
jonas.kvarnstrom@liu.se – 2021

TDDC17:
Intro to Automated Planning

Classical Planning

Jonas Kvarnström

Artificial Intelligence and Integrated Computer Systems Division

Department of Computer and Information Science

Linköping University

One way of defining planning:

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

You have done this before!

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

Are we done?

Domain-specific search guidance – too much (human) work!

Automated Planning:

General heuristics

Automated Planning:

Entirely different search spaces

Pattern Databases, Landmarks

FF, ℎ𝑚, merge-and-shrink, …

➔ More in TDDD48

Partial Order Causal Link

SAT planning, Planning Graphs, …

➔ More in TDDD48

Need a well-structured representation

for planners/heuristics to analyse!

More complex ???

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6AI Planning: A Simplified View

Sensors

Description of

specific objectives

to achieve

General planning algorithm,

general heuristics

Solution:

Plan with actions to perform,

ordering constraints,

…

Execution System

Description of

the world

+ how we can

affect it with actions

Actuators

Still simplified, because in reality:

There must be an agent

that defines the objectives

Multiple agents may plan, interact ➔

negotiation, delegation of tasks,

collaboration, competition, …

And so on…

Execution can fail ➔ feedback,

monitoring, replanning, plan repair

The basis for most extended forms of automated planning

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Facts and States: Introduction

 Like before, we are interested in states of the world

We want to reach

one of these states

The world is currently

in this state

No – Need to analyze states,

find differences compared to goal states,

find relevant actions, …!

Is the information above sufficient?

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Facts and States: Introduction

 We need information about every state:

We want to reach

one of these states

The world is currently

in this state

Efficient planning depends on describing states as collections of facts:

We are in a state where there is dirt in both rooms,

and the vacuum cleaner is in the leftmost room

Let’s use a representation
based on first order logic!

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Example: Dock Worker Robots (DWR)

Containers shipped

in and out of a harbor

Cranes move containers

between ”piles” and robotic trucks

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Objects 1: Object Types

 Modern planners let us specify object types

p1
c1

c3 p2
c2

loc1
r1

loc2

A pile is a stack of containers –

at the bottom, there is a pallet

A crane moves containers

between piles / robots

A robot is an automated

truck moving containers

between locations

A container can be

stacked, picked up,

loaded onto robots

A location is an area that can

be reached by a single crane

Can contain several piles,

at most one robot.

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Objects 2: Actual objects

 We then specify sets of actual objects

▪

▪

▪

▪

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Facts

 Most planners use a first-order representation:

▪ Every fact is represented as a logical atom: Predicate symbol + arguments

▪ Properties of the world

▪

▪ Properties of single objects…

▪

▪ Relations between objects

▪

▪ Relations between >2 objects

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Essential: Determine what is relevant for the problem and objective!

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Facts / Predicates in DWR

 Reference: All predicates for DWR, and their intended meaning

▪"Fixed/Rigid"

(don’t

change)

"Dynamic"

(modified by

actions)

States

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17States 1: State of the World

 A state (of the world) should specify exactly

which facts (ground atoms) are true/false in the world

at a given time

We know all predicates that exist:

We know which objects exist

for each type

Can calculate all ground atoms

Every assignment of true/false to the ground atoms is a distinct state

Number of states: – enormous, but finite (for classical planning!)

We can find all possible states!

These are the facts to keep track of!

Ground =

without

variables

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18States 1b: How many ground atoms, states?

 If we have 𝑟 robots, 𝑙 locations, 𝑘 cranes, 𝑝 piles, 𝑐 containers:
▪ 𝑙2

𝑝𝑙
𝑘𝑙

𝑟𝑙
𝑙
𝑟𝑐
𝑟

𝑘𝑐
𝑘

𝑐𝑝
𝑐𝑝
𝑐2

 So:

▪ 𝑙 + 𝑝 + 𝑘 + 𝑟 + 1 𝑙 + 𝑐 + 1 𝑟 + 𝑐 + 1 𝑘 + 𝑐 + 2𝑝 𝑐 ground atoms

▪ 2 𝑙+𝑝+𝑘+𝑟+1 𝑙+ 𝑐+1 𝑟+ 𝑐+1 𝑘+ 𝑐+2𝑝 𝑐 states

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19States 2: Efficient Representation

 Efficient specification and storage for a single state:

▪ Specify which atoms are true

▪ All other atoms have to be false – what else would they be?

