations

Free space (attainable configurations) ->occupied space (not attainable
configurations, obstacles)

Planner may generate configuration in configuration space, apply kinematics
and check in workspace for obstacles

Inverse kinematics
(often hard and ill-posed problem)

- Configuration

Work
orkspace Space

Forward Kinematics
(simple, well-posed problem)

II LINKOPING
) UNIVERSITY
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Path Planning

Basic problem: convert infinite number of states into finite state space

Cell decomposition:

+ divide up space into simple cells,

+ each of which can be traversed “easily”
Skeletonization:

+ identify a finite number of easily connected points/lines

+ form a graph such that any two points are connected by a path

Graph search and colouring algorithms
Assumptions: motion deterministic, localization exact, static scenes

Not robust with respect to small motion errors, does not consider limits due to
robot dynamics

LINKOPING
II." UNIVERSITY
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Cell Decomposition

=

O

| [

oal

il

L

Grayscale shading - cost from the grid
cell do the goal

II LINKOPING
) UNIVERSITY
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Cell Decomposition

Problem: may be no path in pure free space cells
Soundness
(wrong solution if cells are mixed)
vs.
Completeness
(no solution if only pure free cells considered)

Solution: recursive decomposition of mixed (free+obstacle) cells or exact
decomposition. Doesn’t scale well for higher dimensions.

LINKOPING
II." UNIVERSITY
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Skeletonization

Visibility graphs: find lines connecting obstacle vertices through free space,
build and search graph; not for higher dimensions

Voronoi graphs: find all points in free space equidistant to two or more
obstacles, build and search graph; maximizes clearance, creates unnecessarily
large detours, does not scale well for higher dimensions

Sample-based path planners.
Probabilistic roadmaps (PRM):

+ generate randomly large number of configurations in free space, build
graph (construction phase)

« search graph (query phase)
Rapidly exploring Random Trees (RRT):

* generate a tree rooted in start configuration by random sampling of free
space until goal configuration is reached (query phase)

Scales better to higher dimensions but incomplete

II LINKOPING
) UNIVERSITY
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Visibility and Voronoi Graph

LINKOPING
II." UNIVERSITY
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Probabilistic Roadmaps
. 0BBTrees
World Model
‘or 3 _'

,

Roadmap
Construction
Start & Goal 1 Roadmap
Positions
A* Search
Runtime /'
constrains

'

Curve replacement & | _Finished Path

_ ptnoptimiten

PRM and RRT planning procedure example

Rapidly Exploring Random Trees

: OB8Trees
World Mode!| s
: Construction
Offline
Start & Goal OB8-Tree Online
. Positions
x RRT Planning
¢ Runtime /

Curve replacement & | Finished Path

: constrains i

II LINKOPING
) UNIVERSITY
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PRM Example
(construction phase)

o
[¢]
o
o
o
o
o

Generate random Make connections Resulting free space graph
configurations representation

LINKOPING
II.“ UNIVERSITY
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PRM Example
(query phase)

start start

Add start and goal A* search
configurations to the (+optional postprocessing)
roadmap

II LINKOPING
[ UNIVERSITY
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49)

RRT

Algoriths BuildRRT

® "e-" Concies 3650MMENT For NESINCe, "AVgesT - Lom” means 1ar 1he vakue of Srpest Cranges 15 the value of som
 "TetUn’ 1TTINAIS e WD and OuDuts Tho 10lowirg valo.
RAND_CONF — samples random configuration from free space grang.

NEAREST_VERTEX — find . i-€. the closest vertex in existing graph G from qrang.
NEW_CONF — select new configuration gnew by moving at incremental distance Aq from gpear in

the direction of Qrang.

TDDC17 Robotics/Perception Il 68

Imput: Initial configuration §,. ., nusber of vertices im RRT K, iscremestal distasce

Ostput: RRT graph G

Guinitiq,,.)

for k= 1 to X &
Qrang = RAND_CONF()
Qacar = NEAREST VERTEX(Q.pnee ©)
Goew = NEW_COBT(Qopurr Trgedr A7)
G.add_vertex(q,,,)
C.2dd &390 (Gaoart Frow)

returs G

https://en.wikipedia.org/wiki/Rapidly-exploring random tree

I LINKOPING
I. UNIVERSITY pemo: https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

68
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RRT*

69

Asymptotically optimal: Converges to the optimal solution as more and more milestones are sampled.

