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2Multiple Outcomes
 Classical planning assumes we know outcomes in advance

▪ State + action ➔ unique resulting state

 Sometimes we must deal with multiple outcomes

▪ Due to problems in execution

▪

Intended outcome: is true

Unintended outcome: is false

▪ Due to random but clearly desirable / undesirable outcomes

▪ Toss a coin – do I win?

▪ Due to random outcomes with unknown long term effects

▪ Do I end up in group A or B?

No idea which one will turn out to be better for me
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3Information, while planning 
 First ”info dimension”:

▪ What do we know

about action outcomes

when we create the plan?Start

here…

Model says: we end up

in one of these states

Non-Deterministic Planning

Probabilistic Planning

 Focus of this lecture!
Start

here… 0.1
0.2

.07

0.1

.03

Model says: we end up 

in one of these states

…with this probability



 Second ”info dimension”:

▪ What do we find out

about action outcomes

when we execute the plan?

Prediction during Planning

After execution: Non-Observable

After execution: Partially Observable

After execution: Fully Observable

No new information sensed

after executing an action

Only our initial predictions

Can get some information

Some aspects are not observable

Still uncertain about the current state

After executing an action

we will know the state we ended up in

 Focus of this lecture!
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6State Transition System
 Classical planning: A state transition system Σ = (𝑆, 𝐴, 𝛾)
▪ 𝑆 Finite set of world states

▪ 𝐴 Finite set of actions

▪ 𝛾 × → State transition function, 

specifying all “edges”
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7Stochastic System
 Probabilistic planning uses a stochastic system Σ = (𝑆, 𝐴, 𝑃)
▪ Finite set of world states

▪ Finite set of actions

▪ Given that we are in s and execute a,

the probability of ending up in s’

Start

here… 0.1
0.2

.07

0.1

.03

Model says: we end up 

in one of these states

Planning

…with this probability

Replaces 
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8Stochastic System Example
 Example: A single robot

▪ Moving between locations

▪ For simplicity,

states correspond

directly to

locations

▪

▪

▪

▪

▪

▪ Some transitions are deterministic, some are stochastic

▪ Trying to move from to : You may end up at instead ( % risk)

▪ Trying to move from to : You may stay where you are instead ( % risk)

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Arcs connect edges belonging

to the same action
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9Stochastic System: Planning and Execution
 Example: In state s1, there are three possible actions

▪ The planner chooses the action

▪ For example, move(l1,l4)

▪ Much later, when we actually execute this action:

▪ We will find out the outcome (end up in s4 or s1),

due to full observability

▪ But when we’re planning:

▪ Must try to prepare for both

potential outcomes!

wait

s2

s4s1

move(l1,l4)

m
ov

e(
l1,

l2
)



Important concepts,

before we define the planning problem itself!
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11Policies; Example 1
 One type of formal plan structure:  Policy 𝜋 ∶ 𝑆 → 𝐴
▪ Defining, for each state, which action to execute whenever we are there

▪ Possible due to full observability:

We will know the current state!

 Example 

▪

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Reaches or , waits there infinitely many times
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12Policy Example 2
 Example 

▪

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Always reaches state , waits there infinitely many times
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13Policy Example 3
 Example 

▪

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Reaches state with % probability ”in the limit”

(the more steps, the greater the probability)
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14Policies and Histories
 The outcome of sequentially executing a policy:

▪ A state sequence   called a history

▪ Infinite, since policies have no termination criterion

 For each policy, there can be many potential histories

▪ Which one is the actual result?

Gradually discovered at execution time!
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15History Example
 Example 1

▪

 Even if we know we start in : Two possible histories

▪   – Reached , waits indefinitely

  – Reached , waits indefinitely

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

How probable are these histories?
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16Probabilities: Initial States, Transitions
 Each policy has a probability distribution over histories/outcomes

▪ With known fixed initial state 𝑠0:

𝑃 𝒔𝟎, 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, …  𝜋 =ෑ

𝑖≥0

𝑃(𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1)

▪ With unknown initial state:

𝑃(〈𝒔𝟎, 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, …  | 𝜋) = 𝑃 𝑠0 ⋅ෑ

𝑖≥0

𝑃(𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1)

