A Gentle Introduction to Machine Learning
Second Lecture
Part |

.\"“ME """"’D(Vr
& o,

o
B
swausas®

QRCNLINTE
6

X

Originally created by Olov Andersson
Revised and lectured by Yang Liu

bz

Recap from Last Lecture

Last lecture we talked about supervised Learning

* Definition
* Learn unknown function y=f(x) given examples of (x, y)

* Choose a model, e.g. NN, and train it on examples
* Set loss function (e.g. square loss) between model and examples
* Train model parameters via gradient descent

* Trend: Neural Networks and Deep Learning

2021-09-23 2

Artificial Neural Networks — Summary

Advantages

Under some conditions it is a universal approximator to any function f(x)
= E.g.ltis very flexible, a large "hypothesis space” in book terminology

Some biological justification (real NNs more complex)

Can be layered to capture abstraction (deep learning)

= Used for speech, object and text recognition at Google, Microsoft etc.

= For best results use architectures tailored to input type (see DL lecture)

= Often using millions of neurons/parameters and GPU acceleration.

Modern GPU-accelerated tools for large models and Big Data

= Tensorflow (Google), PyTorch (Facebook), Theano etc.

Disadvantages

Many tuning parameters (number of neurons, layers, starting weights,
gradient scaling...)

Difficult to interpret or debug weights in the network

Training is a non-convex problem with saddle points and local minima

2021-09-23

What Was a Saddle Point Again?

* Gradient is zero, but not a minima
= Loss could be decreased but gradient descent is stuck
* Believed to be a more common problem than local minima for ANN

Saddle point

AN

RN !

Q&“s“\\“\:&* S, T2

RN

LR ’
% 7N

7
y

1/2

2021-09-23

23/09/2021

Outline of This Lecture

Wrap up supervised learning
* Pitfalls & Limitations

* SLfor Learning To Act
Reinforcement Learning
* Introduction

* Q-Learning (lab5)

Next lecture

* Deep learning, a closer look

2021-09-23

Machine Learning Pitfall - Overfitting

* Models can overfit if you have too many parameters in relation to the
training set size.

* Example: 9th degree polynomial regression model (10 parameters) on 15
data points:

Green: True function (unknown)
Blue: Training examples (noisy!)
Red: Trained model

- - (Bishop, 2006)

* This is not a local minima during training, it is the best fit possible on the
given training examples!

* The trained model captured “noise” in data, variations independent of f(x)

2021-09-23 6

Overfitting — Where Does the Noise Come From?

* Noise are small variations in the data due to ignored or unknown
variables, that cannot be predicted via chosen feature vector x

= Example: Predict the temperature based on season and time-of-day. What
about atmospheric changes like a cold front? As they are not included in the
model, nor entirely captured by other input features, their variation will show
up as seemingly random noise for the model!

* With low proportion of examples vs. model parameters, training can also
mistake the variation that unmodeled variables cause in y as coming from
variables x that are included. This is known as “overfitting”.
= Since this x->y relationship was merely chance, the model will not generalize

well to future situations
= |tis usually impossible to include all variables affecting the target y’s
« Overfitting is important to guard against!

2021-09-23

Overfitting - Demo

* See the interactive example of ANN training again
= 2D input x-> 1Dy (binary classification or regression)

Exercise:
= Pick the bottom-left data set, two (Gaussian) clusters
= Make a flexible network, e.g. 2 hidden layers w/ 8 neurons each
= Activation ”Sigmoid”
= Set "Ratio of training to test data” to 10%
= Max out noise
= Train for a while, can adjust "learning rate” e.g. 0.3
= Compare result to “Show test data”
= How well does this model generalize? Very bad

Up next: How do we fix it?

2021-09-23 8

23/09/2021

Model Selection — Choosing Between Models

In conclusion, we want to avoid unnecessarily complex models
This is a fairly general concept throughout science and is often referred to
as Ockham’s Razor:
“Pluralitas non est ponenda sine necessitate”
-Willian of Ockham
“Everything should be kept as simple as possible, but no simpler.”
-Albert Einstein (paraphrased)

There are several mathematically principled ways to penalize model
complexity during training, e.g. regularization, which we will not cover
here.

A simple approach is to use a separate validation set with examples that
are only used for evaluating models of different complexity.

2021-09-23 9

Model Selection — Hold-out Validation

* This is called a hold-out validation set as we keep the data away from the
training phase

* Measuring performance (loss) on such a validation set is a better metric of
actual generalization error to unseen examples

* With the validation set we can compare models of different complexity to
select the one which generalizes best, for model selection.

* Examples could be polynomial models of different order, the number of
neurons or layers in an ANN etc.