▪ ➔ A state of the world is specified as a set containing

all ground atoms that [are, were, will be] true in the world

▪

∈ ➔

∉ ➔

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20States 3: Initial State

 Initial states in classical planning:

▪ We assume complete information about the

initial state 𝑠0 (before any action)

▪ So we can still use a set of true atoms

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Complete relative to the model:

We must know everything

about those predicates and objects

we have specified...

But not whether it's raining!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21States 4: Goal States

 Classical planning: Reach one of possibly many goal states

▪ Can be specified as a set of literals that must hold

▪ Example: Containers 1 and 3 should be in pile 2;

container 12 should not be in pile 2

▪ We don't care about their order, or any other fact

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Literals = positive

or negated atoms

Actions, Operators

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Actions 1: Intro

 Actions in plain search (lectures 2-3):

▪ Assumed a transition / successor function

▪ But how to specify it succinctly?

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Actions 2: Operators

 Define operators or action schemas:

▪

▪

∧
∧

¬

▪

¬

¬

The result of applying the

action in state s:

s – {negated effect facts}

+ {positive effect facts}

The action is applicable

in a state s

if its precond is true in s

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Actions 3: Instances

 The planner instantiates the schemas

▪ Applies them to objects of the correct type

▪

▪ ∧
∧

¬

▪ ¬

¬

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Actions 4: Step by Step

 In classical planning (the basic, limited form):

We know

the initial

state

We know how states are changed by actions

➔ Deterministic, can completely predict the

state of the world after a sequence of actions!

Each action corresponds to one state update

The solution to the problem

will be a sequence of actions

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Planning Domain, Problem Instance

Split knowledge into two parts

▪ General properties

▪ There are containers, cranes, …

▪ Each object has a location

▪ Possible actions:

Pick up container, put down

container, drive to location, …

Planning Domain

▪ Specific problem to solve

▪ Which containers and cranes exist?

▪ Where is everything?

▪ Where should everything be?

(More general:

What should we achieve?)

Problem Instance

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29

And a number of

goal states ("no dirt"):

We assume

an initial state:

State Spaces 1: Introduction

 Every classical planning problem has a state space – a graph

▪ A node for every world state

▪ An edge for every executable action

Example solutions: SRS, RSLS, LRLRLSSSRLRS, …

The planning problem: Find a path (not necessarily shortest)

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30State Spaces 2: Intuitions?

 Now that we have a general model of facts:

▪ Every combination of facts is a state

▪ { at(robot1,loc1), at(robot1, loc2) }

▪ { adjacent(loc1, loc2) }

[but not adjacent(loc2, loc1)!]

 But our intuitions often identify states that we think are:

▪ ”Normal”

▪ ”Expected”

▪ ”Physically possible”

 Usually:

▪ The initial state is ”normal”

▪ We never specify { at(robot1,loc1), at(robot1, loc2) }

▪ Preconditions/effects ensure that we can only reach other ”normal” states

▪ Mainly need to care about ”normal” states… so let’s focus on those!

Facts are like

”variables” that can

independently be

true or false!

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31State Spaces 3: ToH, Actions
A classical solution plan is

an action sequence

taking you from the

init state to a goal state
Towers of Hanoi

disks, pegs

➔ states reachable

from the initial state

Initial/current state

Goal state

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32State Spaces 4: Larger Example

 Larger state space – interesting symmetry

▪ 7 disks

▪ 2187 “possible” states

▪ 6558 transitions, [state, action] → state

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33State Spaces 5: Blocks World

Your greatest desireCurrent state of the worldYou

▪ – takes x from the table

▪ – puts x on the table

▪ – takes x from on top of ?y

▪ – puts x on top of y

 – block x is on block y

 – x is on the table

 – we can place a block on x

 – the robot is holding block x

 – the robot arm is free

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34State Spaces 6: Blocks World, 3 blocks

Initial (current) state

Goal states

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35State Spaces 7: Blocks World, 4 blocks
125 ”possible” states

272 transitions

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36State Spaces 8: Blocks World, 5 blocks
866 ”possible” states

2090 transitions

This is tiny!