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Probability

of starting in

this specific 𝑠0

Probabilities for each required

state transition
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17History Example 1
 Example 

▪

 Two possible histories, if 𝑃 𝑠1 = 1:
▪      

     



Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait
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18History Example 2
 Example 

▪

▪      

     



Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait



19

jo
nk

v@
id

a
jo

nk
v@

id
a

19History Example 3
 Example 

▪

▪       

      

      

  ∞     

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait
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21Generalizating our Objectives
 Policies allow indefinite execution

▪ No predetermined termination criterion – go on "forever”

▪ 𝜋

𝜋 𝑠

 Combination of:

▪ Cost function 𝑐: 𝑆, 𝐴 → ℝ

▪ 𝑐(𝑠, 𝑎) = cost of being in state 𝑠 and executing action 𝑎

▪ Reward function 𝑅: 𝑆, 𝐴, 𝑆 → ℝ

▪ 𝑅 𝑠, 𝑎, 𝑠′ = Reward for being in 𝑠, executing 𝑎 and actually ending up in 𝑠′

But without termination, there can’t be goal states…

So what is the objective?  What is a good policy?
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22Example: Grid World
 Example: Grid World

▪ Actions: North, South, West, East, NorthWest, …, TakeGold

▪ Cost 𝑐(𝑠, 𝑎) = 15 for all 𝑠, 𝑎

▪ 90% chance: Go where you want

▪ 10% risk: End up somewhere else

▪ Rewards for some transitions

▪ 𝑅 𝑠, 𝑎, 𝑠′ = +100
for transitions when you

take the gold in the top right cell

▪ s = [top right, there is gold]

a = TakeGold

s’ = [top right, there is no gold]

▪ Danger in some cells

▪ Try to go to the top right cell

▪ 𝑅 𝑠, 𝑎, 𝑠′ = 0 usually

▪ 𝑅 𝑠, 𝑎, 𝑠′ = −200
if you accidentally end up

in the danger cell

-100 -200 +100

-80

+50

Important:

States != locations

Can’t take the gold twice,

can’t gain infinite rewards
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23Example: Tetris
▪ In each ”step”, a piece falls one row – and you execute one action

▪ Guide the pieces left/right, rotate them, drop them

▪ If an action/step results in filling a row:

▪ The line disappears

▪ 𝑅 𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑜𝑤 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = 100

▪ If an action/step results in filling two rows:

▪ 𝑅 𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 2 𝑟𝑜𝑤𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = 400

▪ When a piece has fallen all the way:

▪ A new random piece falls from the top

▪ Model piece probabilities using 𝑃 𝑠, 𝑎, 𝑠′

according to (most types of) Tetris rules
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24Example: Robot Navigation
 Example costs in robot navigation:

▪ 𝑐(𝑠, 𝑎) = 1

▪ 𝑐(𝑠, 𝑎) = 100

▪ 𝑐(𝑠, 𝑤𝑎𝑖𝑡) = 1

c=1

c=1

c=1

c=1

s2 s3

s4s1

s5
c=1

c=1

c=1

c=1

c=100c=
10

0

c=
10

0 c=100

c=100
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25Example: Robot Navigation (2)
 Example rewards in robot navigation

▪ Every time you end up in s5:

▪ Negative reward – maybe the robot is in our way 

▪ Every time you end up in s4:

▪ Positive reward – maybe it helps us

c=1

c=1

c=0

c=0

s2 s3

s4s1

s5

c=1

c=1

c=1

c=1

c=100c=
10

0

c=
10

0

c=100

c=100

r=0

r=0

r=0

r= –100

r=+100
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26Simplification
 To simplify formulas, include the cost in the reward!

▪ Decrease each 𝑅(𝑠𝑖, 𝜋(𝑠𝑖), 𝑠𝑖+1) by 𝐶(𝑠𝑖, 𝜋(𝑠𝑖))

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1



How useful is an outcome to us?
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28Total Rewards – In Advance?
 Given a policy 𝜋, what will our total rewards be?

▪ Can’t know in advance

▪ Will I reach the goal or end up in the danger zone?

▪ Which pieces will I get?

