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1.1 Introduction

The study of frameworks and formalisms for reasoning about action and change [64, 56,
58, 62, 67, 3] has been central to the knowledge representation field almost from the in-
ception of Artificial Intelligence as a general field of research [51, 55].

The phrase "Temporal Action Logics” represents a class of logics for reasoning about
action and change that evolved from Sandewall’s bookeatures and Fluent8] and
owes much to this ambitious project. There are essentially three major parts to Sandewall’s
work. He first developed a narrative-based logical framework for specifying agent behavior
in terms of action scenarios. The logical framework is state-based and uses explicit time
structures. He then developed a formal framework for assessing the correctness (soundness
and completeness) of logics for reasoning about action and change relative to a set of well-
defined intended conclusions, where reasoning problems were classified according to their
ontological or epistemological characteristics. Finally, he proposed a number of logics
defined semantically in terms of definitions of preferential entailfant assessed their
correctness using his assessment framework.

Several of these logics were intended to correspond directly to existing logics of action
and change proposed by others at the time, while the rest were new and were intended to
characterize broad classes of reasoning problems which subsumed some of the existing ap-
proaches. Each of these definitions of preferential entailment were then analyzed using the
assessment framework, giving upper and lower bounds in terms of the classes of reasoning

1preferential entailment reduces the set of classical models of a theory by only retaining those models that
are minimal according to a given preference relation, a strict partial order over logical interpretations [63].
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problems for which they produced exactly the intended conclusions. Much insight was
gained both in terms of advantages and limitations of previously proposed logics of action
and change and in how one might go about proposing new logics of action and change in a
principled manner with formal assessments included.

The starting point for Temporal Action Logics was one of the definitions of preferen-
tial entailment in Sandewall’s book called PMON (Pointwise Minimization of Occlusion
with Nochange premises). It was one of the few preferential entailment methods that were
assessed correct for theé-1A class of action scenario descriptions, whiiés an epis-
temological characteristic stating approximately that explicit, correct and accurate knowl-
edge is provided (with no requirements on complete knowledge in the initial state and no
restrictions on knowledge about other states), l@nds an ontological characteristic stat-
ing approximately that discrete integer time is used together with plain inertia (without
surprises or other complicating factors).

PMON solved the frame problem relative to an explicit statement of assumptions under
which it could be assessed correct. In addition, the nature of the definition of preferential
entailment was somewhat related to explanation closure [61, 11], although a partitioning
of action scenario theories was used where only parts of the theory were minimized and
other parts used as filters on the preferred model set for the theory. Though ramifications
and qualifications to actions were not allowedirIA, the class is in fact quite broad,
permitting the use of conditional effects, non-deterministic effects, incomplete specifica-
tion of states and the timing of actions, actions with duration and specification of dynamics
within action durations.

1.1.1 PMON and TAL

While the original PMON was characterized semantically in terms of a preferential entail-
ment method, Doherty later developed an equivalent syntactic characterization in classical
2nd-order logic, using a circumscription axiom to formalize the PMON definition of pref-
erential entailment [12, 19]. In these papers, he also showed that the 2nd-order circum-
scription axiom was equivalent to a 1st-order pointwise circumscription axiom, enabling
the use of standard first-order theorem proving techniques to reason about PMON action
narratives. In extended versions of PMON which led to TAL, it has also been shown that
quantifier elimination techniques or predicate completion techniques can be used to re-
duce TAL circumscribed theories to logically equivalent 1st-order theories under certain
assumptions.

This new logic was also callddMON, and used two languages for representing and
reasoning about narratives. The surface langug@D), Language for Scenario Descrip-
tions, provided a convenient high-level notation for describing narratives, and could be de-
scribed as a set of macros easily translated into a base lang(Bbg which was initially
a many-sorted first-order language and was later altered to be an ordef$iostenrder
language. Th&(SD) language was later renamed4¢ND), Language for Narrative De-
scriptions.

The originalPMON logic was further extended and generalized in several steps in
order to deal with such issues as the ramification and qualification problems, use of con-

2Essentially, an order-sorted language allows the use of sub-sorts; for examplandsiCYCLE may be
sub-sorts of the&/EHICLE sort.
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current actions, use of structured object-oriented action theories, and use as a specifica-
tion formalism for TALplanner. Each extension generally implied adding new macros
to L(ND), adding additional predicates #(FL), extending the translation definition to
L(FL) and providing slight modifications to the circumscription policies used. It is impor-
tant to observe that all extensions proposed have been made in a manner which preserves
the property of reducibility of the 2nd-order circumscription theory to a 1st-order theory.
This is essential for practical reasons.

A number of the main extensions RMON which led to the TAL family of logics
include:

¢ PMON-RC [25], provides a solution to the ramification problem for a broad, but
as yet unassessed class of action scenarios. The main idea is the addition of a new
statement type for causal constraints, where changes taking place in the world can
automatically trigger new changes at the same time-point or at a specified delay from
the original change. The solution is very fine-grained in the sense that one can eas-
ily encode dependencies between individual objects in the domain, work with both
boolean and non-boolean fluents and represent both Markovian and non-Markovian
dependencies [21]. PMON-RC also correctly handles chains of side effects.

e TAL 1.0 (PMONT) [13], PMONT is an extended version of the origirdMON
logic incorporating the changes madeHMON-RC together with other useful ex-
tensions. This logic was later renam®8lL 1.0 and provided the first stable kernel
for the TAL family of logics.

e TAL-C [34], uses fluent dependency constraints (an extended form of causal con-
straints) as a basis for representing concurrent actions. A number of phenomena
related to action concurrency such as interference between one action’s effects and
another’s execution, bounds on concurrency, and conflicting, synergistic, and cumu-
lative effects of concurrent actions are supported.

e TAL 2.0 [15] provides a basic stable kernel of TAL. It is essentially TAL-C with
some useful extensions and includes a tutorial on TAL and how it is used.

e TAL-Q [16, 41], introduces the idea of combining an encoding of default values
for features using persistence statements together with dependency constraints for
representing qualifications to actions.

TAL 2.0 (TAL-C) extended with additions froMAL-Q , has been used as the basis for
much of the recent work with Temporal Action Logics and will be described in some detail
in this chapter. In the remainder of the chapter, we will use "TAL” as a term to denote the
latest stable kernel of this family of logics.

1.1.2 Previous Work

There has been a great deal of previous work in the development of the material described
in this chapter. We briefly summarize this work chronologically.

The root node from which TAL originated is the Features and Fluents (F&F) mono-
graph [58]. Later developments with F&F are summarized in Sandewall [60]. Doherty [12]
provides a syntactic characterization of PMON using pointwise circumscription and shows
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how a particular class of narratives can be characterized as first-order theories. Doherty [6]
contains a detailed account of PMON circumscription theories and provides additional
characterizations of PMON in terms of predicate circumscription and predicate comple-
tion, where syntactic transformations are defined on narratives to provide a definition of
the Occlude predicate. Doherty and tukaszewicz [19] provide syntactic characterizations
of 7 out of the 9 definitions of preferential entailment considered in F&F, using different
forms of circumscription. Doherty and Peppas [10] incorporate the use of primary and sec-
ondary fluents in PMON to model a subclass of indirect effects of actions. A framework is
also introduced for comparing linear time logics such as PMON with branching time logics
such as the situation calculus. Karlsson [28] considers how to formally characterize differ-
ent modal truth criteria used in planning algorithms such as TWEAK and NONLIN using
PMON. Karlsson [30, 29] extends this work. Doherty [13] provides a detailed description
of TAL 1.0 used as a basis for early implementations of TAL. Doherty, tukaszewicz and
Szalas [8, 9] develop a quantifier elimination algorithm which constructively generates log-
ically equivalent 1st-order formulas for a certain class of 2nd-order formulas. The intent
with the work was to study the possibility of reducing other logics for action and change
characterized in terms of circumscription theories, thus making them amenable to classical
theorem proving techniques. Gustafsson and Doherty [25] extend TAL to deal with ram-
ifications of actions by introducing causal constraints. Causal constraints have later been
subsumed by the use of dependency constraints in TAL. In addition, we show how to rep-
resent delayed effects of actions in TAL. Doherty, Lukaszewicz and Szatas [11] consider
the relation between the automatic generation of a definition foDttetudepredicate us-
ing circumscription and quantifier elimination, with the manual generation of Explanation
Closure axioms considered in Schubert [61]. Karlsson [31] investigates a number of weak-
nesses in situation calculus and provides an alternative semantics grounded in intuitions
derived from work with TAL. Bareland and Karlsson [5] investigates the use of regression
operators as a means of doing inference in TAL related formalismateBnd [4] pro-
vides a detailed presentation of the approach in [5] and other approaches using tractable
temporal logics. Karlsson, Gustafsson and Doherty [14, 35] examine the use of delayed
effects of actions and various problems of interference which arise with their introduction.
Doherty and Kvarnstim [16] present an initial solution to simple forms of qualification to
actions. Kvarnstim and Doherty [41] provide a more detailed solution to the qualification
problem described in this chapter. Karlsson and Gustafsson [34] consider the problem of
modeling concurrent actions in TAL and the variety of interactions that may ensue between
actions executing concurrently. Gustafsson [23] provides a detailed study of extensions to
TAL involving dependency constraints, concurrency, and delayed effects of actions. Karls-
son [32] studies the possibility of introducing narratives as 1st-class objects in the object
language of a logic whose semantics is related to that of TAL. Doherty, tukaszewicz and
Madalihska-Bugai [7] study the relation between TAL and belief update. Karlsson [33]
provides detailed accounts of narratives as 1st-class citizens in action logic, concurrent
actions and additional extensions to TAL. Gustafsson [24] provides a detailed description
of many of the extensions to TAL up to 2001. Gustafsson and Kvammsf26, 27] pro-
vide a novel means of structuring large TAL narratives based on the use of intuitions from
object-oriented programming.

Doherty and Kvarnstim [17] present a new forward chaining planner which uses TAL
as a semantic framework for its development. In Kvairetand Doherty [42], an early de-
tailed account of TALplanner is provided. Kvarrigtr, Doherty and Haslum [43] provide



Doherty and Kvarnstim 5

an extension to TALplanner which integrates concurrent actions and resources. Doherty
and Kvarnstbm [18] provide a concise overview of TALplanner. Kvarisirand Mag-
nusson [44] provide a description of control rules used in TALplanner in the AIPS Third
International Planning Competition, 2002. Kvaristr [39] discusses application of do-
main analysis techniques to control rules in TALplanner. Kvaémstf40] provides the

most recent and most detailed description of TALplanner.

The thesis work of both Karlsson [33] and Gustafsson [24] provide excellent references
to much of the later extensions to TAL. The thesis work of Kvaiimtf40] provides an
excellent description of TALplanner. A software system VITAL [38] for reasoning about
action and change using TAL is available for download and on-line use.

1.1.3 Chapter Structure

In Section 1.2, the main concepts and ideas used in the development of TAL are presented.
In Section 1.3, action narratives used in TAL are defined and a complex scenario, the
Russian Airplane Hijack (RAH) Scenario, is presented. This will be used throughout the
chapter to explain the different features provided by TAL. Section 1.4 considers the relation
between a high level macro languageND) used to specify action narratives and the base
logical languageC(FL) in which it is translated to. In Section 1.5 we provide a formal
description of the languag& ND) and in Section 1.6, we provide a formal definition of the
base logical languagé(FL). In Section 1.7, the circumscription policy used to define the
definition of preferential entailment used in TAL is presented. In addition, we show how
the resulting 2nd-order circumscription theories which characterize action narratives can
be reduced to logically equivalent 1st-order theories under certain conditions. Section 1.8
proposes a solution to the ramification problem which is used in TAL. The RAH scenario
is modified to incorporate this solution. Section 1.9 proposes a solution to the qualification
problem which is used in TAL. The RAH scenario is again modified to incorporate this
solution. Section 1.10 presents an extension to TAL which models the use of concurrent
actions where complex types of interaction between such actions may occur. Section 1.11
presents an application of TAL to planning where it is shown how TAL can be used as
a semantic framework in the development and implementation of TALplanner, an award
winning automated planner. In Section 1.12, we conclude.

1.2 Basic Concepts

When using TAL, we assume there is agentinterested in reasoning about a specific
world. This world might be formally defined, or it might be the “real world”, in which
case the agent can only reason about a formally defined abstraction of the real world. In
either case, it is assumed that the world is dynamic, in the sense that the various properties
or featuresof the world can change over time. Conceptually, any feature has a fluent
function associated with it representing the stream of values associated with the feature at
each state or temporal entity used in the formalism.

