TDDC17:

Intro to Automated Planning

Classical Planning

Jonas Kvarnström

Artificial Intelligence and Integrated Computer Systems Division
Department of Computer and Information Science Linköping University

Introduction to Planning

One way of defining planning:

Using knowledge about the world, including possible actions and their results, to decide what to do and when
in order to achieve an objective, before you actually start doing it

You have done this before!

Using knowledge about the world, including possible actions and their results, to decide what to do and when in order to achieve an objective, before you actually start doing it

Are we done?

Domain-specific search guidance - too much (human) work!

Automated Planning:
 General heuristics

Pattern Databases, Landmarks FF, h^{m}, merge-and-shrink, ...
\rightarrow More in TDDD48

Automated Planning: Entirely different search spaces

Partial Order Causal Link
SAT planning, Planning Graphs, ...
\rightarrow More in TDDD48

Need a well-structured representation for planners/heuristics to analyse!

AI Planning: A Simplified View

Description of specific objectives
to achieve

Description of the world
 + how we can
 affect it with actions

Still simplified, because in reality:
There must be an agent that defines the objectives

Solution:

Plan with actions to perform, ordering constraints,

Multiple agents may plan, interact \rightarrow negotiation, delegation of tasks, collaboration, competition, ...

Execution can fail \rightarrow feedback, monitoring, replanning, plan repair

And so on...

Modeling "Classical" Planning Problems

The basis for most extended forms of automated planning

Facts and States: Introduction

- Like before, we are interested in states of the world

The world is currently in this state

We want to reach one of these states

Is the information above sufficient?
No - Need to analyze states, find differences compared to goal states, find relevant actions, ...!

Fatts and States: Introduction

- We need information about every state:

The world is currently in this state

We want to reach one of these states

Efficient planning depends on describing states as collections of facts:
We are in a state where there is dirt in both rooms, and the vacuum cleaner is in the leftmost room

Let's use a representation based on first order logic!

Example: Dock Worker Robots (DWR)

Containers shipped in and out of a harbor

Cranes move containers

 between "piles" and robotic trucks

Objects 1: Object Types

- Modern planners let us specify object types

A container can be stacked, picked up, loaded onto robots

A pile is a stack of containers at the bottom, there is a pallet

A crane moves containers between piles / robots

A robot is an automated truck moving containers between locations

A location is an area that can be reached by a single crane.
Can contain several piles, at most one robot.

Objects 2: Actual objects

- We then specify sets of actual objects
- robot: \{r1\}
- location: \{loc1, loc2\}
" crane: \{k1\}
" pile: \{p1, p2 \}
- container: $\{c 1, c 2, c 3$, pallet $\}$

Facts

- Most planners use a first-order representation:
- Every fact is represented as a logical atom: Predicate symbol + arguments
- Properties of the world
- raining
- it is raining [not in the standard DWR domain!]
- Properties of single objects...
- empty(crane)
- the crane is not holding anything
- Relations between objects
- attached(pile, location) - the pile is in the given location
- Relations between >2 objects
- can-move(robot, location, location)

Essential: Determine what is relevant for the problem and objective!

Facts / Predicates in DWR

- Reference: All predicates for DWR, and their intended meaning
"Fixed/Rigid"
(don't
change)

adjacent	$(l o c 1, l o c 2)$; can move from loc1 directly to loc2
attached	$(p, l o c)$; pile p attached to loc
belong	$(k, l o c)$; crane k belongs to loc
		$(r, l o c)$
at	; robot r is at loc	
occupied	$(l o c)$; there is a robot at loc
loaded	(r, c)	; robot r is loaded with container c
unloaded	(r)	; robot r is empty
		; crane k is holding container c
holding	(k, c)	; crane k is not holding anything
empty	(k)	; container c is somewhere in pile p
		; container c is on top of pile p
in	(c, p)	; container $c 1$ is on container $c 2$

States

States 1: State of the World

- A state (of the world) should specify exactly which facts (ground atoms) are true/false in the world

Ground = without variables at a given time

We know all predicates that exist: adjacent(location, location), ...