-100 -200 +100

-80

+50
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29Total Rewards – After Executing?
 Given a policy 𝜋…

▪ …and an outcome, a history (infinite state sequence)

ℎ = 〈𝑠0, 𝑠1, 𝑠2, … 〉 resulting from actually having executed 𝜋…

 …What were our total rewards?

▪ Undiscounted utility of a history:

V ℎ 𝜋 =

𝑖≥0

𝑅 𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1

▪ I was in 𝑠0, executed 𝜋 𝑠0 , and ended up in 𝑠1 -- reward!

▪ I was in 𝑠1, executed 𝜋 𝑠1 , and ended up in 𝑠2 −− reward!

▪ I was in 𝑠2, executed 𝜋 𝑠2 , and ended up in 𝑠3 −− reward!

▪ …
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31Utility in a Context
Policy = solution for infinite horizon

We will stop at some point

(the universe will end),

but we can't predict when

To find the best policy

for long term execution:

Consider the infinite case

Indefinite execution

Never ends – unrealistic

(Infinite actual execution)
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32Infinite Undiscounted Utility
 If we use undiscounted utility for an infinite history:

▪ 𝜋1 could result in  

▪ Stays at forever, executing “wait” ➔ infinite amount of rewards!

▪

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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33Infinite Undiscounted Utility (2)
 What’s the problem, if we "like" being in state ?

▪ Can’t distinguish between different ways of getting there!

▪ → → →  

▪ → → → → →  

▪ Both appear equally good…

▪ Can’t distinguish between

infinite times 100 and

and infinite times 1000

▪ Even without infinity,

we can’t see the

difference between

rewards now

and rewards in

the far future

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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34Discounted Utility
 Solution: Discounted utility for a history

▪ Introduce a discount factor, , with 0 ≤  ≤ 1

▪ Let 

𝑉 ℎ 𝜋 =

𝑖≥0

𝛾𝑖 𝑅(𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1)

▪ Distant rewards/costs

have less influence

▪ For example: 0.9, 0.81, 0.729, …

▪ Discounted utility is finite

as long as 0 ≤ 𝛾 < 1

Examples will use 𝛾 = 0.9

Only to simplify formulas!

Should choose carefully…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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36Expected Utility of a Policy
 We want to choose a good policy

▪ We know, for each history (outcome)   of a policy 𝜋:

▪ The probability that the history will occur: 𝑃 ℎ 𝜋

▪ The resulting actual discounted utility: V ℎ 𝜋 = σ𝑖≥0 𝛾
𝑖 𝑅 𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1

▪ Using this, calculate the statistically expected utility (∼"average" utility)

for the entire policy:

𝐸 𝜋 = 

ℎ∈{all possible histories for 𝜋}

𝑃 ℎ 𝜋 𝑉(ℎ|𝜋)

▪ Or, the expected utility given that we start execution in state s:

𝐸(𝜋, 𝑠) = 

ℎ∈{all possible histories for 𝜋}

𝑃 ℎ 𝜋, 𝑠0 = 𝑠)𝑉(ℎ|𝜋)

Strictly speaking, this is the expected discounted utility

(but expected undiscounted utility is rarely used)
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37Remembering theNotation…
 How to remember the notation?

▪ V – The actual Value.

Value depends on rewards,

and rewards depend on the state we actually ended up in,

so we can only know the actual value if we know the actual outcome,

which is represented as a history.

▪ E – the Expected value, in the statistical sense.

Since it is only expected, it isn’t certain yet,

and that’s because it takes into account all possible outcomes (histories)

and the resulting rewards and probabilities.
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38Example 1



 

≈

 

≈

Given that we start in s1,

can lead to only two histories:

80% chance of history h1,

20% chance of history h2

We expect a reward of 256.3 on average

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100

r=
 -1

00

r=
 0

r= -100

r= -200

r= -1



39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Example 2



 

 

Given that we start in s1,

also two different histories…

80% chance of history h1,

20% chance of history h2

Expected reward 531.7 (π1 gave 256.3)

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100

r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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41Expected Utility: Example
 Consider a policy…

▪ In state A, we should execute the ”green action”, which might lead to:

▪ B ➔ execute ”blue” ➔ E, F or G

▪ C ➔ execute ”red” ➔ H

▪ D ➔ execute green ➔ I, J or K A

D

C

B

KJIGFE

H
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42Expected Utility: History-based
 We calculated expected utilities based on histories

▪ Find and iterate over

all possible infinite histories:

𝐸 𝜋 = σℎ 𝑃 ℎ 𝜋 𝑉(ℎ|𝜋)
A

D

C

B

KJIGFE

H

<A,B,E,…>

<A,B,F,…>

<A,B,G,…>

<A,C,H,…>

…

Simple conceptually

Less useful for 

calculations
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43Expected Utility: Step by Step
 Another computation method:

▪ We want 𝐸 𝜋, 𝐴 , and the selected action is 𝜋 𝐴 = 𝑔𝑟𝑒𝑒𝑛

▪ What's the probability of outcome B? 𝑃(𝐴, 𝑔𝑟𝑒𝑒𝑛, 𝐵)

▪ What’s the reward for this outcome? 𝑅(𝐴, 𝑔𝑟𝑒𝑒𝑛, 𝐵)

▪ How much more will I get after arriving in B? 𝐸 𝜋, 𝐵 , by definition!

▪ How much is that worth to me now? 𝛾𝐸 𝜋, 𝐵

▪ What’s the probability of outcome C?

…

…

A

D

C

B

KJIGFE

H
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44Expected Utility: Step by Step (2)
 If π is a policy, then

▪ E(π,s) =  s’ S P(s, π(s), s') * (R(s, π(s), s') +  E(π,s'))

▪ The expected utility of continuing to execute π after having reached s

▪ Is the sum, for all possible states 𝑠’ ∈ 𝑆 that you might end up in (outcomes),

▪

of the probability 𝑃(𝑠, 𝜋(𝑠), 𝑠′) of actually ending up in that state

given the action 𝜋(𝑠) chosen by the policy, times

▪ the reward you get for this transition

▪ plus the discount factor

times the expected utility 𝐸(𝜋, 𝑠′) of continuing π from the new state s’
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45Example
 = the expected utility of executing starting in :

▪ Policy says: Use 

▪ Ending up in 𝑠3: 80% probability times

▪ Reward −1 plus future utility 𝛾 𝐸(𝜋2, 𝑠3)

▪ Ending up in 𝑠5: 20% probability times

▪ Reward −1 plus future utility 𝛾 𝐸(𝜋2, 𝑠5)

▪ So:

▪ 𝐸 𝜋2, 𝑠2 =

0.8 −1 + 𝛾𝐸 𝜋2, 𝑠3 +

0.2 −1 + 𝛾𝐸 𝜋2, 𝑠5 r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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46Trivial?
 Seems like a trivial calculation!

▪ Each expected utility depends on a few others…

so you’d just keep computing until you get to the end?

▪ 𝐸 𝜋2, 𝑠2 =

0.8 −1 + 𝛾𝐸 𝜋2, 𝑠3 +

0.2 −1 + 𝛾𝐸 𝜋2, 𝑠5

 No:  The graph 

often has cycles

▪ 𝐸 𝜋2, 𝑠2 depends on

𝐸 𝜋2, 𝑠3 ➔

𝐸 𝜋2, 𝑠4 ➔

𝐸 𝜋2, 𝑠1 ➔

𝐸 𝜋2, 𝑠2 ➔ …

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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47Equation System
 If π is a policy, then

▪ E(π,s) =  s’ S P(s, π(s), s') * (R(s, π(s), s') +  E(π,s'))

This is an equation system: |S| equations, |S| variables!

Use standard solution methods…
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48(Equation system example)
 Clarification: What do we mean by equation system?