Given example data: 1

2021-09-23 10

10

Measuring Final Generalization Error

* We have seen that having a validation set will lead to a more
accurate estimation of generalization error to use for model
selection

* However, by extensively using the validation set for model
selection we can also to contaminate it (overfitting model against
the data in the validation set)

* To combat this one usually sets aside a separate test set

* This test set is not used during training or model selection

* ltis basically locked away in a safe and only brought out in the end
to get a fair estimate of final generalization error

Given example data: 1 1

2021-09-23 1

Model Selection — Selection Strategy

* Asthe number of parameters increases, the size of the hypothesis space
also increases, allowing a better fit to training data

* However, at some point it is sufficiently flexible to capture the underlying
patterns. Any more will just capture noise, leading to worse generalization
to new examples!

Example: Prediction error vs. model complexity 1
over many (simulated) data sets. (Hastie etal., =-
2009)
Red: Validation set (generalization) error
Blue: Training set error

Best choice Overfitting

|

Prediction Ertor
o,

* Do we need to train and test many

models of different complexity? T
= Various tricks to avoid this ModelComplety)
2021-09-23 12

11

12

23/09/2021

Early Stopping: Model Complexity Trick with Neural
Networks

* Training neural networks tends to progress from simple functions to more
complex ones
* This comes from initializing the parameter values w close to zero
= Remember, a neuron’s output = g(w*x)
= Common activation functions g (e.g. sigmoid) are linear around zero
= This makes the NN effectively ”start out” as a linear model
* Early stopping NN trick: Can make a model complexity vs. validation loss

curve while training, stop when validation error starts increasing
OUTPUT

Testloss

Exercise: Back to the NN demo app
* Observe "test loss” plot
* Reset network
* Train again, but keep an eye on test loss
* Try to pause at low test loss

= (Can adjust “learning rate”

Stop training here!

Limitations of Supervised Learning

* We noted earlier that the first phase of learning is traditionally to select
the "features” to use as input vector x to the algorithm

* In the spam classification example we restricted ourselves to a set of
relevant words (bag-of-words), but even that could be thousands

* Even for such binary features we would have needed O(2#features) examples
to cover all possible combinations

* In a continuous feature space, there might be a difficult non-linear case

where we need a grid with 10 examples along each feature dimension,
which would require O(10*features) examples.

2021-09-23 14

14

2021-09-23 o 13
13
The Curse of Dimensionality
* This is known as the curse of dimensionality and also applies to
reinforcement learning as we shall see later
* However, this is a worst-case scenario.
= The true amount of data needed for supervised learning depends on the
model and the complexity of the function we are trying to learn
= Deep learning may overcome this since it can capture hierarchical abstractions
* Usually, learning works rather well even for many features
= However, selecting features and a model that reflect problem structure can be
the difference between success and failure
= Even for neural networks, e.g. Convolutional NNs 2
o A A
|
Vo
_ '
z1 z .
D=1 Dy . (Bishop, 2006)
D=3
2021-09-23 15
15

Some Application Examples of Dimensionality

Computer Vision — Object Recognition

* One HD image can be 1920x1080 = 2 million pixels

* If each pixel is naively treated as one dimension, learning to classify
images (or objects in them) can be a million-dimensional problem.

* Much of computer vision involves clever ways to extract a small set of
descriptive features from images (edges, contrasts)
= Recently deep convolutional networks dominate most benchmarks

Data Mining — Product models, shopping patterns etc

* Can be anything from a few key features to millions

* Can often get away with using linear models, for the very high-
dimensional cases there are few easy alternatives, although NNs gaining
popularity

2021-09-23 16

16

23/09/2021

Some Application Examples of Dimensionality Il

Robotics
* For perception, see the computer vision considerations, but need real-time
performance

* For control, e.g. learning robot motion
= Moderate dimension, but non-linear and require high accuracy (robustness)
= Ground robots have at least a few dimensions (degrees of freedom)
= Air vehicles (UAVs) have at least a dozen dimensions (degrees of freedom)
= Humanoid robots have at least 30-60 dimensions (degrees of freedom)
= The human body is said to have over 600 muscles
* Traditionally uses tailored models based on e.g. physics approximations
= Learning is gaining ground but data not as easy to collect as robots can break (or
hurt somebody)

2021-09-23 17

From Supervised to Reinforcement Learning -
Learning How to Act

Humorous reminder from IEEE
Spectrum: The DARPA 2015
—_| Humanoid Challenge “Fail

& Compilation”

* Can we use supervised learning to learn how to act?
* E.g. engineering robot behavior can be fragile and time consuming

= Things humans do without thinking require extremely detailed
instructions for a robot. Even robust locomotion is hard.

vz .

17

Learning How to Act

* Yes, one can learn a mapping from problem state (e.g. position) to action
= Asin all supervised learning, this requires a teacher
= Sometimes called “imitation learning”

* However, supervised learning with robots can get tedious as providing
examples of correct behaviour is difficult to automate

* Can we remove the human from the loop?