We know which objects exist for each type

Can calculate all ground atoms

$$
\begin{gathered}
\text { adjacent(loc1,loc1) } \\
\text { adjacent(loc1,loc2) } \\
\ldots \\
\text { attached(pile1,loc1) }
\end{gathered}
$$

These are the facts to keep track of!

We can find all possible states!
Every assignment of true/false to the ground atoms is a distinct state

Number of states: $2^{\text {number of ground atoms }}$ - enormous, but finite (for classical planning!)

States 1b:How many ground atoms, states?

- If we have r robots, l locations, k cranes, p piles, c containers:
- adjacent (loc1,loc2) ; l^{2} ground atoms attached (pile, loc) ;pl ground atoms belong (crane, loc) ; $k l$ ground atoms
at (rob,loc) ;rl ground atoms
occupied (loc)
loaded (rob, cont) ;rc ground atoms
unloaded (rob)
; r ground atoms
holding (crane, cont) ; kc ground atoms empty (crane)

in	(cont, pile)
top	(cont, pile)
on	(cont1, cont2)

; k ground atoms
; $c p$ ground atoms
; $c p$ ground atoms
; c^{2} ground atoms

- So:
- $(l+p+k+r+1) l+(c+1) r+(c+1) k+(c+2 p) c$ ground atoms
- $2^{(l+p+k+r+1) l+(c+1) r+(c+1) k+(c+2 p) c}$ states

States 2: Efficient Representation

- Efficient specification and storage for a single state:
- Specify which atoms are true
- All other atoms have to be false - what else would they be?
- A state of the world is specified as a set containing all ground atoms that [are, were, will be] true in the world - $s_{0}=\{\operatorname{on}(A, B), \operatorname{on}(B, C), \operatorname{in}(A, 2), \operatorname{in}(B, 2), \operatorname{in}(C, 2), \operatorname{top}(A), \operatorname{bot}(C)\}$

s_{0} top $(\mathrm{A}) \quad \operatorname{in}(\mathrm{A}, 2)$
on $(A, B) \quad$ in $(B, 2)$
on(B,C) in(C,2)
$\operatorname{bot}(\mathrm{C})$
$\operatorname{top}(A) \in s_{0} \rightarrow$ top (A) is true in s_{0}
$\operatorname{top}(B) \notin s_{0} \rightarrow$ top (B) is false in s_{0}

States 3:Initial State

- Initial states in classical planning:
- We assume complete information about the initial state s_{0} (before any action)

Complete relative to the model:
We must know everything about those predicates and objects we have specified...
But not whether it's raining!

- So we can still use a set of true atoms
- \{
attached(p1, loc1), in(c1, p1), on(c1, pallet), in(c3, p1), on(c3, c1), top(c3, p1), attached(p2, loc1), in(c2, p2), on(c2, pallet), top(c2, p2),
belong(crane1, loc1), empty(crane1), at(r1, loc2), unloaded(r1), occupied(loc2), adjacent(loc1, loc2), adjacent(loc2, loc1), \}

States 4: Goal States

- Classical planning: Reach one of possibly many goal states
- Can be specified as a set of literals that must hold

Literals = positive or negated atoms

- Example: Containers 1 and $\mathbf{3}$ should be in pile 2; container 12 should not be in pile 2
- We don't care about their order, or any other fact
- $\{$ in($\mathbf{c 1}, \mathrm{p} 2$), in($\mathbf{c} 3, \mathrm{p} 2)$, ᄀin(c12, p2) \}

Actions, Operators

Actions 1: Intro

- Actions in plain search (lectures 2-3):
- Assumed a transition / successor function

Result(State,Action) - A description of what each action does (Transition function)

- But how to specify it succinctly?