▪ Suppose you have 2 equations

▪ 𝑥 = 5𝑦

▪ 𝑦 = 𝑥– 20

▪ Can’t solve recursively:

▪ Start with 𝑥 = 5𝑦; you want the value of 𝑦

▪ We know 𝑦 = 𝑥 − 20; we want the value of 𝑥, which is 5𝑦, which is …

▪ Can solve as an equation system:

▪ 𝑥 = 5(𝑥– 20)

▪ 𝑥 = 5𝑥– 100

▪ 0 = 4𝑥– 100

▪ 100 = 4𝑥

▪ 25 = 𝑥
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50Markov Decision Processes
 Markov Decision Processes

▪ Underlying world model: Stochastic system

▪ Plan representation: Policy – which action to perform in any state

▪ Goal representation: Reward function

▪ Solution: An optimal policy

▪ Definition:

An optimal policy 𝜋∗ maximizes expected utility for all states:

For all states s and alternative policies 𝜋,

𝐸 𝜋∗, 𝑠 ≥ 𝐸(𝜋, 𝑠)

Given a policy, we can compute expected utility.

How do we find a policy maximizing it?
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51Simplification
 In many formulations of MDPs (and our robotic example), 

rewards do not depend on the outcome s’!

𝐸 𝜋, 𝑠 = 

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝐸 𝜋, 𝑠′

➔ 𝐸 𝜋, 𝑠 = σ𝑠′∈𝑆𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝐸 𝜋, 𝑠′

➔ 𝐸 𝜋, 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + σ𝑠′∈𝑆𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

Let’s simplify the upcoming examples a bit…
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53Properties of Local Changes
 Given an MDP, suppose that:

▪ You already have some arbitrary (even random) policy 𝜋

▪ You select an arbitrary state 𝑠𝑘, make a local change to 𝜋(𝑠𝑘)

▪ Example: 𝜋 𝑠𝑘 = 𝑚𝑜𝑣𝑒 𝑙1, 𝑙3 ➔

𝜋 𝑠𝑘 = 𝑚𝑜𝑣𝑒(𝑙1, 𝑙4)

▪ The change turns out to be a local improvement

▪ It increases the expected utility E 𝜋, 𝑠𝑘 for this particular state 𝑠𝑘

 Then the change cannot decrease E 𝜋, 𝑠′ for any 𝑠′!

A local improvement for one state

is always a global improvement
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54Properties of Local Changes (2)
 Why?

𝐸 𝜋, 𝑠𝑘 = 𝑅 𝑠, 𝜋 𝑠𝑘 + 

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠𝑘 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

We change 𝜋 𝑠𝑘 -- select another action…

So expected utility 𝐸(𝜋, 𝑠𝑘) increases

𝐸 𝜋, 𝑠𝑚 = 𝑅 𝑠, 𝜋 𝑠𝑚 + 

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠𝑚 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

All of these remain unchanged!
𝐸(𝜋, 𝑠𝑘) may occur here (𝑠′ = 𝑠𝑘), 

but only positively:

Increase 𝐸(𝜋, 𝑠𝑘)➔
may increase 𝐸(𝜋, 𝑠𝑚)

How does this affect 𝐸(𝜋, 𝑠𝑚) for another state?
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55Properties of Local Changes (3)
 How many times can you make local improvements?

▪ There is a finite number of possible policies, 𝑆 ⋅ 𝐴

▪ The number of states |𝑆| is finite

▪ The number of actions |𝐴| is finite

▪ You can’t make the same improvement twice

▪ Every improvement leads to strictly greater expected utility

▪ Can’t ”loop around”

▪ ➔ After a finite number of local improvements,

no more local improvement will be possible
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56Properties of Local Changes (4)
 Also:

▪ Every global improvement can be reached

through such local improvements

(no need to first make the policy worse, then better)

 ➔ We can find optimal solutions through local improvements

▪ No need to “think globally”

But how do we find a local improvement?

Remember, finding expected utilities

required solving an expensive equation system…
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57Is a Local Change an Improvement?
 To find out if a change is an improvement:

▪ Take the current policy 𝜋, with an expected utility:

𝐸 𝜋, 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + 

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

▪ Define the Q function:

▪ What is the expected utility

if you first execute action a,

regardless of what the policy says,

but then continue executing the old policy

for all other steps?

▪ 𝑄 𝜋, 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + σ𝑠′∈𝑆𝑃 𝑠, 𝑎, 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

If 𝑄 𝜋, 𝑠, 𝑎 > 𝐸(𝜋, 𝑠), then setting 𝜋 𝑠 = 𝑎 would be an improvement to 𝜋.