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37State Spaces 9: Reachable States

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Forward Search 1

 Straight-forward planning: Forward search in the state space

▪ Start in the initial state

▪ Apply a search algorithm

▪ Depth first

▪ Breadth first

▪ Uniform-cost search

▪ …

▪ Terminate when a

goal state is

found

Initial (current) state

Goal states

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Forward Search 2: Don’t Precompute

 The planner is not given a complete precomputed search graph!

Usually too large!

➔ Generate as we go,

hope we don’t actually need the entire graph

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Forward Search 3: Initial state

 The user (robot?) observes the current state of the world

▪ The initial state of the planning problem

 Must describe this using the specified formal state syntax…

▪ 𝑠0

 …and give it to the planner, which creates one search node

▪

➔

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Forward Search 4: Successors

 Given any search node…

 …we can find successors – by applying actions!

▪

▪ ∧ ∧
¬ ∧ ¬ ∧ ¬ ∧

 This generates new reachable nodes/states…

➔

➔

…which can also

be illustrated

➔

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Forward Search 5: Step by step

 A search strategy (depth first, A*, hill climbing, …) will:

▪ Choose a node

▪ Expand the node, generating all possible successors

▪ “What actions are applicable in the current state, and where will they take me?”

▪ Generates new states by applying effects

▪ Repeat until a goal node is found!

The blocks world is

symmetric: Can

always “return the

same way”

Not true for all

domains!

This is illustrated –

the planner works

with sets of facts

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Uninformed Search

 Can we use uninformed search algorithms?

▪ With only 30 blocks, we have >197987401295571718915006598239796851

reachable states

▪ But what if we don’t need to explore all the states?

▪ Suppose we need to tear down a 400-block tower

and build it up on another “base”

▪ Suppose we want good plans

➔ use a shortest-path algorithm

such as Dijkstra’s / Uniform Cost Search

▪ Will explore all plans of lower length/cost

than the optimal one

▪ Plans to test: More than…
16305698390789310586457967937334728775645948416347826722586241976230426399420799766425821395576658116365413711816311922048822638316916164832

04594902834106357987452326989711329392844798003040966743549740387225888734809637192406427243636291547266329397641772360103156941486368193342

17252836414001487277618002966608761037018087769490614847887418744402606226134803936935233568418055950371185351837140548515949431309313875210

82788894333711361366092831808629961795389295372200673415893327657647047564060739170102603095904030354817422127405232957963777365872245254973

84594044525865036931693404184354073832637816025339403962971391809127548532657959091134440844417556642117962743202569929923177737498303751007

10271157846125832285664676410710854882657444844563187930907779661572990289194810585217819146476629300233604155183447294834609054590571101642

46544137235056874866524902199184976064698803169139438655119417119333314403154250104781806001550533636847055630203244130264943230562021556885

06576842296783851777253589339861121273524529880337753649356111641079452849810891029206930872017424323607291625273875080732255786307776859016

37435541458440833878709344174983977437430327557534417629122448835191721077333875230695681480990867109051332104820413607822206465635272711073

90661180037619441042890007101369543835909464168225385639474333567854582432093210697331749851571100671998530498260475511016725485476618861912

89170539335470984350206597786894996069041570770057976322876697641450955815650565898117215204346127705949506137017308793077271410935265343286

71360002096924483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572434616042404375211052324038225

80540571315732915984635193126556273109603937188229504400

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46Informed Search

 We need guidance!

▪ For example, a heuristic function h(n) estimating the cost

of reaching a goal node from node n

▪ Sometimes, we define cost = number of actions

▪ More general: each action has a cost c(a) – longer plans may be cheaper!

Initial node

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Informed Search (2)

 Previously we manually designed heuristics for a problem

▪ 8-puzzle ➔ # pieces out of place, or sum of Manhattan distances

▪ Romania Travel ➔ straight line distance

 Now: Want to define general heuristic functions

▪ Without knowing what planning problem is going to be solved!

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Informed Search: Perfect Information?

 Given a planning problem instance and a current state 𝑠:
▪ 𝜋∗(𝑠) denotes an optimal solution starting in 𝑠

▪ ℎ∗ 𝑠 = cost(𝜋∗ 𝑠) denotes the cost of an optimal solution

 ➔ ℎ∗ would be the ”perfect heuristic”
▪ Admissible – cannot overestimate

▪ Informative – perfect information

 Great, but can we compute ℎ∗ 𝑠 ?

▪ Theoretically, yes

▪ Practically, as difficult as finding an optimal plan in the first place!