Actions 2: Operators

- Define operators or action schemas:
- move(robot, location1, location2)
- Precondition tests facts, depending on parameters:
at(robot, location1) \wedge
adjacent(location1, location2) \wedge
\neg occupied(location2)

The action is applicable in a state s
if its precond is true in s

The result of applying the action in state s:
$s-\{$ negated effect facts $\}$

+ \{positive effect facts\}

Actions 3: Instances

The planner instantiates the schemas

- Applies them to objects of the correct type
- Example: move(r1, loc1, loc2)
- Precondition: at(r1, loc1) \wedge
adjacent(loc1, loc2) \wedge
\neg occupied(loc2)
- Effects: \quad at($\mathrm{r} 1, \operatorname{loc} 1$),
at(r1, loc2), ᄀoccupied(loc1), occupied(loc2)

Actions 4: Step by Step

- In classical planning (the basic, limited form):

We know the initial state

Each action corresponds to one state update

We know how states are changed by actions
\Rightarrow Deterministic, can completely predict the state of the world after a sequence of actions!

The solution to the problem will be a sequence of actions

Planning Domain, Problem Instance

Split knowledge into two parts

Planning Domain

- General properties
- There are containers, cranes, ...
- Each object has a location
- Possible actions:

Pick up container, put down container, drive to location, ...

Problem Instance

- Specific problem to solve
- Which containers and cranes exist?
- Where is everything?
- Where should everything be?
(More general:
What should we achieve?)

The State Space

State Spaces 1: Introduction

- Every classical planning problem has a state space - a graph
- A node for every world state
- An edge for every executable action

The planning problem: Find a path (not necessarily shortest)

And a number of goal states ("no dirt"):

Example solutions: SRS, RSLS, LRLRLSSSRLRS, ...

State Spaces 2:Intuitions?

- Now that we have a general model of facts:
- Every combination of facts is a state
- \{ at(robot1,loc1), at(robot1, loc2) \}
- \{ adjacent(loc1, loc2) \}
[but not adjacent(loc2, loc1)!]

Facts are like "variables" that can independently be true or false!

- But our intuitions often identify states that we think are:
- "Normal"
- "Expected"
- "'Physically possible"
- Usually:
- The initial state is "normal"
- We never specify \{ at(robot1,loc1), at(robot1, loc2) \}
- Preconditions/effects ensure that we can only reach other "normal" states
- Mainly need to care about "normal" states... so let's focus on those!

State Spaces 3: ToH, Actions

Initial/current state

Towers of Hanoi
3 disks, 3 pegs
$\rightarrow 27$ states reachable from the initial state

A classical solution plan is an action sequence taking you from the init state to a goal state

State Spaces 4: Larger Example

Larger state space - interesting symmetry

- 7 disks
- 2187 "possible" states
- 6558 transitions, [state, action] \rightarrow state

State Spaces 5: Blocks World

Your greatest desire

Reference: 4 operators

- pickup(x) - takes x from the table
- putdown(x) - puts x on the table
- unstack (x, y) - takes x from on top of ? y
- stack $(x, y) \quad$ - puts x on top of y

Reference: 5 predicates

- on(x, y) block x is on block y
- ontable $(x) \quad-x$ is on the table
- clear(x) - we can place a block on x
- holding (x) - the robot is holding block x
- handempty - the robot arm is free

State Spaces 6: Blocks World, 3 blocks

Initial (current) state

State Spaces 7: Blocks World, 4 blocks

125 "possible" states 272 transitions

State Spaces 8: Blocks World, 5 blocks

 01

State Spaces 9: Reachable States

Blocks	States reachable from "all on table"	Transitions (edges) in this part of the space
0	1	0
1	2	2
2	5	8
3	22	42
4	125	272
5	866	2090
6	7057	18552
7	65990	186578
8	695417	2094752
9	8145730	25951122
10
... 30	>197987'401295'571718'915006'598239'796 851	

Plan Generation Method 1:
 Forward State Space Search

Forward Search 1

- Straight-forward planning: Forward search in the state space
- Start in the initial state
- Apply a search algorithm
- Depth first
- Breadth first
- Uniform-cost search

Initial (current) state

- Terminate when a goal state is found

Goal states

Forward Search 2: Don't Precompute

- The planner is not given a complete precomputed search graph!