The TAL framework also permits the use of multiptalue domainswhich can be
used for modeling different types objectsthat might occur in the world which is being
modeled. For example, the well-known blocks world contains blocks that can be stacked on
top of each other. The blocks world can then be modeled using a value domain for blocks,
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containing values such asB andc, together with parameterized Boolean-valued features
representing relations suchagblock; , block, ), which holds iffblock; is on top ofblocks,
andclear(block), which holds iff there is no block on top of the given block. Of course,
values can also be used to represent properties of objects rather than the objects themselves.
For example, if the color of each block should be modeled, then this could be done using a
value domain for colors containing values suckeasgreen andblue, together with a color-

valued (non-boolean) featueelor(block). In summary, instantiated parameterized features
take specific values (Boolean or non-Boolean) at specific timepoints. In this manner, both
relations and properties are capable of being represented.

Time itself can be viewed differently depending on the nature of the world being rea-
soned about and the reasoning abilities of the agent. TAL offers a modular means of
choosing the temporal structure to be used. Currently, TAL uses linear time structures, as
opposed to branching time structures, and allows the use of either continuous real-valued
time or discrete integer time. Research within the TAL framework has mostly been fo-
cused on discrete non-negative integer time structures, and such a structure will be used
throughout this chapter.

The development of the world over a (possibly infinite) period of discrete time can be
viewed in two different ways. Figure 1.1 shows what would happen in a simple blocks
world scenario where block is initially on top ofB, which is on the table, and where one
unstacks\ from B, places it on the table, picks & and finally stacks this block on top of
A. The information about this scenario can be viewed as a sequestateg where each
state provides a value to all features (or “state variables”) for a single common timepoint, or
as a set ofluents where each fluent is a function of time which specifies the development
of a single feature. We sometimes use the terms “feature” and “fluent” interchangeably
to refer to either a specific property of the world or the function specifying its value over
time.

Consequently, a logical model in TAL is a sequence of states indexed by time, where
each state contains a value for each feature in the vocabulary at the time entity associated
with the state. In the logical language, the assertion that a feature has a value at a specific
time is denoted af] f(@) = w in the macro languagé(ND) andHolds(t, f(@),w) in
the logical language’(FL), wherer is a temporal expressiorf(w) is a parameterized
feature andv is a value from the feature’s value domain.

Since there is an agent, there is usually also a sectibnsthat the agent can per-
form. Such actions can only be performed when the requiséeonditionsare satisfied.
Performing an action changes the state of the world according to a set of given rules.
Such rules are not necessarily deterministic. For example, the action of tossing a coin
can be modeled within the TAL framework, and there will be two possible result states.
TAL offers a highly expressive language for specifying actions where non-deterministic,
context-dependent, concurrent and durational actions are expressible, among other types
of actions.

Background knowledge associated with a reasoning domain can be modeled in a num-
ber of ways in TAL.Observation statementspresent observations made by an agent.
main Constraint statementspresent facts true in all scenarios associated with a particular
reasoning domairDependency Constraint statemeo#s be used to represent causal the-
ories or assertions which model intricate dependencies describing how and when features
change relative to each other.

All of these concepts are modeled in a narrative specified in the langtigd®).
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time 0 time 1 time 2 time 3 time 4
on(A,A) false false false false false
on(A,B) true false false false false

[ on(B,A) false false false false true ﬂueng
on(B,B) false false false false false
ontable(A) false false true true true
ontable(B) true true true false false
clear(A) true false true true false
false true true false true
handempty true false true false true

state

Figure 1.1: Viewing a Development as Fluents or States

L(ND) is a high-level extendable macro language which provides support to the knowledge
engineer when constructing narratives and permits specification of narratives at a higher
level of abstraction than logical statements. An extendable translation function is provided
which translates narratives specifiedd(ND) into 1st- and 2nd-order logical theories.

One of the fundamental problems in developing logics for reasoning about action and
change has been in finding both representational and computationally efficient ways to
encode the fact that there is a great deal of invariant structure in the world at a particular
level of abstraction in which agents often reason about and describe the world. Even though
the world is often dynamic and changing, from the perspective of an agent functioning in
the world, properties and relations among entities are more often than not inert. On the
other hand, there are often reasons for features in the world to change or reasons that
provide the possibility for change. Many of these are obvious. For example, if an agent
executes a physical action, the intent is usually to change some aspect of the world to
the agent’s advantage in completing a task. Others are less obvious, for example the subtle
ramifications and aftereffects of an action. Developing theories of action and change is very
much about identifying and representing normative rules which capture invariant and non-
invariant epistemic and physical structure in environments in which agents are embedded
and in which they operate.

Many of the representational and computational problems associated with modeling
action and change have been given names, such as the frame, ramification and qualification
problems, while others have not. Many useful techniques for capturing normative behavior
have also been developed such as default reasoning. The principle intuition used in the
development of TAL to deal with many of these issues is very simple to state, but quite
difficult to make operational in an efficient manner in a logical formalism such as TAL.

In any TAL model, a time series is implicitly associated with any feature in the vo-
cabulary. Whether a feature may change value or not in a transition from one time-point
to another in the time series is specified by occluding or marking that feature as being
given thepossibilityof changing value relative to other constraints in the theory. Policies
for occluding features at time-points are both contextually and temporally dependent on a
number of factors and done for a number of reasons. The definitions of the frame, ram-
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ification and qualification problems specify some of these reasons. For whatever reason
this is done, to the greatest extent possible, this labeling process should be achieved in a
principled manner and remain more or less hidden from the knowledge engineer via the
use of macro mechanisms in tBéND) language and the translation into the base logical
languageC(FL).

At the level of £(ND), there are a number of ways to incrementally provide an occlu-
sion policy for a feature, some more explicit than others. At4KEL) level, the policies
result in a set of labels for each feature representedcat:de(r, f(w)). The generation
of such policies provide sufficient conditions for features being given the possibility to
change value in state transitions (fram- 1 to 7). A circumscription policy then pro-
vides the necessary conditions and a definition of the occlusion predicate in the logical
theory. An additional specification of whether and when a feature is persistent, durational,
or dynamic in nature is also provided. These statements provide a means of fittading
models out of the model set for a particular narrative, such as models where persistent
features change value without being occluded.

If one uses this technique in a principled manner and restricts the generation of such
policies to only include positive occurrences of the predicatelude in the theory, then
a reduction of the 2nd-order circumscription theory to a logically equivalent 1st-order the-
ory is always guaranteed. It is in this manner we provide partial solutions to the frame,
ramification and qualification problems in the context of TAL.

1.3 TAL Narratives

A narrative in£(ND) can be said to consist of two parts: Tierrative background spec-
ification (NBS), which provides background information that is common to all narratives
for a particular domain, and thearrative specificatiofNS), which provides information
specific to a particular instance of a reasoning problem. Most of this information is repre-
sented as a set of labeled narrative statements in the surface laniiNge

Before providing a formal definition of th€(ND) language, we will introduce most
of the macros, formula types and statement classes using a rather complex example sce-
nario called th&russian Airplane Hijack Scenar{®AH), which in order to be adequately
represented in any logical formalism would require robust solutions to the frame, ramifi-
cation and qualification problems. We say robust because a complete description of the
RAH world requires the representation of concurrent actions, incomplete specifications of
states, ramification with chaining, the use of non-boolean features, fine-grained dependen-
cies among objects in different feature value domains, actions with duration, two types of
qualification (veakandstrong and the use of explicit time, in addition to other features.

The RAH narrative description will be used as a vehicle for considering different facets
of Temporal Action Logics and demonstrating how various aspects of a domain can be
modeled in TAL. This will be done in stages. In this section, we will represent the narrative
without the use of side effects and under the assumption that actions always succeed if their
basic preconditions are satisfied. In other words, we will omit solutions to the ramification
and qualification problem$After having provided formal specifications of ti¢ND) and

3This will initially result in a scenario where it is assumed that any attempt to board a plane always succeeds,
regardless of whether a person carries a gun or is drunk. In addition, ramifications of action effects will be
included in the action specification.
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L(FL) languages (Sections 1.5 and 1.6), we will once more return to the RAH scenario in
order to consider how ramification constraints (Section 1.8) and qualification constraints
(Section 1.9) can be modeled in TAL.

1.3.1 The Russian Airplane Hijack Scenario

The Russian Airplane Hijack scenatican be described as follows.

Example 1.1 (Russian Airplane Hijack Scenario) A Russian businessman, Boris, trav-

els a lot and is concerned about both his hair and safety. Consequently, when traveling,
he places both a comb and a gun in his pocket. A Bulgarian businessman, Dimiter, is less
concerned about his hair, but when traveling by air, has a tendency to drink large amounts
of vodka before boarding a flight to subdue his fear of flying. A Swedish businessman, Erik,
travels a lot, likes combing his hair, but is generally law abiding.

One ramification of moving between locations is that objects in your pocket will follow
you from location to location. Similarly, a person on board a plane will follow the plane
as it flies between cities.

Generally, when boarding a plane, the only preconditions are that you are at the gate
and you have a ticket. However, if you try to board a plane carrying a gun in your pocket,
which will be the case for Boris, this should qualify the action. Also, a condition that could
sometimes qualify the boarding action is if you arrive at the gate in a sufficiently inebriated
condition, as will be the case for Dimiter. When the boarding action is qualified, attempting
to board should have no effect.

Boris, Erik and Dimiter already have their tickets. They start (concurrently) from their
respective homes, stop by the office, go to the airport, and try to board flight SAS609 to
Stockholm. Both Erik and Boris put combs in their pockets at home, and Boris picks up
a gun at the office, while Dimiter is already drunk at home and may or may not already
have a comb in his pocket. Who will successfully board the plane? What are their final
locations? What will be in their pockets after attempting to board the plane and after the
plane has arrived at its destination? |

Let us assume that the scenario is encoded correctly in TAL and that we agree on our com-
monsense intuitions regarding what solutions to the frame, ramification and qualification
problems would imply. Then the following inferences should be entailed by the logical
theory associated with the RAH scenatio:

1. Erik will board the plane successfully, eventually ending up at his destination.

2. An indirect effect of flying is that a person ends up at the same location as the air-
plane he is on. In addition, because items in pockets follow a person, a transitive
effect results where items in a person’s pocket are at the same location as the plane
which that person is on. Consequentyik’s comb,comb2, will also end up at his
destination.

4This scenario is an elaboration and concretization of a sketch for a scenario proposed by Vladimir Lifschitz
in on-line discussions in the Electronic Transactions on Artificial Intelligence (ETAI/ENAI), and was previously
published in [16, 41].

5Assume that Boris, Erik and Dimiter own the comtsnbl,comb2 andcomb3, respectively.
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3. Boris will get as far as the airport with gun andcombl in his pocket. He will be
unable to board the plane.

4. Dimiter will get as far as the airport, and may or may not be able to board the plane. If
he is able to board the plane, he will eventually end up at his destination. Otherwise,
he will remain at the airport. In any case, if he initially carried a comb, it will end
up in the same location.

1.3.2 Narrative Background Specification

A narrative background specification contains a collection of statements of the following
types:

e Persistence statemer{tabeledper) allow each fluent to be specified as being persis-
tent (normally retaining its value from the previous timepoint), durational (normally
reverting to a default value), or dynamic (varying freely, subject to other constraints
involving this fluent).

e Domain constraint¢labeleddom) characterize acausal information which is always
true in the world being modeled.

e Action type specificationdabeledacs) provide generic definitions of action types.

e Dependency constrain{ibeleddep) characterize causal and directional dependen-
cies among fluents.

A narrative background specification also contains a vocabulary for the narrative. In the
following subsections, each of the statement types and vocabulary specification will be
described in detail and correlates to the RAH scenario will be listed.

Vocabulary

The vocabulary of ai (ND) narrative defines the constant symbols, feature symbols, ac-
tion symbols, and other symbols that are available for use in narrative formulas. Since
narrative examples used in the literature have traditionally been quite simple, the vocab-
ulary has usually either been considered to be implicit in the remainder of the narrative
specification or has been described informally in the main text of the article. Here, how-
ever, vocabularies will be described in terms of labeled narrative declaration statements
using a syntax borrowed from the software tools VITAL [38] and TALplanner [40].