We need approximations

Desirable properties depend on the type of planning

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Optimal 1: Introduction

 In optimal plan generation:

▪ There is a quality measure for plans

▪ Minimal number of actions

▪ Minimal sum of action costs

▪ …

▪ We must find an optimal plan!

▪ Suboptimal plans

(0.5% more expensive):

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51Optimal 2: A*

 Optimal Plan Generation: Often uses A*

▪ A* focuses entirely on optimality

▪ Find a guaranteed optimal plan as quickly as possible

▪ But no point in trying to find a ”reasonable” plan before the optimal one

▪ Slowly expand from the initial node,

systematically checking possibilities

▪ A* requires admissible heuristics to guarantee optimality

▪ Reason: Heuristic used for pruning (ignoring some search nodes)

▪ Non-admissible ➔ can ignore some nodes that would lead to optimal plans

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52Optimal 3: Relaxation?
 Relaxation can be used to generate admissible heuristics…

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Optimal 4: Computing h() using Relaxation
Original problem P,

we just generated state s,

want to compute h(s)

Relaxed problem: 𝑃’
(finding a solution: fast)

Find 𝝅∗(𝑷′) –

optimal (!) plan

for relaxed problem

Compute h(s) = cost(𝝅∗(𝑷′))

Since P is just ’some

classical planning problem’,

we can’t expect to find

a general shortcut such as

’sum of Manhattan distances’

But how can you find

relaxations

that work for all classical

planning problems?

Relax

Solve

Find cost

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55PDB 1: Introduction
 Main idea behind relaxation in pattern database heuristics:

▪ Let’s ignore some facts – ground atoms – everywhere

▪ Remove from preconditions and goals

▪ Clearly makes the problem easier – relaxation!

▪ Remove from current state and from action effects

▪ No need to update these facts,

when no conditions require them!

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56

Want to know h(s) for state s in P,

where all facts are defined

PDB 2: Dock Worker Robots
 Example: Dock Worker Robots

▪ Suppose we only consider container locations

▪

▪ Ignore robot locations, crane locations, …

p1
c1
c3 p2

c2

loc1
r1

loc2

Abstract state in P’,

information that

remains after

relaxation

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57

State s in P

PDB 3: Planning in Patterns
▪ In P’ we (pretend that we) can use the crane at to:

▪ pick up (as we should)

▪ place something on (too far away, but that precondition disappeared…)

▪ place five containers on one truck (condition ”truck is free” disappeared)

p1
c1
c3 p2

c2

loc1
r1

loc2

58

jo
nk

v@
id

a
jo

nk
v@

id
a

58

State s in P

PDB 3b: Planning in Patterns
▪ In P’ we still can’t:

▪ pick up (preconditions about pile ordering are still there)

▪ immediately place below

▪ ➔

p1
c1
c3 p2

c2

loc1
r1

loc2

59

jo
nk

v@
id

a
jo

nk
v@

id
a

59

P’(s)

PDB 4: Computing a Heuristic Value
 Solve P’ optimally: 4 actions

▪ Take with the crane (it’s in the way at the bottom of pile p2)

▪ Take with the crane [relaxation – not checking if the crane is busy]

▪ Place at the bottom of pile p2

▪ Place on top

Abstract state s Abstract goal

Let’s formalize!

61

jo
nk

v@
id

a
jo

nk
v@

id
a

61PDB: Blocks World size 4
 Consider physically achievable states in the blocks world, size 4:

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62PDB: Blocks World size 4, facts
 All ground atoms (facts) in this problem instance:

▪

63

jo
nk

v@
id

a
jo

nk
v@

id
a

63PDB: Patterns, Abstract States
 The pattern 𝑝 is the set of ground facts we care about

▪ A state 𝑠 is represented by the abstract state 𝑠 ∩ 𝑝

▪ If 𝑠 ∩ 𝑝 = 𝑠′ ∩ 𝑝, the two states are considered equivalent

≈ ≈

represented

by a single

abstract

state

A pattern generally contains few facts – for performance!