Usually too large!
\Rightarrow Generate as we go,
hope we don't actually need the entire graph

Forward Search 3: Initial state

- The user (robot?) observes the current state of the world
- The initial state of the planning problem

- Must describe this using the specified formal state syntax...
- $s_{0}=\{\operatorname{clear}(\mathrm{A})$, on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty \}
- ...and give it to the planner, which creates one search node
- Here we show the path used to reach each node

$$
\begin{gathered}
{[] \rightarrow \text { \{clear(A), on(A,C), ontable(C), }} \\
\text { clear(B), ontable(B), clear(D), ontable(D), handempty \}}
\end{gathered}
$$

Forward Search 4: Successors

- Given any search node...

```
    [] }->\mathrm{ { clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }
```

- ...we can find successors - by applying actions!
- action pickup(D)
- Precondition: ontable(D) \wedge clear $(\mathrm{D}) \wedge$ handempty Effects: $\quad \neg$ ontable $(D) \wedge \neg$ clear $(D) \wedge \neg$ handempty \wedge holding (D)
- This generates new reachable nodes/states...
...which can also be illustrated

$$
\begin{gathered}
{[] \rightarrow \text { \{clear(A), on(A,C), ontable(C), }} \\
\text { clear(B), ontable(B), clear(D), ontable(D), handempty \}}
\end{gathered}
$$

[pickup(D)] \rightarrow \{clear(A), on(A,C), ontable(C), clear(B), ontable(B), holding(D) \}

Forward Search 5: Step by step

- A search strategy (depth first, A^{*}, hill climbing, ...) will:
- Choose a node
- Expand the node, generating all possible successors
- "What actions are applicable in the current state, and where will they take me?"
- Generates new states by applying effects

This is illustrated the planner works with sets of facts

The blocks world is symmetric: Can always "return the same way"
Not true for all domains!

Uninformed or Informed

Forward State Space Search?

Uninformed Search

- Can we use uninformed search algorithms?

- With only 30 blocks, we have $>197987401295571718915006598239796851$ reachable states
- But what if we don't need to explore all the states?
- Suppose we need to tear down a 400-block tower and build it up on another "base"
- Suppose we want good plans
\rightarrow use a shortest-path algorithm such as Dijkstra's / Uniform Cost Search
- Will explore all plans of lower length/cost than the optimal one

- Plans to test: More than...

16305698390789310586457967937334728775645948416347826722586241976230426399420799766425821395576658116365413711816311922048822638316916164832 04594902834106357987452326989711329392844798003040966743549740387225888734809637192406427243636291547266329397641772360103156941486368193342 17252836414001487277618002966608761037018087769490614847887418744402606226134803936935233568418055950371185351837140548515949431309313875210 82788894333711361366092831808629961795389295372200673415893327657647047564060739170102603095904030354817422127405232957963777365872245254973 845940445258650369316934041843540738326378160253394039629713918091 Tr 102711578461258322856646764107108548826574448445631879309077796615 46544137235056874866249021991849760646988031691394386551194171193 065768422967838517772535893398611212735245298803377536493561116410 374355414584408338787093441749839774374303275575344176291224488351 906611800376194410428900071013695438359094641682253856394743335678 891705393354709843502065977868949960690415707700579763228766976414
 47294834609054590571101642 44130264943230562021556885 75080732255786307776859016 13607822206465635272711073 75511016725485476618861912 08793077271410935265343286 71360002096924483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572434616042404375211052324038225 80540571315732915984635193126556273109603937188229504400

Informed Search

- We need guidance!
- For example, a heuristic function $h(n)$ estimating the cost of reaching a goal node from node n
- Sometimes, we define cost = number of actions
- More general: each action has a cost c(a) - longer plans may be cheaper!