1. An automated teacher like a planning or optimal control algorithm can
generate supervised examples if it as a model of the environment
* Mordatchet al,
* LiU’s research with real nano-quadcopters (deep ANN on-board the microcontroller)

2. Reinforcement learning attempts to generalize this to learning from scratch in
completely unknown environments

2021-09-23 19

19

18

23/09/2021

Introduction to Reinforcement Learning

A Gentle Introduction to Machine Learning @ Remember:

Part Il - Reinforcement Learning e In Supervised Learning agents learn to act given examples of
correct choices.

@ What if an agent is given rewards instead?

Originally created by Olov Andersson @ Examples:
Revised and lectured by Yang Liu @ In a game of chess, the agent may be rewarded when it wins.
e A soccer playing agent may be rewarded when it scores a goal.
Avrtificial Intelligence and Integrated Computer Systems @ A helicopter acrobatics agent may be rewarded if it performs a loop.
Department of Computer and Information Science e A pet agent may be given a reward if it fetches its masters slippers.

Linkdping University . .
@ These are all examples of Reinforcement Learning, where the

agent itself figures out how to solve the task.

1 (AIICS, IDA, LiU) Reinforcement Learning 1 (AIICS, IDA, LiU) Reinforcement Learning

Defining the domain What do we need to solve?

@ An example domain... s
@ How do we formally define this problem? @ S = {squares}
@ An agent is given a sensory input consisting of: o A={NWSE} 2 . =R
State s € S (from type problem domain) @ R(s) = 0 except for the two .
Reward R(s) € R (our way to encode objective in domain) terminal states on the right
1 2 3 4

@ |t should pick an output
@ Considerations:

Action a € A (based on type of robot/agent) _
| | he " " action f h e It may not know the effect of actions yet p(s'|s, a)
® It wants to learn the "best" action for each state. e It may not know the rewards R(s) in all states yet

e Reward will be zero for all actions in all states not adjacent to the
two terminal states.
o Need to consider reward of future moves!

1 (AIICS, IDA, LiU) Reinforcement Learning 3/15 1 (AIICS, IDA, LiU) Reinforcement Learning 4/15

Rewards and Utility

@ We define the reward for reaching a state s; as R(s;)

@ To plan ahead it must look at a sum of rewards over a sequence
of states R(s;+1), R(si+2), R(si+2), -.-

@ This can be formalized as the utility U for the sequence

U= 7R(s), where 0 < v < 1 (1)
t=0

@ Where v < 1 is the discount factor making the utility finite even
for infinite sequences.

@ A low « makes the agent very short-sighted and greedy, while a
gamma close to one makes it very patient (- = planning horizon).

1 (AIICS, IDA, LiU) Reinforcement Learning

The Policy Function

@ We now have a utility function for a sequence of states

@ ...but the sequence of states depends on the actions taken!

@ We need one last concept, a policy function = (s) decides which
action to take in each state

a=n(s))
@ Clearly, a good policy function is what we set out to find
3 — — —
2| 1 b=
1 } - - -
1 2 3 4

Figure: A policy function maps states to actions (arrows). Note it's not
necessarily optimal.

1 (AIICS, IDA, LiU) Reinforcement Learning

Examples of optimal policies for different R(s)

3 — — —
2 | 4 }
1 f - - -
1 2 3 4
~0.0221 <R(s) <0 R(s)>0
Assuming random transition %
function (for each direction): onﬁm
1 (AIICS, IDA, LiU) Reinforcement Learning 7/15

How to find such an optimal policy?

@ There are two different philosophies for solving these problems
@ Model-based reinforcement learning
e Learn R(s) and f(s,a) = s’ using supervised learning.
e Solve a (probabilistic) planning problem using an algorithm like
value iteration (see book, not included in this course).
@ Model-free reinforcement learning
e Use an iterative algorithm that implicitly both adapts to the
environment and solves the planning problem.

e Q-learning is a popular such algorithm that has a very simple
implementation. (lab5)

1 (AIICS, IDA, LiU) Reinforcement Learning 8/15

@ In Q-learning, all we need to keep track of is the "Q-table" Q(s, a),
a table of estimated utilities for taking action « in state s.

@ /fwe knew the long-term value of an action, solving the planning
problem to compute policy = (s) reduces to just taking the best
action in the Q-table: max,c 4 O(s, a)

@ Turns out one can learn the Q-table for the optimal policy by
applying an iterative update rule on the Q-table as the agent
moves

@ In a simpler deterministic world (no randomness) this is:

Q(s, a) ¢ R(s) + ymax O(s',d') (3)

where - is the discount factor.

@ An intuition is to remember that Q-value = estimated utility = sum
of rewards. We can define the Q-value for the optimal policy
recursively as the immediate reward, plus the discounted best
Q-value in the next state (compare Eq.(1)). Then just iterate!