≈ ≈

represented

by a single

abstract

state

64

jo
nk

v@
id

a
jo

nk
v@

id
a

64PDB: Ignoring Facts
 Example: only consider 5 ground facts related to block A

▪

▪

▪

An "abstract

state"

An "abstract

goal"

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65PDB: Transforming Actions


▪

▪ Before transformation:

▪ After transformation:

▪

▪ Before transformation:

▪ After transformation:

➔

Let’s call this action

transform(𝑎, 𝑝)

66

jo
nk

v@
id

a
jo

nk
v@

id
a

66PDB: New State Space


We lose information – and the size of the search space shrinks

67

jo
nk

v@
id

a
jo

nk
v@

id
a

67PDB: State Transition Graph
 New reachable state transition graph:

▪ Real state s: Everything on the table, hand empty, all blocks clear

▪ ➔ Abstract state: s0 =

▪ Real goal g: A on B on C on D, …

▪ ➔ Abstract goal:

▪ Few abstract states

➔ quickly compute

optimal costs for relaxed P’

▪ Relaxed cost is exactly 2:

Shortest path s0 ➔ s64

▪ So real cost is at least 2;

h(s)=2 is admissible Note: Loops and redundant edges

(multiple actions with the same effect)

are omitted for clarity!

68

jo
nk

v@
id

a
jo

nk
v@

id
a

68PDB: Databases
 Where did the databases go?

▪ During the main search,

many visited actual states will correspond to the same abstract states

➔ need the same value over and over again

▪ Given a pattern, we precompute a database for all abstract states

▪ Improves performance; the principle remains

69

jo
nk

v@
id

a
jo

nk
v@

id
a

69PDB: More information
 To make PDB heuristics more informative:

▪ Calculate costs for several patterns

▪ Suppose we only care about

▪ Suppose we only care about

▪ Suppose we…

▪ Take the maximum of the computed heuristic values

 One difficulty:

▪ Choosing which patterns to use…

All are below the limit (admissible)

➔ the largest is below the limit

bw-tower07-astar-ipdb: 7 blocks, A* search, based on a PDB variation

 Blind A*, h(s)=0: 43150 states calculated, 33436 visited

 A* using iPDB: 1321 states calculated, 375 visited

No heuristic is perfect – visiting some additional states is fine!

72

jo
nk

v@
id

a
jo

nk
v@

id
a

72Satisficing Planning
 Optimal plans are nice but often hard to find

▪ Larger problem instances ➔ too much time, memory

(even with good heuristics)!

 Satisficing plan generation:

▪ Find a plan that is sufficiently good, sufficiently quickly

 What’s sufficient?

▪ Usually not well-defined!

▪ ”These strategies and heuristics seem to give pretty good results

for the instances I tested…”

73

jo
nk

v@
id

a
jo

nk
v@

id
a

73Speed: Strategies
 One reason for speed: Other informed search strategies

▪ Simple: Greedy best first search

▪ Always expand the node

that seems to be closest to the goal

▪ Who cares if getting there was expensive?

At least I might find a way to the goal!

▪ (Only care about h(s), not about g(s))

▪ Hill climbing

▪ Be stubborn:

If one direction seems promising,

continue in this direction

▪ Many others!

74

jo
nk

v@
id

a
jo

nk
v@

id
a

74Speed: Heuristics
 One reason for speed: Often more informative heuristics

▪ Optimal planning:

▪ Often requires admissibility: ”We must never overestimate, ever!”

▪ Result: Usually underestimates (a lot!)

▪ Satisficing planning:

Extreme example – greedy best first

▪ Only important that the ”best” successor

has a low heuristic value

▪ For GBF,

what the value is doesn’t matter!

▪ In many cases:

▪ Admissibility is not required

▪ Lack of admissibility is not ”only slightly harmful”

▪ Lack of admissibility is irrelevant

7 blocks (tiny problem)

Greedy, IPDB: Expand 171 states, 22 actions in the solution

A*, IPDB: Expand 1321 states, 18 actions in the solution

Larger problem instances ➔ the difference increases

77

jo
nk

v@
id

a
jo

nk
v@

id
a

77Landmark Heuristics (1)
Landmark:

”a geographic feature used by explorers and others

to find their way back or through an area”

78

jo
nk

v@
id

a
jo

nk
v@

id
a

78Landmarks (2)
Landmarks in planning:

Something you must achieve or use in every solution to a problem instance

Fact Landmark for s:

A single fact (ground atom) that must be true

at some point

in every solution starting in s

…

Assume we are considering a state s…

79

jo
nk

v@
id

a
jo

nk
v@

id
a

79Landmarks (3)

 Usually many paths lead

from s to goal states

 Few states are shared

among all paths

▪ Here only s0…

 More likely to find facts

that occur along all paths

Facts, not states! Why?