Informed Search (2)

- Previously we manually designed heuristics for a problem
- 8-puzzle \rightarrow \# pieces out of place, or sum of Manhattan distances
- Romania Travel \rightarrow straight line distance

7	2	4
5		6
8	3	1

- Now: Want to define general heuristic functions
- Without knowing what planning problem is going to be solved!

Informed Search: Perfect Information?

- Given a planning problem instance and a current state s :
- $\pi^{*}(s)$ denotes an optimal solution starting in s
- $h^{*}(s)=\operatorname{cost}\left(\pi^{*}(s)\right)$ denotes the cost of an optimal solution
$-\rightarrow h^{*}$ would be the "perfect heuristic"
- Admissible - cannot overestimate
- Informative - perfect information
- Great, but can we compute $h^{*}(s)$?
- Theoretically, yes
- Practically, as difficult as finding an optimal plan in the first place!

We need approximations

Desirable properties depend on the type of planning

Heuristics for Optimal Classical Planning

Optimal 1: Introduction

- In optimal plan generation:
- There is a quality measure for plans
- Minimal number of actions
- Minimal sum of action costs
- We must find an optimal plan!

- Suboptimal plans (0.5\% more expensive):

Optimal 2:A*

- Optimal Plan Generation: Often uses A*
- A* focuses entirely on optimality
- Find a guaranteed optimal plan as quickly as possible
" But no point in trying to find a "reasonable" plan before the optimal one
- Slowly expand from the initial node, systematically checking possibilities
- A* requires admissible heuristics to guarantee optimality
- Reason: Heuristic used for pruning (ignoring some search nodes)
- Non-admissible \rightarrow can ignore some nodes that would lead to optimal plans

Optimal 3: Relaxation?

- Relaxation can be used to generate admissible heuristics...

Inventing Admissible heuristics: Problem relaxation

- A problem with fewer restrictions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is in fact an admissible heuristic to the original problem

If the problem definition can be written down in a formal language, there are possibilities for automatically generating relaxed problems automatically!

Sample rule:
A tile can move from square A to square B if A is horizontally or vertically adjacent to B and B is blank

1. 1 UINKÖPING

Optimal 4: Computing h() using Relaxation

Original problem P, we just generated state s, want to compute h(s)

Relax

Relaxed problem: P^{\prime} (finding a solution: fast)

But how can you find relaxations
that work for all classical planning problems?

Solve
Find $\pi^{*}\left(P^{\prime}\right)$ -
optimal ((8) plan
for relaxed problem

Find cost

Compute $\mathrm{h}(\mathrm{s})=\operatorname{cost}\left(\pi \pi^{*}\left(P^{\prime}\right)\right)$

Since P is just 'some classical planning problem', we can't expect to find a general shortcut such as 'sum of Manhattan distances'

Pattern Database Heuristics:
 One of many relaxation heuristics

PDB 1:Introduction

- Main idea behind relaxation in pattern database heuristics:
- Let's ignore some facts - ground atoms - everywhere
- Remove from preconditions and goals
- Clearly makes the problem easier - relaxation!
- Remove from current state and from action effects
- No need to update these facts, when no conditions require them!

PDB 2: Dock Worker Robots

- Example: Dock Worker Robots
- Suppose we only consider container locations
- in(container, pile), top(container,pile), on(c1,c2), ...
- Ignore robot locations, crane locations, ...

Abstract state in P', information that remains after relaxation

Want to know $h(s)$ for state s in P, where all facts are defined

PDB 3: Planning in Patterns

- In P' we (pretend that we) can use the crane at p1 to:
- pick up c3 (as we should)
" place something on $\mathbf{r 1}$ (too far away, but that precondition disappeared...)
" place five containers on one truck (condition "truck is free" disappeared)
A tile can move from square A to square B if A is horizontally or vertically adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B
2. A tile can move from square A to square B if B is blank
3. A tile can move from square A to square B

State s in P

PDB 3b: Planning in Patterns

- In P' we still can't:
- pick up c1 (preconditions about pile ordering are still there)
- immediately place c1 below c2, ...
- \rightarrow Still a planning problem P' left; need to find (cost of) optimal solution!