For the Russian Airplane Hijack scenario, we define a domaanTiON for locations,
and a domailrHING containing everything that has a location. We also define the subdo-
mainsRUNWAY for LOCATIONS that are runway®LANE for THINGS that are airplanes,
PERSONfor THINGS that are people, arrdrHING for THINGS that people can pick up.

domain LOCATION :elements { homel,home2,home3,office,airport,run609,run609b,air }
domain THING :elements { gun,combl,comb2,comb3,boris,dimiter,erik,sas609 }

domain  RUNWAY :parent LOCATION :elements { run609,run609b }

domain  PLANE :parent THING :elements { sas609 }

domain  PERSON :parent THING :elements { boris,dimiter,erik }

domain PTHING :parent THING :elements { gun, combl, comb2,comb3 }
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We also use the boolean domain, which is present by default in all narratives and behaves
as if it had been specified in the following manner:

domain  BOOLEAN :elements { true, false }

Note that the domain specificationd{ND) describes a type hierarchy. This will translate
into the order-sorted vocabulary in the base l0g(€L).

Finally, four fluents and four actions are used where the arguments to these are typed
relative to the domain specification above.

fluent loc(THING) :domain LOCATION

fluent inpocket(PERSON, PTHING) :domain BOOLEAN
fluent onplane(PLANE, PERSON) :domain BOOLEAN
fluent drunk(PERSON) :domain BOOLEAN

action pickup(PERSON, PTHING)

action travel(PERSON, LOCATION, LOCATION)

action board(PERSON, PLANE)

action fly(PLANE, RUNWAY, RUNWAY)

Persistence Statements

Persistence statements are a novel feature of TAL and offer a very powerful and fine-
grained mechanism for specifying inertia and default value assumptions for individual fea-
tures when used together with the occlusion labeling mechanism mentioned previously.
The majority of existing formalisms for action and change build in an assumption that a
property or relation is eitherlwaysassumed to be inert and subject to nochange by default
or to be dynamic and subject to change by default. Through the use of persistence state-
ments TAL permits the specification of contextually and temporally-dependent inertia and
default assumptions per feature and down to the feature object level. This is an important
feature of any action and change formalism since the inertial granularity of physical and
other objects differs greatly. For example, a mountain will remain in place much longer
than a ball on the ground which under certain weather conditions is in fact not inert at all.
Persistence statements can be used to classify features apbrsiggentdurational
or dynamic In fact, a specific instantiated feature or set of features may be classified
differently in the same scenario relative to context.
A feature declared gsersistentat a time-point is only allowed to change value when
an action, dependency constraint, or other constraint in the scenario allows it to change
by implicitly labeling the feature at that time-point as being occluded f#rsistence as-
sumptioror inertia assumption Otherwise, it retains the same value it had at the previous
timepoint. For example, the persistence statement below declares that all instantiated fea-
tures of the formoc(thing) are inert at all timepoints:

per Vi, thing [Per(t + 1, loc(thing))].
The translation of &er declaration inZ(ND) into £(FL) would be’,

6Note thatt, t 4 1 is used instead af t — 1 due to the assumption of a non-negative time structure. Without
this increment, the boundary conditiér= 0, would not make sense.

"Note that in the following, any unbound variables as a result of a translation £fg4D) to £(FL) are
assumed to be universally quantified.
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TrangPer(r, f)) =Vt.r =t + 1 A =Occluddt + 1, f) —
Vo[Holds(t + 1, f,v) < Holds(t, f,v)] .

Unless the feature is occludedratit will retain its previous value.

A feature declared agurationalis associated with a default value, and can only take
on another value when an action, dependency, or other constraints allows it te{diodt
value assumptign At timepoints when no action or other constraint explicitly allows it to
take on another value, it will immediately revert back to its default value. For instance, in
the presence of a qualification to an action (see Section 1.9), the default assumption that itis
possible to execute the action is violated. If the qualification does not apply, then by default
it is possible to execute the action. TAL, through the use of durational features, can encode
simple types of default rules and assumptions. For example, the persistence statement
below declares that all instantiated features of the fposs-board(personplane) should
have the default valueue at all timepoints:

per Vi, personplane[Dur(t, poss-board(person plane), true)]

The translation of ®ur declaration inC(ND) into £(FL) would be,
TrangDur(7, f,w)) = =Occludér, f) — Holds(r, f,w)
Unless the feature is occludedratit will retain its default value.

A TAL feature can also bdynamicif it is not declared to be persistent or durational.
Since no persistence or default value assumption is applied, dynamic fluents can vary freely
over time to satisfy observations and domain constraints.

Note that some earlier TAL logics (includi@MON) used a fixechochange axiom
instead of persistence statements, forcing all fluents to be persistent. Using persistence
statements provides a more flexible and fine-grained approach to controlling the default
behavior of fluents and is currently the technique used in TAL to specify inertia and default
value assumptions.

Intuitively, the features used in the Russian Airplane Hijack scenario describe proper-
ties that do not change unless something changes them. These features are all declared to
be persistent. The declarations for the RAH scenario are,

perl Vi, thing [Per(t + 1, loc(thing))]

per2 Vt, personpthing[Per(t + 1, inpocket(person pthing))]
per3 Vit person[Per(t + 1, drunk(person))]

perd Vi, plane person[Per(t + 1, onplane(plane persor))]

Domain Constraints

Domain constraints represent knowledge about logical feature dependencies which are not
specific to a particular reasoning problem instance but which are known to hold in every
possible scenario taking place within a domain. An even stronger assumption often made
in other formalisms is that these are formulas true in all states (universally quantified over
all time-points, situations or states) and behave much as a classical logical formula would
behave in a standard theory. In domain constraints, as well as other TAL formulas, the fact
that a featuref takes on a particular value is denoted by the elementary fluent formula

f = w. For the boolean domain, the formufa= true (f = false) can be abbreviated

(=f). Elementary fluent formulas can be combined using boolean connectives and quan-
tification over values to form fluent formulas. The fixed fluent fornjulap states that the
fluent formulag holds at the timepoint.
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For the Russian Airplane Hijack scenario we will define three domain constraints: No
PTHING can be carried by tweERSON at the same time, neERSONcan be on board
two PLANES at the same time, and aRYHING in a PERSONs pocket must be at the same
location as thaPERSON

doml Vt, pthing person, person [person # person A [t] inpocket(person, pthing) —
[t] —inpocket(person, pthing)]
dom2 Vt, personplaneg, plane,
[plang # plane, A [t] onplane(planeg,, persor — [t] —onplane(plane,, persor)]
dom3 Vt, personpthing[[t] inpocket(person pthing) —
[t] loc(pthing) = valugt, loc(person))]

Action Types

Actionscan be invoked by the agent in order to change some properties in the world. If
personpicks up a thingpthingin the Russian Airplane Hijack scenario, then this should
causenpocket(person pthing) to become true, for example. But since thgocket feature

is persistent, simply stating the fact thaiocket(person pthing) will be true at the end of

the action invocation is not sufficient. Instead, it is necessary to usasgignment macro

to explicitly release this feature from the persistence assumption at the specific point in
time where it should change values from false to true.

There are three different reassignment macr&s: R and I. They can all be used
with a temporal interval, for exampl®((r,7'] «), or a single timepoint, for example
I([7] «). Each of these operators has the effect of releasing the features occursing in
from the persistence and default value assumptions during the given interval or at the given
timepoint. However, the operators differ in whether they place further constraints on the
values of these features, and if so, at what time.

The X operator is used foocclusion Its purpose is simply to allow the value of the
features in the formulax to vary at a timepoint or during an interval, and therefore it
does not further constrain the features occurring.imntuitively, the X operator occludes
(hides) any changes in a feature value from the persistence or default value constraints
generated by the persistence statements in the narrative.

The R operator is used foreassignmentand ensures that will hold at the final
timepoint in the interval. During the rest of the interval, the features occurringanre
allowed to vary freely, unaffected by the persistence or default value assumption (but still
subject to other constraints that may also be present in the narrative).

The I operator is used fonterval reassignmenand ensures that will hold during
the entire interval. Note that if is a disjunctive formula, features occurringdarmay still
vary during the interval as long as the formula remains satisfied throughout the interval.

An action type specificationses reassignment macros to define what will happen if
and when a particular action is invoked. Note that it does not state that an action does
occur. This is specified in the narrative specification using action occurrence statements.

In many existing action formalisms, actions do not have duration and are essentially
single step. If actions with duration are introduced, it is often the case that during the
duration nothing can happen or be specified to happen. TAL offers highly expressive action
types. They can be single-step or durational, inert during the duration or highly dynamic.
Additional constraints specifying what goes on during the execution of an action can easily
be included in the action specification.
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In the Russian Airplane Hijack scenario, four actions were declared in the narrative back-
ground specification. Here, those actions will be defined without taking qualifications into
account and without making use of ramification constraints to specify side effects, result-
ing in a narrative where guns do not qualify the boarding action and where the fact that
people inside an airplane move when the airplane moves must be expressed explicitly in
the action definition. These action definitions will later be modified in Section 1.8.

acsl [t1,12] fly(plang runway,, runway,) ~~ loc(plane) = runway, —
I((t1,t2) loc(plane = air) A R([t2] loc(plane) = runway,) A
Vpersori[t;] onplane(plane persorn —
I((t1,t2) loc(persor) = air) A R([t2] loc(person = runway,) A
Vpthing[t1] inpocket(person pthing) —
I((t1,t2) loc(pthing) = air) A R([t2] loc(pthing) = runway,)]]
acs2  [t1, 2] pickup(personpthing) ~ [¢1] loc(person = valugty, loc(pthing)) —
R((t1, t2] inpocket(person pthing))
acs3  [t1,ts] travel(personloc,,locy) ~~ [t1] loc(persorn = loc; —
R([t2] loc(person = locy) A
Vpthing[[¢1] inpocket(person pthing) —
I((t1,t2) loc(pthing) = air) A R([t2] loc(pthing) = loc,)]
acs4  [t1,t2] board(personplane ~- [t1] loc(persor) = airport —
R([t2] loc(person = valugts, loc(plane)) A onplane(plane persor))

For reasons of representational efficiency, it is quite clear from observing these action
specifications that a solution to the ramification problem is really necessary.

1.3.3 Narrative Specification

In the narrative specificatiompservation statemenfgbeledobs) represent observations
of feature values at specific timepoints whéetion occurrence statemeniabeledocc)
specify which instances of the generic action types occur and during which time intervals.

Observation Statements

Observation statemengse intended to describe specific facts that have been observed to
hold in the world, permitting complete or incomplete specifications of the initial state or
any other state in the world development corresponding to a narrative. They provide infor-
mation about a particular reasoning problem instance within a domain, and are therefore
part of the narrative specificatidn.

For this scenario, we define the initial locations ofteitigs, as well as who is drunk in
the initial state. On the other hand, we do not observe which things are in whose pockets.

obsl [0] loc(boris) = homel A loc(gun) = office A loc(combl) = homel A —drunk(boris)
obs2  [0] loc(erik) = home2 A loc(comb2) = home2 A —drunk(erik)

obs3  [0] loc(dimiter) = home3 A loc(comb3) = home3 A drunk(dimiter)

obs4  [0] loc(sas609) = run609

8|n some earlier versions of TAL, an explicitbserve predicate was introduced in the base logical language
L(FL) to which observation statements are translated. Distinguishing sensor generated facts about the world
from other facts is useful when interfacing such logics to robotic systems. One might choose to view observation
statements as perception statements, although this is not done in the current version of TAL.
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Action Occurrence Statements

Action occurrence statements specify which actions actually do take place in a narrative.
Like observations, they are part of the narrative specification — the instance-specific part of
the narrative.