1 (AIICS, IDA, LiU) Reinforcement Learning

The Q-table Update - An Example

Q-Learning Il - Final Version

@ The full update rule, also accounting for randomness in state
transitions is:

0(s,0) Q(5,0) +a(R(s) +7max Q) ~ Q(s.a) (4)

where « is the learning rate and + is the discount factor.

@ Each time an agent moves, the Q-values are updated by a small
factor o towards the Q-value of the next state, acting as an
average over all possible (now random) next states for an action.

@ For full proof, see the book (not needed for exam).

@ NOTE: Approximations of the state space, like the discretization in
lab5, can cause apparent randomness from just observing the
approximate state.

1 (AIICS, IDA, LiU) Reinforcement Learning

The Q-Learning Update - An Example

3 =

M =
ﬁ

1 START

1 2 3 4

Where actions are N,E,S,W (North = up) and v = 0.9. For simplicity
the agent repeatedly executes the actions above, ending each episode
in the terminal +1 state and restarting. Transitions are deterministic so
we use learning rate o = 1.

Begin by initializing all terminal Q(sr, *) = reward, all other Q(s,a) =0
For each step the agent updates Q(s,a) for the previous state/action:

O(s,a) < O(s,a) + a(R(s) + ’ygleaj(o(s',d") — Q(s,a))

After a while the Q-values will converge to the true utility

1 (AIICS, IDA, LiU) Reinforcement Learning 11/15

e

b=
i

=
1 START

0(s,a) ¢ 0(5,0) + a(R(s) + 7 max O(+, @) — 0(s.a)

First run (clarified): Q(s33,E) =0+1-(0+0.9-max(1,1,1,1)—0) = 0.9.
(Remember, all action Q-vals for terminal s4 4 initialized to +1)

Second run: Q(s32,N) =0+ 1- (0 + 0.9max(0,0.9,0,0) — 0) = 0.81,
0(s33, E) = 0.9 (unchanged due to learning rate a = 1)

Third run: Q(s3,1,N) =0+ 1-(0+ 0.9max(0.81,0,0,0) — 0) = 0.729,
Q(s32,N) = 0.81, Q(s33,E) = 0.9 (both unchanged). And so on...

1 (AIICS, IDA, LiU) Reinforcement Learning 12/15

Action selection while learning: Exploration

@ That was assuming fixed actions. The agent should ideally pick
the action with highest utility (Q-value).

@ However, always taking the highest estimated utility action while
still learning will get the agent stuck in a sub-optimal policy.

@ In the previous example, once the Q-table has been updated all
the way to the start position, following that path will always be the
only non-zero (and therefore best) choice.

@ The agent needs to balance taking the currently highest Q-value
actions with exploring the other options!

@ c-greedy is an exploration strategy that takes a random move with
some probability, so it (eventually) tests all state-action
combinations. Without exploration, Q-learning is greedy by picking
the highest value action in Q-table, which means some
state-actions are never tested.

@ With simple e-greedy strategy it is only greedy with probability e,
and does random moves with probability 1-¢.

1 (AIICS, IDA, LiU) Reinforcement Learning

Q-Learning - Final Words

@ Implementation is very simple, having no model of the
environment.

e It only needs a table of Q(s,a) values!

@ Once the Q(s,a) function has converged, the optimal policy 7*(s)
is simply the action with highest utility in the table for each s

@ Technically the learning rate o actually needs to decrease over
time for perfect convergence.

@ Q-learning must also be combined with exploration
@ Q-learning requires very little computational overhead per step

@ The curse of dimensionality: The Q-table grows exponentially with
dimension. A good approximation can avoid this.

@ Model-free methods may require more interactions with the world
than model-based, and much more than a human.

Curse of Dimensionality for Q-Learning

@ Need to discretize continuous state and action spaces.
@ The Q-table will grow exponentially with their dimension!
@ Workaround: Approximate Q-table by supervised learning.

o "Fitted" Q-iteration. See Q-table as unknown f(x), (state,action) as
examples of input x, and the Q-value after update as example
output y. Can learn this from new examples as the agent moves.

@ If approximation generalizes well, we get large gains in scalability.
@ Use deep learning — deep reinforcement learning

e Deep ANN was used for the video game example (plus some tricks)

e Google’s Go champion combines several approaches, deep
convolutional nets for approximating the game board, a tree-search
planning approach for updating utilities and more...

@ Caveat: Non-linear approximations may impede convergence.

1 (AIICS, IDA, LiU) Reinforcement Learning 14/15

1 (AIICS, IDA, LiU) Reinforcement Learning 15/15

	Reinforcement_Learning_4sl.pdf
	Introduction
	How to find such an optimal policy?

