TDDC17 Robotics/Perception II

Mariusz Wzorek IDA/AIICS

Outline

1

- Sensors summary
- Computer systems
- Robotic architectures
- Navigation:
 - Mapping and Localization
 - Motion planning
 - Motion control

	Any weather	Any light	Detection in 15m	Fast response	Weight	Affordable
CCD Camera/stereo/ Omnidirectional/o. flow			A state of the	Ð	ß	A state of the
Ultrasonic		5		S	S	S
Scanning laser (LiDAR, LRF)		A	S	S		S
3D Scanning laser		A	S			{}*
Millimeter Wave Radar	5	6	5	5		

9
Computer systems
Many challenges and trade-offs!
opower consumption
size & weight
computational power
robustness
different operational conditions moisture, temperature, dirt, vibrations, etc.
cloud computing?

TDDC17 Robotics/Perception II

 TDDC17 Robotics/Perception II
 53

 Motion Planning
 Motion types:

 • point-to-point
 • compliant motion (screwing, pushing boxes)

 Representations: configuration space vs workspace
 Kinematic state: robot's configuration (location, orientation, joint angles), no velocities, no forces

 Path planning: find path from one configuration to another
 Problem: continuous state space, can be high-dimensional

DELITRODUCT/Perception II
Description
Basic problem: convert infinite number of states into finite state space
Description
divide up space into simple *cells*,
each of which can be traversed "easily"
Description
identify a finite number of easily connected points/lines
form a graph such that any two points are connected by a path
Graph search and colouring algorithms
Assumptions: motion deterministic, localization exact, static scenes
Not robust with respect to small motion errors, does not consider limits due to robot dynamics

TDDC17 Robotics/Perception II	61
Cell Decomposition	
<u>Problem</u> : may be no path in pure free space cells	
Soundness	
(wrong solution if cells are mixed)	
vs.	
Completeness	
(no solution if only pure free cells considered)	
Solution : recursive decomposition of mixed (free+obstacle) cells or exac decomposition. Doesn't scale well for higher dimensions.	t

62 TDDC17 Robotics/Perception II Skeletonization Visibility graphs: find lines connecting obstacle vertices through free space, build and search graph; not for higher dimensions **Voronoi graphs:** find all points in free space equidistant to two or more obstacles, build and search graph; maximizes clearance, creates unnecessarily large detours, does not scale well for higher dimensions Sample-based path planners. Probabilistic roadmaps (PRM): • generate randomly large number of configurations in free space, build graph (construction phase) • search graph (query phase) Rapidly exploring Random Trees (RRT): · generate a tree rooted in start configuration by random sampling of free space until goal configuration is reached (query phase) Scales better to higher dimensions but incomplete