𝑠0

𝑠1

𝑠2

𝑠3

𝒈𝟏

𝑠4

𝑠5

𝑠6 𝑠7

𝒈𝟐

𝑠8

80

jo
nk

v@
id

a
jo

nk
v@

id
a

80Landmarks (4)

Goal: rob-at(roomE)

2 goal states

Start

here

Notice: No Euclidean distance; you can’t easily know how far a state is

from a state satisfying a particular landmark…

Satisfies rob-at(roomD)...

But not ”on the right path”!

Haven’t satisfied a landmark

yet, but still on a good path!

Landmarks are useful on

average, when you have many

81

jo
nk

v@
id

a
jo

nk
v@

id
a

81Landmarks (5): Misunderstandings

Not ”we must reach (pass through)

the landmark state”!

Instead ”we must reach

some state that satisfies

the landmark”

A landmark fact is not

”a fact that is true in every solution”

A solution is a plan.

Facts are true in states.

A landmark fact is

”a fact that is true in some state

along every path

from the initial state to any goal state”.

Not ”A landmark fact is a state that…”

A fact is not a state.

A state consists of many facts.

(”A word is a sentence that…”)

But isn’t the state space graph
too large to generate?

Let’s try to find some of the landmarks,
more efficiently…

83

jo
nk

v@
id

a
jo

nk
v@

id
a

83Means-Ends Analysis Algorithm
 Problem setup

▪ 𝑠 = the state whose heuristic value we want, a set of true facts

▪

▪ 𝑔 = the goal specification, a set of desired facts

▪

▪ (This goal does not mention !)

 One way of discovering landmarks:

means-ends analysis (“backwards from the goal”)

▪ All facts in 𝑔 must be landmarks – must occur at the end of a solution path!

▪

 But let’s focus on the most interesting part

▪ 4 “unachieved” landmarks, not already true in state s:

𝑔 − 𝑠 =

84

jo
nk

v@
id

a
jo

nk
v@

id
a

84Means-Ends Analysis Algorithm (2)
 Means-ends analysis, informally:

▪ We start with 𝑔 − 𝑠 =

▪ Now let’s consider

▪ Must be achieved by some action:

Is a landmark, but not already true in s

▪ How can we achieve ?

▪ Only using

▪ What do we also need, in order to actually execute ?

▪ All of its preconditions

▪ must also be fact landmarks, but clear(C) is true now…

▪ – another unachieved fact landmark!

▪ Updated list of 5 distinct unachieved LM found:

▪

85

jo
nk

v@
id

a
jo

nk
v@

id
a

85Means-Ends Analysis Algorithm (3)
 Some more intuitions:

▪ Current list:

▪ Let’s consider achieving

▪ Not true now (in s), but must be made true

▪ How can we achieve ?

▪ Remember we must consider all possible paths to a goal state

▪ ➔ All actions having as an effect

▪ ➔

▪ What do we also need, regardless of which of these actions we use?

▪ The intersection of the preconditions of the 5 actions

▪ Only requires ; only requires

▪ But all require – must also be fact landmarks

▪ – another unachieved fact landmark!
So now we have 6…

86

jo
nk

v@
id

a
jo

nk
v@

id
a

86Means-Ends Analysis Algorithm (4)
Unachieved goal facts:

is an unachieved fact landmark

➔ all solutions must at some point

achieve with an action effect

➔ compute achievers = ,

the only action achieving

All achievers have some common

requirements / preconditions:



 𝑎 ∈ 𝐴 | 𝑝 ∈ (𝑎)

ረ
𝑎∈𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑠

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑠(𝑎)



 ∪

Maybe we can find more landmarks

related to achieving those!

Learn to apply this algorithm! Test it on some problem instances!

87

jo
nk

v@
id

a
jo

nk
v@

id
a

87Landmark Counts and Costs
 One simple form of landmark heuristic: Counting landmarks

▪ ℎ(𝑠) = the number of unachieved landmarks in state 𝑠

One action can actually achieve

multiple landmarks at once (multiple effects)

➔ landmark count is not admissible

More complex (and stronger) forms of landmark

heuristics also exist – pioneered by the LAMA planner

See, for example,

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-

based anytime planning with landmarks.
Journal of Artificial Intelligence Research, 39:127–177, 2010.