PDB 4:Computing a Heuristic Value

- Solve P' optimally: 4 actions
- Take c2 with the crane (it's in the way at the bottom of pile p2)
- Take c3 with the crane [relaxation - not checking if the crane is busy]
- Place c3 at the bottom of pile p2
- Place c2 on top

Abstract state s

pile $\mathbf{p} 2$
c2

Let's formalize!

PDB: Blocks World size 4

- Consider physically achievable states in the blocks world, size 4:

- All ground atoms (facts) in this problem instance:

```
- (onAA) (onAB) (onAC) (onAD)
(on B A) (on B B) (on B C) (on B D)
(on C A) (on C B) (on C C) (on C D)
(on D A) (on D B) (on D C) (on D D)
(ontable A) (ontable B) (ontable C) (ontable D)
(clear A) (clear B) (clear C) (clear D)
(holding A) (holding B) (holding C) (holding D)
(handempty)
```


PDB: Patterns, Abstrat States

- The pattern p is the set of ground facts we care about
- A state s is represented by the abstract state $s \cap p$
- If $s \cap p=s^{\prime} \cap p$, the two states are considered equivalent

A pattern generally contains few facts - for performance!

PDB: lgnoring Fats

- Example: only consider 5 ground facts related to block A
" "Pattern": $p=\{(\boldsymbol{o n} A B),($ on A C), (on A D), (clear A), (ontable A) $\}$
- State:

An "abstract state"

An "abstract goal"

PDB: Transforming Actions

- Pattern $p=\{($ on A B), (on A C), (on A D), (clear A), (ontable A) $\}$
- Example action: (unstack A B) - an action (instance), not an operator!
- Before transformation:
:precondition (and (handempty) (clear A) (on A B))
:effect (and (not (handempty)) (holding A) (not (clear A)) (clear B) (not (on A B)))
- After transformation: :precondition (and (clear A) (on A B)) :effect (and (not (clear A)) (not (on A B)))

Loses some preconditions and effects

Let's call this action transform (a, p)

- Example action: (unstack C D)
- Before transformation:
:precondition (and (handempty) (clear C) (on C D))
:effect (and (not (handempty)) (holding C) (not (clear C)) (clear D) (not (on CD)))
- After transformation: :precondition (and) :effect (and)

Loses all preconditions and effects $\boldsymbol{\rightarrow}$ never used!

PDB: New State Space

- Pattern $p=\{($ on A B), (on A C), (on A D), (clear A), (ontable A) \}

We lose information - and the size of the search space shrinks

PDB: State Transition Griaph

- New reachable state transition graph:
- Real state s: Everything on the table, hand empty, all blocks clear
- \rightarrow Abstract state: $s 0=\{$ (ontable A), (clear A) $\}$
- Real goal g: A on B on C on D, ... - \rightarrow Abstract goal: \{ (on A B), (clear A) \} satisfied only in s64
- Few abstract states
\rightarrow quickly compute optimal costs for relaxed P^{\prime}
- Relaxed cost is exactly 2 : Shortest path $\mathrm{s} 0 \rightarrow \mathrm{~s} 64$
- So real cost is at least 2; $h(s)=2$ is admissible

- Where did the databases go?
- During the main search, many visited actual states will correspond to the same abstract states \rightarrow need the same value over and over again
- Given a pattern, we precompute a database for all abstract states
- Improves performance; the principle remains

PDB:More information

- To make PDB heuristics more informative:
- Calculate costs for several patterns
- Suppose we only care about $\{$ clear(A), ontable(A) $\}$
- Suppose we only care about \{on(A,B), on(C,D)\}
- Suppose we...
- Take the maximum of the computed heuristic values

- One difficulty:
- Choosing which patterns to use...