II." LINKOPING https://www.youtube.com/watch?v=YKiQTJpPFkA

UNIVERSITY
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PRM/RRT - Post Processing Example

Example curve replacement and path optimization:

oL § "\-/Q\Q./

Step 1: Linear path Step 2: Primary attempt at H Step 3: Sccondary sttempt
path augmentation at path supmentation

Alignment of nodes for improved path quality:

[v] Full afgnment

Transformation from linear to cubic (smooth) path segments:

70

II LINKOPING
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Motion Control

+ Path following involves forces: friction, gravity, inertia,
» Dynamic state: kinematic state + robot’s velocities

« Transition models expressed as differential equations
+ Path planner assumes robot can follow any path

» Robot’s inertia limits manoeuvrability

+ Problem: including dynamic state in planners makes motion planning
intractable

+ Solution: simple kinematic planners + low-level controller for force
calculation

+ Other solution: motion control without planning: potential field and reactive
control

II LINKOPING
[ UNIVERSITY
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Controllers

 Techniques for generating robot controls in real time
using feedback from the environment to achieve a control
objective

* Reference controller: keep robot on pre-planned path
(reference path)

* Optimal controller: controller that optimises a global cost
function, e.g. optimal policies for MDPs

+ Stable: small perturbations lead to bounded error between
robot and reference signal

» Strictly stable: able to return to reference signal

LINKOPING
II." UNIVERSITY

73
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Closed-loop control

disturbances

reference path control variable ¢ robot state
y(t) at Xt
— controller ———| robot -
error

Performance of controller:

« stability
 overshoot < inertia

» steady-state error « friction
* rise time
* settling time

P controller: a; = Kp(y(t) — ;) Kp gain parameter

II LINKOPING
) UNIVERSITY
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PID Example present
— P K,e()
past
=Setpoint 4 Error» | K’j e(r)dr {z}m Output —»
- future
de(t)
L) e 22
< dr

e(to)=Xgoa|-X0=15

>®
X6=0; Voio . XgoaI=15
LINKOPING
II.“ UNIVERSITY
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Closed-loop control

PD controller:
» decreases overshoot
* decreases settling time

O(y(t) — x)

ay = Kp(y(t) — x¢) + Kp ot

PID controller:
* eliminates steady-state error

O(y(t) — x)

. .0 .
a; = Kp(y(t) — z¢) + Kp 5 + K1 [(y(t) — z¢) dt

II LINKOPING
) UNIVERSITY
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Closed-loop control

77

Ke=1.0 Ke=0.1

P control: P control:

PD control:
Kp= 0.3 Kp=0.3

LINKOPING
II." UNIVERSITY
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Model Predictive Control

PAST FUTUR
S A UTURE

78

—e— Reference Trajectory
—+— Predicted Output
Measured Output
Predicted Control Input
—— Past Control Input

— Prediction Horizon
< >

——t—+—>

k k+1  k+2

2. Apply first input

3. At time k+1, repeat from step 1.

“« >
Sample Time

k+p

1. At time k, solve open loop optimal control problem over a specified finite time horizon

https://en.wikipedia.org/wiki/Model predictive control

II LINKOPING
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Model Predictive Control
o mec '
Reference Cost Constraints

trajectory function

+ "\ Future errors

> Optimizer Process
Predicted outputs Output
Predictor/Model: fundamental or empirical
Constraints e.g. on inputs, outputs, state are respected
II "LINKDPING
OWF UNIVERSITY https://www.youtube.com/watch?v=dL ZFSvLXIU
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MPC — simple example
II unkopng https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be
O UNIVERSITY  https://github.com/cipher982/MPC-vehicle-controller
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MPC and Learning

81

https://doi.org/10.3384/diss.diva-163419

LINKOPING
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https://www.youtube.com/watch?v=QYYknZ20Zcw

https://www.youtube.com/watch ?v=xa53w1tyZI0
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MPC and Learning

82

https://doi.org/10.3384/diss.diva-163419
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https://www.youtube.com/watch?v=QYYknZ20Zcw
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MPC and Learning

83

Il.u ENKODIG, https://www.youtube.com/watch?v=dL ZFSvLXIU

83

Questions?
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