For the Russian Airplane Hijack scenario, the following action occurrences are also re-
quired. The exact timepoints used below were not specified in the RAH scenario, but have
been chosen arbitrarily. Alternatively, exact timepoints could have been avoided by using
non-numerical temporal constants. Note, however, that many of the actions are concurrent,
sometimes with partially overlapping intervals.

occl [1,2] pickup(boris, combl) occ8  [7,9] travel(erik, office, airport)

occ2 [1,2] pickup(erik, comb2) occ9  [8,10] travel(boris, office, airport)
occ3  [2,4] travel(dimiter, home3, office) occ10 [9,10] board(dlmlter sa3609)

occ4d  [3, 5] travel(boris, homel, office) occll [10,11] board(boris, sas609)

occ5  [4, 6] travel(erik, home2, office) occl2 [11,12] board(erik, sas609)

occé  [6, 7] pickup(boris, gun) occl3 [13,16] fly(sas609, run609, run609b)
occ?  [5, 7] travel(dimiter, office, airport)

Note that this action scenario has been simplified for expository purposes. A number
of additional extensions to the scenarios would in fact make it more realistic. For exam-
ple, one could add more realistic timing actions, perhaps by explicitly modeling distances
between locations and dividing by expected speed. In addition, upon introducing truly
concurrent actions, one must be aware that there may be different types of interactions and
these would have to be dealt with in an appropriate manner. TAL allows such extensions
and we refer the interested reader to Section 1.10 where a summary of TAL concurrent
actions is provided.

1.4 The Relation between the TAL language£(ND) and £(FL )

In order to reason about a particular narrative, it is first mechanically translated into
the base languag&(FL), an order-sorted classical first-order language with equality using
a linear discrete time structure (Figure 1.2). A circumscription policy is applied to the
resulting theory, foundational axioms are added, and quantifier elimination techniques are
used to reduce the resulting second order theory to first order logic. This is possible only
under certain assumptions pertaining to the use ofxh€ude predicate and the nature of
the temporal structure used.

In section 1.5, we will present the TAL surface languay&lD). In section 1.6, we
will present the TAL base languag&FL), and in section 1.7, we will consider the cir-
cumscription policy used in TAL and reducibility results.

1.5 The TAL Surface Languagel(ND)

This section defines the surface langua®&lD). The translation to the first-order lan-
guageL(FL) is presented in Section 1.6.1. In the following, the overline is used as an
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L(ND)

TAL
Narrative

Trans()
L(FL)

1st—order
theory T

+ Circ(T)
+ Foundational Axioms
L(FL) + Quantifier Elimination

1st—order

theory

Figure 1.2: The relation betweet(ND) and £(FL)

abbreviation for a sequence, when the contents of the sequence are obvious. For example,
f(Z,5) meansf (a1, ..., Tny Y1y ey Ym)-

1.5.1 Sorts, Terms and Variables

Definition 1.1 (Basic Sorts) There are a number of sorts for valugsincluding the boolean
sort B with the constantgtrue, false}. TAL is order-sorted, and a sort may be specified to
be a subsort of another sort. The spiis a supersort of all value sorts.

There are a number of sorts for featutEs each one associated with a value sort
dom(F;) = V; for somej. The sortF is a supersort of all fluent sorts.

There is also a sort for actiopé and a temporal soff . [ ]

The sort7 is often assumed to be interpreted and semantic attachment is used in implemen-
tations, but it can be axiomatized in various ways, For example, in first-order logic, it can
be axiomatized as a subset of Presburger arithmetic [37] (natural numbers with addition),
or in second-order logic as Peano arithmetic.

Definition 1.2 (Terms) A value termoften denoted by, is a variabley or a constant of
sortV; for somei, an expressionalug, f) wherer is a temporal term and is a fluent
term, or an expressiog(wy, . .. ,wy) Whereg : Vi, X ... x V., — V; is avalue function
symbol and eacl; is a value term of sofy, .

A temporal term often denoted by, is a variablet or a constant,1,2.3,... or
s1,ty, ..., Or an expression of the form + 7, all of sort7.

A fluent termoften denoted by, is a feature variable or a feature expressian, . .. ,w,)
wheref : Vi, x ... x V,, — F;is afeature symbol and each) is a value term of sort
V..

J



Doherty and Kvarnstim 17

An action term¥ is an expressiodl (w1, . .. ,w,) WhereA : Vi, x ... xV, — Ais
an action symbol and eacl} is a value term of sory; . [ |

Variables are typed and range over the values belonging to a specific sort. Although the
sort is sometimes specified explicitly in narratives, it is more common to simply give the
variable the same name as the sort but (like all variables) written in italics, possibly with
a prime and/or an index. For example, the variablies.e, plane’ and plane,; would be
of the sortPLANE. Similarly, variables nametor r are normally temporal variables, and
variables named are normally integer-valued variables.

The functionvalu€gr, f) returns the value of the fluent at the timepointr, where
[7] f = v iff valugr, f) = v. The expressiofr] f = g, wheref andg are fluent terms,
is shorthand notation fdr] f = valug(r, g).

1.5.2 Formulas

Definition 1.3 (Temporal and Value Formulas) If 7 andr’ are temporal terms, then=
7/, 7 < 7" andrt < 7’ aretemporal formulas A value formulais of the formw = '
wherew andw’ are value terms, afwy, . ..,w,) wherer : V, x ... x Vi is a relation
symbol and eacl; is a value term of sofy, . [ |

We will sometimes writer < 7/ < 7 to denote the conjunction < 7/ A 7 < 7", and
similarly for other combinations of the relation symbeglsand<.

Definition 1.4 (Fluent Formula) An elementary fluent formu)Jasometimes called ais-
value expressigrhas the formf = w wheref is a fluent term of sorf; andw is a value

term of sortdom(F;). A fluent formulais an elementary fluent formula or a combination

of fluent formulas formed with the standard logical connectives and quantification over
values. |

The elementary fluent formula = true (f = false) can be abbreviatefl (—f).

Definition 1.5 (Timed Formulas) Let r andr’ be temporal terms and a fluent formula.
Then:

o [r,7] o, (1,7 e, [1,7) v, (7,7') @, [T,00) «, (T,00) o and[7] « arefixed fluent
formulas

o Cr([r] ), Cr([7] @) andC([r] «) arechange formulas

e R([r,7'] a), R((r,7'] ), R([r,7') a), R((1,7']) «) andR([7] a) arereassign-
ment formulas

o I([r, 7] @), I((7, 7] ), I([7,7") &), I((7,7]) @) andI([r] «) areinterval reas-
signment formulgsand

o X([r,7'] ), X((1,7"] ), X([7,7") ), X((7,7']) @) and X ([7] «) areocclusion
formulas

Fixed fluent formulas, change formulas, reassignment formulas, interval reassignment for-
mulas and occlusion formulas are calteded formulas |
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Definition 1.6 (Static Formula) A static formulais a temporal formula, a value formula,

a fixed fluent formula, a change formuteye ,false , or a combination of static formu-

las formed using the standard logical connectives together with quantification over values
and time. |

Note that the formulague andfalse are not the same as the boolean valnesand
false.

Definition 1.7 (Change Formula) A change formulds a formula that has (or is regret-
table to) the formQv(a; V ... V «,,) whereQu is a sequence of quantifiers with variables,
and eachy; is a conjunction of static, occlusion and reassignment formulas. The change
formula is calledbalancediff the following two conditions hold. (a) Whenever a feature

f (@) appears inside a reassignment or occlusion formula in one of;tisjuncts, it must

also appear in all othex;’s inside a reassignment or occlusion formula with exactly the
same temporal argument. (b) Any existentially quantified varialitethe formula, when-

ever appearing inside a reassignment or occlusion formula, only does so in the position
f=w. |

Definition 1.8 (Application Formula) An application formulais any of the following:
(a) a balanced change formula; (8)— A, whereA is a static formula and\ is a bal-
anced change formula; or (c) a combination of elements of types (a) and (b) formed with
conjunction and universal quantification over values and time. |

Application formulas will be used on thdas of an implication in dependency con-
straints or action occurrence statements. The reason for these structural constraints on
such formulas is to guarantee the proper generation of the occlusion predicate in the trans-
lation from £(ND) to £(FL). Restricting the structure of these formulas will guarantee
1st-order reducibility of the circumscription policy applied to the narrative.

Definition 1.9 (Occurrence Formula) An occurrence formuléhas the form(r,7'] ¥,
wherer andr’ are temporal terms andl is an action term. |

Definition 1.10 (Persistence Formula)A persistence formuls an expression of the form
Per(r, f) wherer is a temporal term and is a fluent term, an expression of the form
Dur(r, f,w) wherer is a temporal termf is a fluent term and is a value term, or a
combination of persistence formulas formed with conjunction and universal quantification
over values or time. |

1.5.3 Statements

Definition 1.11 (Narrative Statements) The following types of narrative statements are
available in the current version of TAL.

An action type specification or action schema (labekeg has the fornijt, t'] ¥ — ¢,
wheret andt’ are temporal variabled; is an action term and is an application formula.

A dependency constraint (labeleep) consists of an application formula.

A domain constraint (labeletbm) consists of a static formula.

A persistence statement (labelet) consists of a persistence formula.

An observation statement (labelelas ) consists of a static formula.
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An action occurrence statement (labeted) consists of an occurrence formitar’] ¥
wherer andr’ are variable-free temporal terms aWids a variable-free action term. l

All of these statements types have been provided with intuitive meanings in the previous
section except dependency constraints, which will be used to model side effects of actions
(Sections 1.8) and qualifications to actions (Section 1.9).

1.6 The TAL Base LanguageC(FL)

This section defines the current base langué(fel) used in TAL. The translation from
L(ND),which has already been described, to the first-order langdéige) is presented
in Section 1.6.1. The base languag@-L) is an order-sorted classical first-order language
with equality. We assume familiarity with standard ways to define vocabulary and variable
types in sorted logics. Additionally, a temporal structure must be chosen for the temporal
sort7. This would include a domain such as the natural numbers or integers and associated
operators. It was mentioned previously that a number of choices as to temporal structure
could be made.

L(FL) currently uses the following predicates whéfeis the temporal sortF is a
supersort of all fluent sorts andis a supersort of all value sorts.

e Holds: 7 x F x V — TheHolds predicate expresses what value a feature has at
each timepoint, and is used in the translation of fixed fluent formulas; for exam-

ple, the formulg[0] loc(boris) = homel A loc(gun) = office can be translated into
Holds(0, loc(boris), home1) A Holds(0, loc(gun), office).

e Occlude: 7 x F — The Occludepredicate expresses the fact that a persistent or
durational feature is exempt from its persistence or default value assumption, re-
spectively, at a given timepoint. It is used in the translation of Bhel and X
operators, which are intended to change the values of features.

e Occurs: 7 x T x A — TheOccurspredicate expresses that a certain action occurs
during a certain time interval, and is used in the translation of action occurrence
statements and action type specifications.

1.6.1 Translation from £(ND) to £(FL)

The following translation function is used to transl&a\D) formulas intoL(FL).

Definition 1.1 (Trans Translation Function) Transis called theexpansion transforma-
tion, and is defined as follows. All variables occurring only on the right-hand side are
assumed to be fresh variables.

The formuladrue andfalse need no translation:
Trangtrue ) =true
Trangfalse ) =false
Basic macros are translated infgFL) predicates:

Trang[7] f(©)) = Holds(r, f(®), true)
Trang[7] f(@) = w) = Holdy(T, f (@), w)
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Trang X ([7] f(@))) = Occludér, f(w))

Trang X ([7] f(@) = w)) = Occludér, f(w))
Trang[r, '] A(w)) = Occurgr, 7', A(@))

In some versions of TAL, th€(ND) functionsPer andDur are also translated intB(FL)
predicates. Here, they are translated directly into constraints on fluent values and occlusion.

TrangPer(r, f)) =Vt.r =t + 1 A =Occluddt + 1, f) —
Yo[Holds(t + 1, f,v) <« Holdg(t, £, v)]
TrangDur(r, f,w)) = ~Occludér, f) — Holds(r, f,w)

Top-level connectives and quantifiers are left unchanged:
Trang —a) = =Trang «)
Tranga C ) = Trang ) C Trang5), whereC € {A,V, —, < }.
Trang Qu[a]) = Qu[Trang )], whereQ € {V, 3}.

Fixed fluent formulas can contain nested connectives and quantifiers, which are transferred
outside the scope of the temporal context

Trang[r] Qu[a]) = Qu[Trang[7] «)], whereQ € {V¥,3}.
Trang[r] —a) = = Trang[7] «)
Trang[r] o C B) = Trang[7] «) C Trang[r] §), whereC € {A,V,—, <}.