- Blind $A^{*}, h(s)=0: 43150$ states calculated, 33436 visited
- A^{*} using iPDB: 1321 states calculated, 375 visited

No heuristic is perfect - visiting some additional states is fine!

Satisficing Planning

Satisficing Planning

- Optimal plans are nice but often hard to find
- Larger problem instances \rightarrow too much time, memory (even with good heuristics)!
- Satisficing plan generation:
- Find a plan that is sufficiently good, sufficiently quickly
- What's sufficient?
- Usually not well-defined!
- "These strategies and heuristics seem to give pretty good results for the instances I tested..."

Speed: Strategies

- One reason for speed: Other informed search strategies
- Simple: Greedy best first search
- Always expand the node that seems to be closest to the goal
- Who cares if getting there was expensive? At least I might find a way to the goal!
- (Only care about $h(s)$, not about $g(s)$)

- Hill climbing
- Be stubborn:

If one direction seems promising, continue in this direction
" Many others!

Speed:Heuristics

- One reason for speed: Often more informative heuristics
- Optimal planning:
" Often requires admissibility: "We must never overestimate, ever!"
- Result: Usually underestimates (a lot!)
- Satisficing planning: Extreme example - greedy best first
- Only important that the "best" successor has a low heuristic value
- For GBF, what the value is doesn't matter!

- In many cases:
- Admissibility is not required
- Lack of admissibility is not "only slightly harmful"
- Lack of admissibility is irrelevant

7 blocks (tiny problem)

A*, IPDB: Expand 1321 states, 18 actions in the solution

Greedy, IPDB: Expand 171 states, 22 actions in the solution

Larger problem instances \rightarrow the difference increases

Example:

Landmark Heuristics

Landmark Heuristics (1)

Landmark:

"a geographic feature used by explorers and others to find their way back or through an area"

Landmarks (2)

Landmarks in planning:

Something you must achieve or use in every solution to a problem instance
Assume we are considering a state s...

Fact Landmark for s:

A single fact (ground atom) that must be true at some point in every solution starting in s

B
C
A
D

clear(A)
holding(C)

Landmarks (3)

Facts, not states! Why?

- Usually many paths lead from s to goal states
- Few states are shared among all paths
- Here only s0...
- More likely to find facts

Landmarks (4)

Notice: No Euclidean distance; you can't easily know how far a state is from a state satisfying a particular landmark...

Start here	rob-at(roomB) box-at(roomA)	Satisfies rob-at(roomD)... But not "on the right path"!	
$\begin{gathered} {[\text { INIT] }} \\ \text { rob-at(roomA) } \\ \text { box-at(roomA) } \end{gathered}$	$\begin{array}{\|l} \hline \text { rob-at(roomC) } \\ \text { box-at(roomA) } \end{array}$	$\begin{gathered} \text { rob-at(roomD) } \\ \text { box-at(roomA) } \\ \text { closed(DE) } \end{gathered}$	$\begin{aligned} & \text { rob-at(roomD) } \\ & \text { box-at(roomA) } \end{aligned}$

Landmarks (5): Misunderstandings

Not "we must reach (pass through) the landmark state"!

Instead "we must reach some state that satisfies the landmark"

Not "A landmark fact is a state that..."

A fact is not a state.
A state consists of many facts.
("A word is a sentence that...")

A landmark fact is not
"a fact that is true in every solution"
A solution is a plan.
Facts are true in states.

A landmark fact is
"a fact that is true in some state along every path
from the initial state to any goal state".

But isn't the state space graph too large to generate?

Let's try to find some of the landmarks, more efficiently...