We know this much without solving a full equation system…

Just not how large the improvement is!
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58Preliminaries 2: Example
▪ Example: 𝐸(𝜋, 𝑠1)

▪ The expected utility of following 𝜋

▪ Starting in , beginning with 

▪ 𝑄(𝜋, 𝑠1,move(𝑙1, 𝑙4))

▪ The expected utility of being in s1, first executing move( ),

then following policy 𝜋

▪ Only used to quickly find improvements

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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60Policy Iteration
 General idea:

▪ Start out with an initial policy, maybe randomly chosen

▪ Calculate and store the expected utility of executing that policy

for each state

▪ Update the policy by making a local decision for each state:

”Which action should my improved policy choose in this state?”

▪ Use the actions that appear to be best according to the Q function,

based on the actual expected utility for the current policy

▪ For every state 𝑠:
𝜋′ 𝑠 ∶= arg max

𝑎∈𝐴
𝑄(𝜋, 𝑠, 𝑎)

▪ Iterate until the policy no longer changes

But what if there was an even better choice,

which we don’t see now because of our single step modification (Q)?

That’s OK:  We still have an improvement,

which cannot prevent future improvements in the next iteration
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62Policy Iteration 1: Initial Policy 𝜋1
 Policy iteration requires an initial policy

▪ Let’s start by choosing “wait” in every state

▪ Let’s set a discount factor: 𝛾 = 0.9

▪ Easy to use in calculations

In reality we might use a larger factor

(we’re not that short-sighted!)

▪ Need to know its expected utilities!

▪ To know how to improve it…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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63Policy Iteration 2: Expected Utility for 𝜋1
 Calculate expected utilities for the current policy 𝜋1
▪ Simple: Chosen transitions are deterministic and return to the same state!

▪ π,    π,

▪ 

▪ 

▪ 

▪ 

▪ 

▪ Simple equations to solve:

▪ ➔

▪ ➔

▪ ➔

▪ ➔

▪ ➔

Given this policy π1:

High rewards if we start in s4, 

high costs if we start in s5
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64

Best improvement

Policy Iteration 3: Update 1a

 For every state s:

▪ Let 

▪ That is, find the action a that maximizes   

▪

▪ These are not the true expected utilities for starting in state 𝑠1!

▪ But the values will yield good guidance

to find policy improvements

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

What is the best

local modification

according to the

expected utilities

of the current policy?

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r = –200

r= –1
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65Policy Iteration 4: Update 1b

 For every state s:

▪ Let 

▪ That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π1,s')

▪ – – –

– – –

– – – –

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r = –200

r= –1
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66Policy Iteration 5: Update 1c

 For every state s:

▪ Let 

▪ That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π1,s')

▪ – – –

– – –

–

▪

–

▪ – – –

– – –

–

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r = –200

r= –1
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67Policy Iteration 6: Second Policy
 This results in a new policy

Now we have made use of

earlier indications that

s4 seems to be a good state

➔ Try to go there

from s1 / s3 / s5!

No change in s2 yet…

>= +444,5
>= –10
>= +800
>= +1000
>= +700

E(π1,s1) =–10
E(π1,s2) = –10
E(π1,s3) = –10
E(π1,s4) =+1000
E(π1,s5) = –1000

Q-values based

on one modified

action, then

following 

(can’t decrease!)

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r = –200

r= –1
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69Policy Iteration 7: Expected Utilities for 𝜋2
 Calculate true expected utilities for the new policy π2

▪  –

▪  –

▪  –

▪ 

▪  –

▪ Equations to solve:

▪ – ➔ –

▪ ➔

▪ – – ➔

▪ – – ➔

▪ – ➔ ➔

– ➔

– ➔

➔
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70Policy Iteration 8: Second Policy
 Now we have the true expected utilities of the second policy…

E(π2,s1) = +816,36
E(π2,s2) = – 10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

S5 wasn’t so bad after all,

since you can reach s4

in a single step!

S1 / s3 are even better.

S2 seems much worse

in comparison,

since the benefits of s4

haven’t ”propagated” that far.

>= +444,5
>= –10
>= +800
>= +1000
>= +700

E(π1,s1) =–10
E(π1,s2) = –10
E(π1,s3) = –10
E(π1,s4) =+1000
E(π1,s5) = –1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r = –200

r= –1
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71

Seems best – chosen!