Nested connectives and quantifiers can also occur within occlusion formulas. However, the
translation of these formulas has to be modified somewhat to take into account the fact that
any occlusion formula should occluadd fluents occurring within the scope of the occlu-
sion operator: Even a disjunctive formula such’agr| o vV 3) should occlude all fluents
in o and all fluents ing and is therefore not equivalent %([7] «) vV X ([r] ) but to
X([r] &) AX([] B). The translation procedure takes this into account by removing nega-
tions inside theX operator, translating connectives occurring inskiénto conjunctions,
and converting all quantifiers insid€ into universal quantification.
Trangd X ([7] —«)) = Trand X ([7] «))
Trang X ([7] a C B)) = Trand X ([7] a) A X([7] B)), whereC € {A,V,—, —}.
Trang X ([7]Qu[a])) = Vo[Trang X ([r]a))], whereQ € {V, 3}.

Fixed fluent formulas can contain infinite temporal intervals. This is a shorthand notation;
infinity is not part of the temporal sort and disappears in the translation.

Trang[7, 00) «) = Vi[r < t — Trang[t]«)]

Trang (1, 00) o) = V[T < t — Trang[t]a)]

Finite temporal intervals are permitted both in fixed fluent formulas and in the occlusion
operator. Only one form of interval is shown; the extension to allow open, closed and
semi-closed intervals is trivial.
Trang[r, '] @) =Vit[r <t < 7/ — Trang[t]«)]
Trand X ((7, 7] o)) =Vit[r <t < 7/ — Trand X ([t]a))]
The R and! operators are defined as follows. Again, one form of interval is shown.
Trang R((7,7'] a)) = Trand X ((7, '], @)) A Trang[r]«)
Trang R([7] «)) = Trang X ([ ] a)) A Trang[7] @)
TrangI((7,7'])) = Trand X ((7, 7'] «)) A Trang (7, 7'] @)
TrangI([7] a)) = ([7] a)) A Trang([7] «)
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Finally, the Ct “changes to true” operator is defined as follows, with the operatrs
(changes to false) ard (changes) added for symmetry.

TrangCr([7] ) =Vit[r =t + 1 — Trang[t]-a)] A Trang[7] «)
Trang Cr([7] @) =Vt[r =t + 1 — Trang[t]a)] A Trang[r] —«)
TrangC([7] a)) = Tran{ Cr([7] @) V Cr([7] ) [ ]

Example 1.2 (Narrative Translation) The following is a translation of several of tig&ND)
statements in the Russian Airplane Hijack scenario B{teL). For brevity, the translation

is limited to one statement of each statement class; the remaining formulas are translated
in a similar manner.

perl Vi, thing,¢' [t =t + 1 A —=Occludét’ + 1, loc(thing)) —
Yo[Holds(t' + 1, loc(thing), v) « Holds(¢', loc(thing), v)]]
doml Vi, pthing,, person, person [—~(person = person) A
Holds(t, inpocket(person, pthing, ), true) —
—Holdsg(t, inpocket(person, pthing, ), true)]
acs2 Vi, ta, personpthing [Occursgty, ta, pickup(person pthing)) —
(Holds(t;, loc(persorn), valugty, loc(pthing))) —
Holds(ts, inpocket(person pthing), true) A
Vi [t; < tAt <ty — Occludédt, inpocket(person pthing))])]
obsl Holds(0, loc(boris), homel) A Holds(0, loc(gun), office) A
Holds(0, loc(comb1), home1) A =Holds(0, drunk(boris), true)
occl Occurg1, 2, put(boris, combl, pocketl))

1.7 Circumscription and TAL

The commonsense intuition one would like to capture and formally model in TAL is the
fact that at a particular level of abstraction, relations between and properties of objects
generally have reasons for changing and if not, we can assume, unless observed otherwise,
that these are the onpossiblechanges we need be concerned about when reasoning about
the specific environment around us and knowledge associated with that environment. So
far, we have shown how one can encode in a principled manner sufficient reasons for the
possibility of change by using a combination of theclude predicate and automatic trans-
lations from the surface languag&€ND) to the base languagé(FL). When specifying
narratives in TAL, all sufficient reasons for the possibility of change are specified using the
reassignment macra®, I and X in dependency constraints and action type definitions.
When translated, these statements result in constraints dddtledepredicate. Unfor-
tunately, what has been achieved so far under-constrains our notion of normative change,
for we would also like to state that these are the only, or necessary, reasquséisle
change.

In order to add this additional constraint to our action theories, we will appeal to the
use of Circumscription [53, 54] with an additional twist. Rather than apply a circumscrip-
tion policy to the whole action theory, the theory will be partitioned and we will apply
circumscription selectively to different partitions. Although this technique, which we call
filtered circumscription [19], is now commonly used in other action theories [62, 47], in
the context of action and change, it was first proposed in Sandewall [57]. Here, it was
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called filtered preferential entailment and was used as a basis for several of the definitions
of preferential entailment in [58].

The basic idea will be to first circumscribe the predidatelude in that part of the ac-
tion theory containing action occurrence statements and dependency constraint statements.
This will result in a set of preferred or minimal models for the action theory providing
a definition of all time-points and features where it is possible for them to change value
based on the constraints in the theory. Of course, these models will also contain spurious
change since we have only provided sufficient and necessary conditions for the definition
of Occlude. To rule out spurious change, we will then filter the resulting circumscriptive
sub-theory with that part of the theory containing persistence statements. Persistence state-
ments specify when features should not change value, assuming a predefined definition of
Occlude which circumscription provides. In this manner, any model containing feature
change not mandated by the implicit occlusion policy in the action theory will be excluded
as a model of the action theory. Additionally, a separate circumscription policy will be
used for that part of the action theory containing action occurrence statements, where the
predicateOccurs will be circumscribed and all partitions will then be conjoined.

Due to the structural syntactic constraints built into statement definitioB&NID), we
can show that the two circumscribed sub-theories which are 2nd-order due to the use of
circumscription, can be reduced to logically equivalent first-order theories. In fact, since
only positive occurrences of the predicaes-lude andOccurs occur in the two circum-
scribed partitions of the action theory, respectively, a standard syntactic transformation on
formulas may be used to generate the necessary conditions for both predicates. This in fact
is a form of predicate completion.

The formal definition of the circumscription policy used in TAL will use the following
terminology:

e Let denote the collection of narrative statements contained in a narraf(&in),
and letNVoer, Nobs, Noces Nacss Naome, @NdNgepe denote the sets of persistence state-
ments, observation statements, action occurrence statements, action type specifica-
tions, domain constraint statements, and dependency constraint statemafts in
respectively.

e LetI" denote the translation ¢f into £(FL) using theTranstranslation function,
and letl'per, Tobs, D'oces T'acss I'aomes @NdLgepe denote the persistence formulas, ob-
servation formulas, action occurrence formulas, action type specifications, domain
constraint formulas, and dependency constraint formulasiaspectively.

e LetTyy denote the set of foundational axioms4gFL), containing uniqgue names
axioms, unique values axioms, etc.

e LetI';. denote the axiomatization of the particular temporal structure used in TAL.

In the following, we assume familiarity with circumscription [53, 54] and common
notation used to denote circumscription policies [45]. Let

I'= Fper A Fobs A Fdomc A 11occ A Fdepc A Facs

be the translation of an action narratived(N\D) into a first-order theory it (FL). Based
on the discussion above, we use circumscription to minize.rs in 'y andOcclude
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iN Cgepe A Iaes as follows,

I't = Tper A Tobs A Tgome /A Circ(Toee; Occurg A Circ(Tgepe A Tacs; Occludg.
In addition, let

I's =Tt A Time.

For any narrativé\" in TAL, a preferred narrative theory in the base logi¢-L) is defined
as,

Ay =T9 ATy,

We say that a formula in the base logicC(FL) is preferentially entailed by the narrative
N whose translation int@ (FL) is T iff

Ay E a.

Observe that there are several equivalent formalizations gfdue to the following
general property of circumscription (p. 311, [45]): for any senteBagot containingP,
Z (whereP is minimized and” is varied),

Circ(I'(P, Z) A B; P; Z) = Circ(I'(P, Z); P; Z) A B (1.1)
and the observation that
Circ(T oee; OcCUrg ACIIC(IgepeALacs; Occludg = Circ(Toce AL'gepc AL'aes; OCCUrs Occludg
From this, it follows thatA 5, is equivalent to

A" =Tper A Circ(a A Tops A Taome A Toce A Lgepe A Tacs; Occurs Occlude

Note that it is important thdf ., is outside the circumscriptive theory due to the fact that
it contains occurrences of the predicéteciude. Consequently, filtered circumscription is
fundamental to the approach used in TAL.

As it stands A is in fact, a second-order theory due to the fact thatontains two
second-order circumscription formulairc (T oec; Occurg andCirc(Igepc AL 'ses; Occludg.
Due to structural syntactic constraints in the narrati¢én £(ND) which are carried over
to its translatiorT” in £(FL), it can be shown that bo®irc(Ty..; Occurg andCirc(T gepe A
I.es; Occlude are reducible to logically equivalent first-order formulas. We now show
this. First some preliminaries.

An occurrence of a predicate symbol in a formulgasitiveif it is in the range of
an even number of negations (this is assuming that the conneetivarsd < have been
eliminated and replaced by other connectives in some equivalent normal form). A formula
A(P) is positive(relative toP) if all occurrences of in A(P) are positive.

Based on the definitions (1.7) and (1.8) for change and application formulas in the
language ofZ(ND) and the definition of the translation functi@rans between formulas
in £(ND) to their translation intaC(FL), it is straightforward to show that the predicate
Occurs can only appear positively if,.. and that the predicat@cclude can only appear
positively inT'gepe A Iacs. The following proposition can then be applied to show that both
Circ(T'oee; Oceurg and Circ(Tgepe A T'acs; Occludg are reducible to logically equivalent
first-order formulas [9]:
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Proposition 1 (p. 316, [45]) If A(P, Z) is positive relative taP, then the circumscription
Circ(A(P, Z); P; Z) is equivalent to

A(P, Z) N =3z, z[P(z) N AAy(P(y) Az # y), 2)].
|

In fact, it can be shown that predicate completion can be appliEgd@ndl gepc Al'acs,
respectively. The following proposition will be of use. Lebe a tuple of variables, and
F(x) be a formula with all parameters explicitly shown, then

Proposition 2 (p. 309, [45]) If F(z) does not contai®, then the circumscription
Circ(VTF (T) — P(T); P) is equivalent t&/zF(Z) < P(T) |

This proposition generalizes to conjunctions of formulas of the foff' (z) — P(T).
Using a number of syntactic transformations [13, 15], It can be shown that

Foee = /\ VZF;(T) — Occurs(T) (1.2)
i=1
wheren is the number 0Occurs formulas inl',.. By the generalization of proposition 2
and (1.2), it follows that

Cire(Toce; Oceury = VZ((\/ F;(T)) < Occurs(T)] (1.3)
=1
In addition it can be shown [13, 15] that
n k
Tdepe A Tacs = /\B A /\ C; AvE((\/ Fi@) v \/ G;(T)) — Occlude ()] (1.4)
=1 j=1 =1 Jj=1

By (1.1), it follows that,

Circ(Tgepe A Tacs; Occlude) = (1.5
Ay Bi A /\?:1 C; A Cire(VE[(Vi, Fi(T) V \/?:1 G, (7)) — Occlude(Z)]; Occlude)
By the generalization of proposition 2 and (1.5), it follows that
Cire(Tgepe A T'acs; Occlude) = (1.6)
NiZi Bi A N—y €y AVEI(VZ, Fi(@) v Vi, G5(T) < Occlude()]
Consequently, one can redute in A, to a logically equivalent first-order formula.
Under the assumption that in A is also first-order (the temporal structure has a first-

order axiomatization), for any narrativ§, its translation into a preferred narrative in
L(FL), Ay, is afirst-order theory.

Example 1.1 (Circumscription of the RAH scenario) Though the circumscription of the
Occludepredicate can be translated into a single first order formula, we have instead cho-
sen for expository purposes to generate a separate formula for each ground fluent in the
narrative, where the conjunction of these formulas is entailed by the original 2nd-order
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circumscription axiom. Here, we show a subset of these formulas for the Russian Airplane
Hijack scenario.