Means-Ends Analysis Algorithm

- Problem setup
- $S=$ the state whose heuristic value we want, a set of true facts
- \{ clear(B), ontable(B), clear(C), on(C,A), on(A,D), ontable(D), handempty \}
- $g=$ the goal specification, a set of desired facts
- \{ clear(D), on(D,C), on(C,A), on(A,B), ontable(B) \}
- (This goal does not mention handempty!)
- One way of discovering landmarks: means-ends analysis ("backwards from the goal")
- All facts in g must be landmarks - must occur at the end of a solution path!
- \{ clear(D), on(D,C), on(C,A), on(A,B), ontable(B) \}
- But let's focus on the most interesting part
" 4 "unachieved" landmarks, not already true in state s : $g-s=\{\operatorname{clear}(\mathbf{D})$, on(D,C $)$, on(A,B), ontable(B) $\}$

Means-Ends Analysis Algorithm (2)

- Means-ends analysis, informally:
- We start with $g-s=\{\operatorname{clear}(\mathbf{D})$, on(D,C), on(A,B), ontable(B) $\}$
- Now let's consider on(D,C)
- Must be achieved by some action: Is a landmark, but not already true in s
- How can we achieve on(D,C)?
- Only using stack(D,C)

S		g
		D
	C	C
	A	A
B	D	B

- What do we also need, in order to actually execute stack(D,C)?
- All of its preconditions
- \{ holding(D), clear(C) \} must also be fact landmarks, but clear(C) is true now...
- $\{$ holding(D) $\}$ - another unachieved fact landmark!
- Updated list of 5 distinct unachieved LM found:
- \{ clear(D), on(D,C), on(A,B), ontable(B), holding(D) \}

Means-Ends Analysis Algorithm (3)

- How can we achieve holding(D)?
- Remember we must consider all possible paths to a goal state
- \rightarrow All actions having holding(D) as an effect
- \rightarrow \{ pickup(D), unstack(D,A), unstack(D,B), unstack(D,C), unstack(D,D) \}
- What do we also need, regardless of which of these actions we use?
- The intersection of the preconditions of the 5 actions
- Only pickup requires ontable(D); only unstack requires on(D,something)...
- But all require $\{$ clear(D), handempty \} - must also be fact landmarks
- \{ clear(D) \}- another unachieved fact landmark!

So now we have 6...

Means-Ends Analysis Algorithm (4)

Unachieved goal facts:

clear(D), on(D,C), on(A,B), ontable(B)

fact-landmarks $\leftarrow \mathrm{g}-\mathrm{s}$

$\mathbf{p}=\mathbf{o n}(\mathbf{D}, \mathbf{C})$ is an unachieved fact landmark
\rightarrow all solutions must at some point achieve on(D,C) with an action effect \rightarrow compute achievers $=\{\boldsymbol{\operatorname { s t a c k }}(\mathrm{D}, \mathrm{C})\}$, the only action achieving on(D,C)

All achievers have some common requirements / preconditions: \{holding(D), handempty, clear(C), ... \}
do \{
for each p in fact-landmarks \{ // Which actions could achieve p? achievers $\leftarrow\{a \in A \mid p \in \operatorname{effects}(a)\}$
// What would all the achievers need? common $\leftarrow \bigcap_{a \in \text { achievers }} \operatorname{preconds}(a)$
handempty is already true, but new $=\{$ holding(D), clear(C) $\}$ are unachieved landmarks

Maybe we can find more landmarks related to achieving those!
new \leftarrow common - s
fact-landmarks \leftarrow fact-landmarks U new

Landmark Counts and Costs

- One simple form of landmark heuristic: Counting landmarks
- $h(s)=$ the number of unachieved landmarks in state s

One action can actually achieve multiple landmarks at once (multiple effects)
\Rightarrow landmark count is not admissible

More complex (and stronger) forms of landmark heuristics also exist - pioneered by the LAMA planner

See, for example,
Silvia Richter and Matthias Westphal. The LAMA planner: Guiding costbased anytime planning with landmarks. Journal of Artificial Intelligence Research, 39:127-177, 2010.