Policy Iteration 9: Update 2a

 For every state s:

▪ Let 

▪ That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π ,s')

▪ –

– – –

–

▪ – – –

–

–

E(π2,s1) = +816,36
E(π2,s2) = –10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

What is the best

local modification

according to the

expected utilities

of the current policy?

Now we will change the action taken at s2,

since the expected utilities for possible ”next” states s1, s3, s5… have increased

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r = –200

r= –1
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72Policy Iteration 10: Update 2b

 For every state s:

▪ Let 

▪ That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π ,s')

▪ –

– – –

–

▪

▪ –

– – –

– –1

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π2,s1) = +816,36
E(π2,s2) = –10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r = –200

r= –1
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73Policy Iteration 11: Third Policy
 This results in a new policy π3

▪ True expected utilities are updated

by solving an equation system

▪ The algorithm will iterate once more

▪ No changes will be made to the policy

▪ ➔ Termination with optimal policy!

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r = –200

r= –1
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75Policy Iteration Algorithm
 Policy iteration is a way to find an optimal policy π*

▪ Start with an arbitrary initial policy 𝜋1. Then, for i = 1, 2, …

▪ Compute expected utilities E(πi ,s) for all s by solving a system of equations

▪ System: For all s, 𝑄(𝜋𝑖 , 𝑠, 𝜋𝑖 𝑠 )
  

▪ Result: The expected utilities of the “current” policy in every state s

▪ Not a simple recursive calculation – the state graph is generally cyclic!

▪ Compute an improved policy πi+1 “locally” for every s

▪  𝑄(𝜋𝑖 , 𝑠, 𝑎)

   

▪ Best action in any given state s given expected utilities of old policy 

▪ If then exit

▪ No local improvement possible, so the solution is optimal

▪ Otherwise

▪ This is a new policy – with new expected utilities!

▪ Iterate, calculate those utilities, …

Find utilities

according to 

current policy

Find best 

local

improvements
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76Policy Iteration Convergence
 Converges to a final answer in a finite number of iterations!

1. Finite states, finite actions ➔ finite number of candidate policies

2. An iteration can never return to a previous policy

▪ We change which action to execute in state 𝑠
only if this improves expected (pseudo-)utility Q for 𝑠

▪ This can never decrease the utility for other states!

▪ So utilities are monotonically strictly improving “all over”

➔ no circularity possible

 Actually:  Polynomial number of iterations!

▪ But polynomial in the number of states (huge)

not the number of objects/actions

▪ May take many iterations, and each iteration can be slow (solving equation system)
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77Alternatives
 Methods exist for reducing the search space,

and for approximating optimal solutions (see the book)

▪ Value iteration

▪ Linear programming

▪ Real Time Dynamic Programming

▪ …
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79Example Questions
 Example exam topics:

▪ PDB heuristics: The main ideas of patterns, how this results in a modified 

planning problem, why this is faster to solve, how the results are used, …

▪ Given a planning problem, can you apply a pattern and find the relaxed problem?

▪ Landmarks: The main ideas, what a landmark is, how to find landmarks, how 

to use them in a heuristic function, …

▪ Given a planning problem, can you find n unachieved fact landmarks using the 

means-ends analysis algorithm?

▪ The concepts of histories, utility, discount factors, …

▪ What a policy is / how it is defined, why we use it in some types of planning, 

and why a classical plan is not sufficient in these cases

▪ Explain policy iteration, and apply 1-2 steps given a small problem instance
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80TDDD48 Automated Planning (1)
 Deeper discussions about all of these topics, and…

▪ Formal basis for planning

▪ Alternative representations of planning problems

▪ Simple and complex state transition systems

▪ Different principles for heuristics

▪ Alternative search spaces

▪ Partial order planning, …

▪ Extended expressivity

▪ Planning with non-classical goals

▪ Planning with domain knowledge

▪ Using what you know: Temporal control rules

▪ Breaking down a task into smaller parts: Hierarchical Task Networks

▪ Combining planners – portfolio planning, learning planning parameters, …

▪ Alternative types of planning

▪ Path planning

▪ And so on…