First, the following are the necessary and sufficient conditionsbdioris) to be oc-
cluded at any given point in time. For examplepdiiis is at home at time 3, which is a
precondition for the action occurren{ 5] travel(boris, homel, office), then his location
will be occluded at timé&, when the final effects of theavel action take place.

vt [Occludét, loc(boris)) < t = 5 A Hold¥(3, loc(boris), homel) V

t = 10 A Holds(8, loc(boris), office) v t = 11 A Holdg(10, loc(boris), airport) V

14 <tAt<15A

Holds(13, loc(sas609), run609) A Holds(13, onplane(sas609, boris), true) V

t = 16 A Holds(13, loc(sas609), run609) A Holds(13, onplane(sas609, boris), true)]

The conditions for occlusion adc(dimiter) are quite similar, but differ in certain timepoints
given thatboris anddimiter do not travel at the same time.

vt [Occludét, loc(dimiter)) < t = 4 A Holds(2, loc(dimiter), home3) V

t = 7 A Holdg(5, loc(dimiter), office) V t = 10 A Holdg(9, loc(dimiter), airport) V

14 <t At < 15 A Hold¥(13, loc(sas609), run609) A

Holdg(13, onplane(sas609, dimiter), true) V

t = 16AHolds(13, loc(sas609), run609) AHolds(13, onplane(sas609, dimiter), true)]

The fluentinpocket(boris,gun) may be occluded at time 7 fibris is at the required location
when attempting to pick it up, birpocket(dimiter,gun) can never be occluded.

vt [Occludét, inpocket(boris, gun)) < t = 7 A Holds(6, loc(boris), loc(gun))]
vt [Occludét, inpocket(dimiter, gun)) < false | |

1.8 Representing Ramifications in TAL

The ramification problem [46, 20, 36, 47, 50, 21, 59, 25, 65] states that it is unreasonable
to explicitly specify all the effects of an action in an action specification itself. One would
rather prefer to state the direct effects of actions in the action specification and then use de-
ductive machinery to derive the indirect effects of actions using the direct effects of actions
together with general knowledge directional dependencies among features specified in
some background theory. The feature dependencies specified do not necessarily have to
be based solely on notions of physical or other causality, but often are. A solution to the
ramification problem is important from the representational perspective, where one strives
after incremental, modular and intuitive characterizations of action and change. When one
thinks of actions at a certain level of abstraction, one normally thinks of actions in terms
of their direct effects and one would like to represent actions as such. On the other hand,
causality plays an important role in any type of reasoning about action and change, there-
fore modular and incremental theories of causal and other dependencies among features is
equally important to represent as is the interaction between actions and causal theories.
Some earlier approaches to solving the ramification problem made use of pure domain
constraints (essentially logical implication) in order to infer side effects of actions. For
the Russian Airplane Hijack scenario, for example, one might specify that everyone on-
board an airplane is always in the same physical location as the airplane. Should one fly
the airplane to another location, a direct effect would constrain the airplane to be in the
new location, and the locations of everyone onboard would have to change location to the
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airplane’s new location in order to still satisfy the domain constraint. This type of solution

is non-directional, which may sometimes be of advantage but may also lead to unexpected
or unintended results. For example, in some representations, invoking an action that moves
a single person would also cause the airplane and everyone else onboard to move.

The key insight in providing a good solution to the ramification problem is that of
finding appropriate and representationally efficient ways of encoding directionality in de-
pendencies among features which cause change in addition to allowing longer chains of
directional feature change. Logical implication, for example, is one way to encode a depen-
dency constraint among features, but it under-constrains the directionality of a dependency
due to the fact that the contrapositive to an implication formula is logically equivalent to
that formula. Another important point to keep in mind is the way in which dependencies
are triggered. This is highly contextual and though it is often the case that change triggers
change, it is also the case that state triggers change. Both types of context and combina-
tions of both should be expressible in action theories.

The TAL solution to the ramification problem instead involves the use of dependency
constraints, which were formally specified in Definition 1.11. In this definition, the similar-
ity between action type specifications and dependency constraints may be noted. Whereas
an action type specification is an application formula conditionalized by the occurrence of
an action [¢, t'] ¥ where¥ is an action term) and then a precondition once that action is
invoked, a dependency constraint consists of an application formula without such an action
occurrence precondition. In a sense, while actions must be explicitly invoked, dependency
constraints are constantly active. In both cases, there is an explicit directionality of feature
change implicit in the representation. Technically, this is achieved by noting that features
are occluded via assignment operators on the rhs of implications, whereas they are not
on the Lhasa. This together with the minimization policy for occlusion and persistence
statements permits the encoding of directionality of change in a fine-grained manner.

This solution to the ramification problem can be directly applied to the Russian Air-
plane Hijack scenario. Recall that the definition of tiaeel andfly actions included for-
mulas explicitly causing anything a person was carrying to move to the same destination
(Section 1.3.2). Clearly it would be better if such a formula could be factored out and
modeled as a side effect of a person moving between two locations in any manner, rather
than having to be specified for every action that causes a person to move. This can be
represented using the following feature dependency constraint, stating that if the fact that
personis atloc becomes true (changes to true) — in other words, if the person has just
moved toloc — then anything the person carries in his pockets will also move to the same
location. The use of explicit reassignment with tReperator ensures that such changes
are permitted despite the general persistence assumption fot theent.

dep2 Vt, personpthing loc [[t] inpocket(person pthing) A Cr([t] loc(person = loc) —
R(]t] loc(pthing) = loc)]
With this change, theavel action can be simplified as follows:
acs3  [t1, o] travel(personlocy, locy) ~~ [t1] loc(persor) = loc; —
R(][t2] loc(person = locsy)
Thefly action can be simplified in a similar manner. Before showing the new defini-

tion of this action though, we will consider one more indirect effect: people on board an
airplane move when the airplane moves.
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depl Vt,plane personloc |
[t] onplane(plane person A Cr(]t] loc(plane = loc) — R([t] loc(persor) = loc)]

Note that the context for the dependency constraidejpl has both a triggering condition
(Cr) and a standard state condition. This is useful for encoding chaining of indirect effects.

Though this is quite similar to the previous indirect effect, it serves to illustrate an im-
portant property of fluent dependency constraints: It is possible to trigger not only a single
indirect effect but achain of indirect effects, which can be utilized to further modularize
the specification of a narrative. In this particular scenario, causing an airplane to move will
cause all people on board the airplane to move, which in turn will cause anything they are
carrying to move, allowing théy action to be modeled as follows:

acsl [t1,t2] fly(plang runway,, runway,) ~~ [¢1] loc(plane = runway, —
I((t1,t2) loc(plane) = air) A R([t2] loc(plang = runway,)

1.9 Representing Qualifications in TAL

The qualification problem [64, 46, 20, 48, 50, 62, 16, 41, 66] was identified by Mc-
Carthy [52, 53] while developing systems for representing general commonsense knowl-
edge. McCarthy showed a way to deal with the representational problem by using circum-
scription. In his own words,

The "qualification problem” immediately arose in representing general
commonsense knowledge. It seemed that in order to fully represent the condi-
tions for the successful performance of an action, an impractical and implausi-
ble number of qualifications would have to be included in sentences expressing
them. [53]

A solution to the qualification problem would involve a normative representation of an
action which would model the fact that an action can be invoked ustasgthingrevents
it from being invoked, where thatomethingis assumed by default not to exist unless
explicitly represented in an action theory. Additionally, when qualifications to actions are
learned, the representation should permit an incremental and elaboration tolerant means of
adding such qualifications to the action theory.

We have now modeled most of the Russian Airplane Hijack Scenario in TAL, but we
have not provided a means for modeling qualifications to actions in a representationally
efficient, incremental and elaboration tolerant manner. Some examples of qualifications to
actions in the RAH scenario would be: someone who carries a gun cannot board a plane, or
someone who is drunk may or may not be able to board a plane. In fact, it may be the case
that there are qualifications to qualifications. For example, a security personnel should be
able to board a plane with a gun.

There are already a number of solutions to various aspects of the qualification problem
in the literature, some of which would be applicable in TAL. However, many of these
solutions are dependent on the two-state assumption with highly constrained action types.
As we have shown, actions in TAL go far beyond this limited form of representation. We
would like to provide a solution that retains at least the following features of TAL:

e Any state, including the initial state, can be completely or incompletely specified
using observations and domain constraints.
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e Actions can be context-dependent and non-deterministic. They can have duration
and internal state, and the duration may be different for different executions of the
action. There may be concurrent actions with partially overlapping execution inter-
vals.

e There can be dynamic processes continuously taking place independently of any
actions that may occur.

e Domain constraints can be used for specifying logical dependencies between fluents
generally true in every state or across states. They may vary over time.

e Actions can have side effects, which may be delayed and may affect the world at
multiple points in time. They may in turn trigger other delayed or non-delayed side
effects.

We would also like to retain the first-order reducibility of the circumscription axiom
in any solution to the qualification problem in TAL. In order to do this, the following
restrictions and assumptions will apply. First, we will be satisfied with a solution where
invoking a qualified action either has no effect or has some well-defined effect. Secondly,
we will restrict the solution to the off-line planning and prediction problems and not claim a
complete solution for the post-diction problem, which would require being able to conclude
that an action was qualified because its successful execution would have contradicted an
observation of some feature value after that action was invoked.

1.9.1 Enabling Fluents

To handle the qualification problem, we use a solution based on defaults where each action
type in a narrative is associated with anabling fluenta boolean durational fluent with
default valuetrue and with the same number and type of arguments as the action type.
This fluent will be used in the precondition of the action and will usually be named by
prefixing “poss-" to the name of the action. For example, the boarding action in the RAH
scenario will be associated with an enabling flupeds-board(personplang). We also

add a persistence statement for this fluent stating that it is a durational fluent. Recall that
a durational feature retains its default value unless an additional constraint specifies that
there is an exception to that value at a particular point or points in tiaee4 is then
modified as follows:

per5 Vi, personplane[Dur(t, poss-board(person plane), true)]
acs4’ [t1,ts] board(personplane ~~
[t1] poss-board(personplane) A loc(persor) = airport —
R([t2] loc(person = valugts, loc(plang)) A onplane(plane persor))

The other action types are modified in a similar way.

Now, suppose thaioard(personplane is executed between timepointsandts. If
poss-board(person plane) is false at; for some reason, the action is qualifiedd@abled
On the other hand, if the fluent is truetat the action issnabled Of course, it can still be
the case that the action has no effects, if other parts of its precondition are false.
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To generalize this, a context-independent action that should have no effect at all when
qualified can be defined using a simple action definition of the Yorm

acsm [t1,ts] action ~~ [t;] poss-action A o — R([t2] B)

wherea is the precondition and specifies the direct effects of the action (context-dependent
actions are defined analogously). However, we also wanted to be able to define actions that
do have some effects when they are qualified. This can be done by defining a context-
dependent action that defines what happens when the enabling fluent is false:

acsn [t1,ts] action ~~ ([t1] poss-action A oy — R([t2] 51)) A
([t1] —poss-action A ag — R([t2] B2))

For example, suppose that whenever anyone tries to board a plane but the action is quali-
fied, they should try to find new transportation. In order to model this, we would add a new
persistent fluentind-new-transportation(PERSON : BOOLEAN and modify the boarding
action from Section 1.3.2 as follows:

acs4” [t1,t2] board(personplane) ~~
([t1] poss-board(personplane) A loc(persor) = airport —
R([t2] loc(person = valugts, loc(plane)) A onplane(plane persor))) A
([t1] —poss-board(person plane) A loc(persor) = airport —
R([t2] find-new-transportation(persor)))

In this alternative scenario, if anyone is at the airport and tries to board a plane, and the
action is qualified, they will have a goal of finding new transportation. If they are at the
airport but the action is not qualified, they will board the plane. If they are not at the airport,
none of the preconditions will be true, and invoking the action will have no effect. Note
that it may very well be the case that they can not board for a more serious reason such as
carrying a gun. This is a case where the original qualification might have to be qualified.

Regardless of whether a qualified action has an effect or not, its enabling fluent is a dura-
tional fluent with default valuerue. Therefore, the fluent will normally be true, and the
action will normally be enabled. In the remainder of this section, we will examine some of
the ways in which we can disable an action using strong and weak qualification.

1.9.2 Strong Qualification

When there is sufficient information to conclude that an action will definitely not succeed,
it is strongly qualified This can be modeled by forcing its enabling fluent to be false at the
timepoint at which the action is invoked.

For example, suppose that when a person has a gun in his pocket, it should be im-
possible for that person to board a plane. Then, whenepetket(person, gun) holds,
poss-board necessarily becomes false. This can be represented using a dependency con-
straint:

dep3 Vt, personplane][[t] inpocket(persongun) — I([t] —poss-board(personplane))]

At any timepointt when a person has a gun in his pocket, we useltheacro both to
occludeposs-board(person plane) for all airplanes, thereby releasing it from the default

9Note that due to the regularity of the solution, such extensions could be implicit in an action macro, thus
avoiding unneeded clutter in the representation and delegating representation responsibility to the system rather
than the knowledge engineer.
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value axiom, and to make it false. This implies that as long as a person has a gun in his
pocket,poss-board will be false for that person on all airplanes. If the gun is later removed
from the pocket, this dependency constraint will no longer be triggered. At that time,
assuming no other qualifications affect the enabling fluent, it will automatically revert to
its default valuetrue.

1.9.3 Weak Qualification

Although strong qualification can often be useful, we may sometimes have enough infor-
mation to determine that an actiomayfail, even though we cannot conclusively prove that
it will. We call this weakqualification.

For example, we may want to model the fact that when a person is drunkakie
or may notbe able to board an airplane, depending on whether airport security discov-
ers this or not. We may not be able to determine within our model of the RAH scenario
whether airport security does discover that any given person is drunk. In this case, when-
everdrunk(persor holds, we must releag@ss-board from the default value assumption:

dep4 Vt, person|[t] drunk(persor) — X ([t] Vplane[—poss-board(personplane)])]

At any timepointt when a person is drunk, we occlupess-board(personplane) for all
airplanes, but since we do not state anything abouwv#eae of the enabling fluent, it is
allowed to be either true or false.

Although being able to state that an actioray fail is useful in its own right, it is
naturally also possible to restrict the set of models further by adding more statements to
the scenario which could make it possible to infer whegiwas-board(dimiter, sas609) is
true or false at some or all timepoints. For example, we may know that people boarding
sas609 are always checked more carefully, so that it is impossible for anyone who is drunk
to be on board that airplane, which could be expressed using an additional domain con-
straint. In the context of post-diction, observation statements could be used in a similar
manner. For example, adding the observation stateotess [13] onplane(sas609, boris)
to the narrative would allow us to infer that Boris did in fact board the plane and that
poss-board(boris, sas609) was in fact true. He would then end up at his intended destina-
tion. If instead we added the observation statenost[13] —onplane(sas609, boris), we
could infer that he was unable to board the plane and he did not end up at his destination.

It should be noted that this approach to modeling qualification has similarities to a
standard default solution to the qualification problem, but with some subtle differences.
For example, it permits more control of the enabling precondition, even allowing it to
change during the execution of an action. More importantly, it involves no changes to the
minimization policy already used in TAL to deal with the frame and ramification problems,
consequently the circumscription theory is still first-order reducible.

1.9.4 Qualification: Not Only For Actions

As we have shown, this approach to qualification is based on general concepts such as du-
rational features and fluent dependency constraints, instead of introducing new predicates,
entailment relations or circumscription policies specifically designed for dealing with the
qualification problem. This is appealing not only because we avoid introducing new com-
plexity into the logic, but also because reusing these more general concepts adds to the



Doherty and Kvarnstim 31

flexibility of the approach. In fact, exactly the same approach can be used for specify-
ing qualifications to any rule or constraint. Most notably, one can provide qualifications
for ramification constraints, thereby introducing defeasible side effects — or one can even
qualify qualification constraints themselves.

As an example, when we initially considered the boarding action, the “natural” pre-
conditions were that one had to be at the airport; this is the precondition encoded in the
definition ofboard (acs4). Later, we found another condition that should qualify the action:
No one should be able to board a plane carrying a gun. Now, however, we may discover
that this qualification does not always hold: Airport secushouldbe able to board a
plane carrying a gun.

Assuming that there is a fluemt-security(PERSON : BOOLEAN, this exception to
the general qualification rule could of course be modeled by changing the dependency
constraintdep3 in the following way:
dep3’ Vt, personplane[[t] inpocket(persongun) A —is-security(persor) —

I([t] —poss-board(personplane)]
However, we may later discover additional conditions under which it should be possible for
a person to board a plane with a gun, and we do not want to maeti/each time. Instead,
the qualification itself should be qualified. This can easily be done using the same approach
as for actions. A new enabling fluegtins-forbidden(PERSON PLANE) : BOOLEAN is
added for the qualification constraint, atep3 is modified as follows:

dep3” Vt, personplane|[t] inpocket(persongun) A guns-forbidden(personplane —
I([t] —poss-board(personplane))]

Now, we can qualify the qualificatiadep3 simply by makingyuns-forbidden false for some
person and airplane. In order to do this, we add a new dependency constraint:

dep8 Vt, personplane|[t] is-security(persor) — I([t] ~guns-forbidden(person plane))]

1.9.5 Ramifications as Qualifications

A problem related to the qualification problem occurs in formalisms where ramification
constraints and qualification constraints are expressed as domain constraints [20, 49]. As-
sume, for example, that we are reasoning about the blocks world, and that we have the
following domain constraint (expressed using TAL syntax), stating that no two blocks can
be on top of the same block:
dom Vt,z,y,z [[t] on(z, z) Aon(y, z) — x = y]
Now, suppose that the direct effect of the actat(A, C) ison(A, C), and the action is exe-
cuted in a state whera (B, C) is true. Then, we cannot determine syntactically whether the
domain constraint should be interpreted as a ramification constraint (since no two blocks
can be on top o€, B must be removed) or as a qualification constraint (since no two blocks
can be on top o€, the action should fail).

In TAL, however, all indirect effects of an action must be expressedirasted de-
pendency constraints. Therefore, this problem simply does not arise. For example, if a
ramification constraint is required, the following dependency constraint can be used:

dep Vt,z,y,z [[t] on(x,z) A Cr([t + 1] on(y, 2)) Az # y — R([t + 1] —on(z, 2))]
If « is on z, and we then placg on z, then an indirect effect is that is removed
from z. On the other hand, if a qualification constraint is required, an enabling fluent
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poss-put(BLOCK, BLOCK) can be used and the following qualification condition would
then be added:

dep Vt,z,y,z [[t] on(x, z) Az # y — I([t] —poss-put(y, z))]

Clearly, the problem of determining whether a constraint should be implicitly inter-
preted as a qualification or a ramification does not arise in this approach. One could crit-
icize such a solution as over-constraining the action theory model, but then again, use of
domain constraints could equally well be criticized for under-constraining the model.

A description of the TAL representation of the Russian Airplane Hijack scenario is now
complete and the general methods used to resolve the frame, ramification and qualification
problems have been described. The partial translationsdfh) were done using VI-

TAL [38], a research tool that can be used to study problems involving action and change
within TAL and generate visualizations of action scenarios and preferred entailments.

1.10 Concurrent Actions in TAL

Much work in reasoning about action and change has been done under the (sometimes
implicit) assumption that there is a single agent performing sequences of non-overlapping
actions. The use of explicit metric time in TAL clearly enables the specification of narra-
tives where action execution intervals are partly or completely overlapping, whether those
actions are performed by a single agent or by multiple cooperating or adversarial agents.
Similarly, the fact that actions can have non-unit duration and that one can specify in detail
what happens during the execution interval enables richer domain models where a larger
number of phenomena related to concurrency can be modeled. However, a complete treat-
ment of concurrency also requires the ability to model interactions between concurrent
effects of multiple actions. Such interactions carspeergistic where two actions must
be executed concurrently in order to achieve the desired effect. For example, moving a
table requires lifting both sides of the table simultaneously in order to avoid the undesired
side effects of everything on the table sliding off onto the floor. Interactions may also be
accumulativeas when a number of agents are placing packages in a vehicle for transporta-
tion, or harmful where one action provides the desired effect unless certain other actions
are executed concurrently.

In each of these cases, the composite effect of executing several actions is not equiv-
alent to the logical conjunction of the individual effects. For example, lifting the left side
of the table causes the table to tilt, as does lifting the right side of the table, but lifting
both sides at once cancels this effect. Though this could in theory be handled by modeling
all possible interactions within each action definition, this would clearly be an extremely
non-modular solution and would suffer from a combinatorial explosion in the number of
conditional effects required in each action definition. This is especially true when deal-
ing with actions with duration, where the number of combinations is determined not only
by the number of actions but also by the number of ways two or more actions can over-
lap in time. The use of ramification constraints also complicates the issue by introducing
interactions between actions and chains of (potentially delayed) ramification effects.

For these reasons, a more principled and indirect solution was proposed by Karlsson
and Gustafsson [34], where actions do not directly change the state of the world but instead
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produce a set of influences. Fluent dependency constraints can then be used to model how
the world is affected by a combination of influences.

1.10.1 Independent Concurrent Actions

The use of independent concurrent actions involving disjoint sets of features is unprob-
lematic in TAL. This is illustrated in the following narrative, describing a world with two
types of actionsl(ghtFire andPourwater), and a number of agentsil( andbob) and other
objects (ood1). All variables appearing free are implicitly universally quantified.

acsl [s,t] LightFire(a, wood) — ([s] dry(wood) — R((s, t] fire(wood)))
acs2 |[s,t] Pourwater(a,wood) — R((s,t] —dry(wood) A —fire(wood))
obsl [0] dry(woodl) A —fire(wood1) A wood(wood1)

obs2  [0] dry(wood2) A —fire(wood2) A wood(wood2)

occl [2,7] LightFire(bill, wood1)

occ2  [2,7] LightFire(bob, wood2)

occ3  [9,12] Pourwater(bob, wood1)

The first action law states that if an agerights a fire using a piece of wood, and the wood

is dry, then the wood will be on fire. The second action law states that if somebody pours
water on an object, then the object will no longer be dry, and will cease being on fire. There
are two pieces of woodvpodl andwood2) which are initially dry and not burning. Two
fires are lit bybill andbob during the temporal interva®, 7], and therbob pours water on

bill's fire at[9,12]. Since no concurrency is involved, the expected effects will take place:
Both pieces of wood will be on fire & andwood1 will no longer be burning at2.

1.10.2 Interacting Concurrent Actions

Now consider the case where actions affecting the same fluents occur concurrently. For
example, supposob pours water orwvoodl while bill is still lighting the fire. Intuitively,
the wood should not be on fire at 7. We formalize this in TAL by modifyéacg .

occ3 |3, 5] Pourwater(bob, wood1)

From the modified narrative one can still infer thatod1 is on fire at time7, because the
effects ofLightFire(bill, wood1) are only determined by whether the piece of wood is dry at
time 2, whereas in reality the effects of any action may also be altered by the direct and
indirect effects of other concurrent actions. A slight modification of the narrative above
illustrates another problem. Assume thet3 is replaced with the following:

occ3  [3,7] PourwWater(bob, wood1)

Now, the lighting and pouring actions end at the same time. Fm andoccl one can

infer the effect[7] fire(wood1) and fromacs2 andocc3 one can infer7] —fire(wood1).

Both effects are asserted to be direct and indefeasible. Thus, the narrative becomes incon-
sistent. The conclusion one would like to obtain is again that the wood is not on fire.

1.10.3 Laws of Interaction

Karlsson and Gustafsson [34] considers two solutions to these problems.
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In the first solution, action laws are extended to allow references to other action occur-
rences and the effects bifyhtFire are made conditional on the fact that there is no interfer-
ing PourWater action. As noted in the introduction, this solution makes action descriptions
less modular and there may be a combinatorial explosion in the number of conditional ef-
fects for each action. Other problems include the fact that a concurrent action might only
interfere with part of an action’s effects, leading to further complexity in action laws.

The second solution is based on the assumption that interactions resulting from con-
currency are best modeled not on the level of actions but on the level of features. Action
laws encode the influences that an action has upon the environment of the agent; in the fire
example,[s, t] LightFire(a, wood) would have the effeci((s,¢] fire*(wood true)) where
fire* (wood true) is a fluent representing an influence to make the fediti(@vood true.

This example follows the convention of representing the influences on an actuaffibent

with (@, v), wherev is a value in the domain of. Similarly, dependency constraints are
modified to result in influences rather than actual fluent changes. The actual effects that
these influences have on the environment are then specified in a special type of dependency
laws called influence laws. Applying this solution to the fire example yields the following
narrative:

doml Per(fire(wood)) A Dur(fire* (wood v), false)
Per(

dom?2 r(dry(wood)) A Dur(dry*(wood v), false)

acsl [s,t] LightFire(a, wood) — I((s,t] fire*(wood true))

acs2 |[s,t] PourWater(a,wood) — I((s,t] dry*(wood false))

depl [s] —dry(wood) — I([s] fire* (wood false))

infl  [s, s + 3] fire* (wood true) A —fire*(wood, false) — R([s + 3] fire(wood))

[
[
{
inf2 [sj fire* (wood false) — R([s] —fire(wood))
[
[
[
[

inf3  [s, s+ 3] dry*(wood true) A —dry* (wood false) — R([s + 3] dry(wood))
inf4  [s] dry*(wood false) — R([s] —~dry(wood))

obsl [0] —fire(wood1) A dry(wood1)

occl [2,6] LightFire(bill, wood1)

occ2 |3, 5] Pourwater(bob, wood1)

The action lawscs1 andacs2 and dependency ladepl produce influences; for example,
depl states that the fact that the wood is not dry produces an influeat@vood false)

to extinguish the fire (if there is one). The effects of these influences, alone and in com-
bination, are specified imfx; for example, in order to affect the featuie(wood), the
influencefire* (wood true) for starting the fire has to be applied without interference from
fire* (wood false) for an extended period of time. In the preferred models of this narrative,
wood1 will be wet at[4, co), implying thatfire* (wood1, false) will hold at [4, oo); conse-
quently there is no intervdk, s + 3] wherefire* (wood1, true) A —fire* (wood1, false), and
fire(wood1) will never become true.

The case when an effect of one action enables the effect of another action can also be
handled with conditional influence laws. For instance, the following influence law states
that opening a door requires initially keeping the latch open (the example is originally due
to Allen [1]):

infl  [t] latch-open A [t,t + 5] open*(true) — R([t + 5] open)

Though not explicitly shown here, it is possible to use separate modular influence laws to
specify the result of arbitrary combinations of influences, including combinations that lead
to no effect at all. Influences can naturally also be combined with the TAL approach to ram-
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ification, both in the sense that ramifications may lead to influences and in the sense that
influences may cause chains of ramifications. One can also use influence laws to model re-
source conflicts, with either deterministic, non-deterministic or prioritized outcomes when
two agents attempt to use the same resource [34, 24]. This results in a highly flexible and
modular solution to many problems associated with concurrency, regardless of whether
that concurrency is due to actions, ramifications or delayed effects.

1.11 An Application of TAL: TALplanner

The flexibility of TAL as a language for describing and modeling actions with con-
current effects, dependencies between fluents and other commonly occurring aspects of
dynamic domains also makes it eminently suitable for modeling planning domains. This is
especially true for planners that make extensive use of domain knowledge in various forms.
For this reason, TAL has been used as the semantic basis for a planner called TALplanner
[17, 18, 40], where TAL is used for modeling not only actions, initial states and standard
state-based goals but also a set of control formulas acting as constraints on the set of valid
plans. This latter use of logical formulas was initially inspired by the planner By [2].

One of the intended uses of TAL in TALplanner is as a specification language provid-
ing a declarative semantics for planning domains and plans. This is an important difference
from TLPLAN where only control formulas are based on the use of logic and actions are
instead modeled using an operational semantics. But unlike Green’s approach [22], which
involved not only representing planning domains in logic but glsperatingplans using
a resolution theorem prover, the declarative semantics of TAL currently serves mainly as
a specification for the proper behavior of the planning algorithm. The TALplanner im-
plementation generates plans using a procedural forward-chaining search method together
with a search tree which is pruned with the help of temporal control formulas.

Given that performance is of paramount importance in a planner, the full expressivity of
TAL is intended to be introduced into the planner implementation in stages; the full power
of the language, including non-deterministic actions, chains of ramifications and arbitrary
interactions between concurrent actions, must be approached carefully. Having the speci-
fication of the proper semantics of such constructs available from the beginning is useful
even in the initial phase, providing a better view of what extensions will be desired in the
future, which sometimes affects the basic framework of an implementation. Nonetheless,
the language currently used for domain specifications in TALplanner is a subset of the full
language for TAL described in this chapter.

Planning domains and planning problems also require the specification of certain types
of information that were not originally supported in TAL or its predecessors. This required
a set of new additions to the language which will be described.

Thus, both extensions and limitations relative to TAL are in order. This falls neatly
within the TAL policy of providing macro languages adapted to specific tasks together with
a translation into a single unified first-order base langua@e.) with a well-defined se-
mantics and circumscription policy. While the details of the new macro lang0ggB)*
is beyond the scope of this chapter [40], most of the extensions are used in the example
planning domain discussed below.
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Planning as Narrative Generation

TAL is based on the use of narratives, and automated planning can be viewed as a form of
narrative generation where an initial narrative, specifying an initial state as well as various
forms of domain knowledge, is incrementally extended by adding new action occurrences
— in other words, new steps in the plan. The intention, then, is to generate a suitable set
of action occurrences such that the desired goals are satisfied in the resulting complete
narrative.

L(NDY’ L(NDY

TAL
Goal Narrative

TALPIlanner TAL

Plan Narrative

Trans() Trans()

L(FL) L(FL)

1st-order
theory T

+ Circ(T) + Circ(T")
+ Foundational Axioms +F.A.
L(FL) + Quantifier Elimination L(FL) + Q.E.

1st-order
theory T

1st-order
theory

1st-order
theory = Goal

Figure 1.3: The relation between TAL and TALplanner

Figure 1.3 contains an extended version of the diagram previously shown in Figure 1.2.
As seen in the top row of this figure, the input to TALplanner is a narrative in the extended
macro languag€(ND)*. This narrative is sometimes calledeal narrative emphasizing
the fact that it specifies a planning problem instance, and is usually denot&d fhe
goal narrative consists of two parts: A domain description, defining among other things
the operators that are available to the planner, and a problem instance description, defining
the initial state and the goal. TALplanner uses this high-level description of a planning
problem to search for a set of TAL action occurrences (plan steps) that can be added to
this narrative so that in the corresponding logical model, a goal state is reached. If this
succeeds, the output is a new TAL narrativelifND)* where the appropriate set of TAL
action occurrences has been added. This narrative is sometimes cplbed rmarrative
emphasizing the fact that it represents a solution to a planning problem. Both goal narra-
tives and plan narratives can be translated 6L ) (the second row in the figure). As in
pure TAL, a number of foundational axioms are required, and a standard TAL circumscrip-
tion policy is applied, yielding complete definitions of tbecludeandOccurspredicates
(the third row). Further details are available in [40].

Adding action occurrences to a standard TAL narrative is a non-monotonic operation,
in the sense that conclusions entailed by the original narrative may have to be retracted
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once a new action occurrence is added. However, at each step in the planning process, one
would also prefer to be able to determine whether a certain conclusion will remain valid
regardless of what new actions may be added to a plan. This is especially important in
the context of temporal control formulas, where a candidate plan should not necessarily be
discarded for violating a control formula if this violation might be “repaired” by adding
new actions.

The key to solving this problem lies in the flexibility of the TAL solution to the frame
problem. By selecting a search space where new action occurrences are constrained not
to begin before any of the actions already present in the plan — that is, if there are actions
beginning at times 0, 10 and 273, one cannot add a new action beginning at 272 — one can
guarantee that along any branch of the forward-chaining search tree, there is a monoton-
ically increasing temporal horizon such that any new effects introduced by future actions
will take place strictly after this horizotf. Then, the standard definition of inertia can
be altered to ensure that persistence is applied up to and including this temporal horizon,
while leaving fluents unconstrained at all later timepoints. This is easily done by changing
the TAL translation function while retaining the same circumscription policy.

It should be noted that this approach is not equivalent to assuming a complete lack of
knowledge after the temporal horizon. On the contrary, any fluent constraints resulting
from action effects or (in a future implementation) domain constraints are still equally
valid after the temporal horizon; only the persistence assumption has been relaxed at those
timepoints where the complete set of effects is unknown. Thus, it can still be possible to
prove that a control formula has been definitely violated after the temporal horizon, which
is essential for the performance of the concurrent version of TALplanner.

An Example Planning Domain

We will now show some examples of the usefgfND)* in modeling the timed version of
the ZenoTravel domain, originally used in the AIPS 2002 International Planning Competi-
tion [44]. Due to space limitations, the complete domain description will not be provided.
Nevertheless, the most pertinent aspects of the modeling language will be presented in
sufficient detail.

The ZenoTravel domain contains a number of aircraft that can fly people between cities.
There are five planning operators available: Personstioaryi anddebark from aircraft,
and aircraft mayly, zoom (fly quickly, using more fuel), anekfuel. There are no restric-
tions on how many people an aircraft can carry. Flying and zooming are equivalent except
that zooming is generally faster and uses more fuel. Figure 1.4 shows a tiny example
problem, with arrows pointing out goal locations.

Objects in a planning problem are modeled using standard TAL values, and state vari-
ables are modeled using TAL fluents.

domain  THING :elements {...}

domain AIRCRAFT :parent THING :elements {...}
domain  PERSON :parent THING :elements {...}
domain  CITY :elements {...}

10Note that this does not rule out the generation of plans with concurrent actions and one version of TALplan-
ner does generate actions concurrently.



38 1. Temporal Action Logics
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Figure 1.4: A ZenoTravel problem instance

feature at(THING, CITY), in(PERSON, AIRCRAFT) :domain BOOLEAN
feature fuel(AIRCRAFT) :domain INTEGER

Operators are modeled using a new form of operator statement, which uses a new syntax
with explicit preconditions, prevail conditions, durations and effects. As specified by the
competition organizers, the time required to board a plane is specified usibgathimg-

time fluent, which is here multiplied by 1000 in order to provide higher precision timing.
Note also that the plane is required to remain at its location during boarding. The time
required to fly between two cities is proportional to the distance and inversely proportional
to the speed of the aircralft.

operator  board(person aircraft, city) :at s
:duration value(t, 1000 * boarding-time) :as dur
:precond  [S] at(person city) A at(aircraft, city)
:prevail  [s+1, s+dur] at(aircraft, city)
effects  [s+1] at(person city) := false , [s+dur] in(person aircraft) := true

operator  fly(aircraft, city,, city,) :ats
:duration value(t, 1000 * distance(City, ,City,) / slow-speed(aircraft) :as dur
:precond [9] at(aircraft, city;) A city; # city, A
[s] fuel(aircraft) > distance(city;, City,) * slow-burn(aircraft)
.effects  [s+1] at(aircraft, city, ) := false , [s+1] fuel-level(aircraft, flevel ) := false ,
[s+dur] at(aircraft, city,) := true , [s+dur] fuel-level(aircraft, flevel,) := true

Control formulas specify constraints that must be satisfied in the logical model corre-
sponding to a solution plan. In some respects, the central use of explicit control formulas
is really what makes TALplanner stand out from other automated planing paradigms. Con-
trol formulas are intended to represent the high-level heuristics or commonsense smarts
that one usually assumes a human might use when faced with specific planning problems
in well-defined domains. Initially, a person may not have sufficient competence about a
domain. Consequently, the plans generated may not be the best and will certainly take

11we appeal to the use sémantic attachmefi8] techniques in the implementation of TAL and TALplanner
by liberal use and invocation of built in mathematical and other functions associated with value domains for
features.
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longer to generate. As a person acquires a feel for a domain, certain constraints are then
applied when generating plans which in turn minimize the search space. It is this intuition
which is behind the use of control formulas as a domain dependent means of limiting the
huge search space of action combinations one is faced with when using a forward chaining
planner. The technique is also incremental in nature. Control formulas may be added in-
crementally as one learns more about the domain in question thus improving the efficiency
of the planner.

The following two control formulas used in the ZenoTravel domain state that passen-
gers should only board an aircraft when they desire to be in another city, and that they
should only debark when they have reached their destination. Free variables are assumed
to be universally quantified.

control :name “only-board-when-necessary”
[t] —in(person aircraft) A [t+1] in(person aircraft) —
dcity, city, [ [t] at(person city) A goal(at(person city,)) A city # city, ]

control :name “only-debark-when-in-goal-city”
[t] in(person aircraft) A [t+1] —in(person aircraft) —
Jeity [ [t] at(aircraft, city) A goal(at(person city)) ]

In addition to these statements, which are valid in an entire planning domain, the planner
also needs a complete specification of the initial state (using TAL observation statements)
and a specification of the state-based goals that should be achieved. The latter is specified
using goal statements, consisting of TAL fluent formulas that must hold in the final state
resulting from executing a solution plan.

The following are possible goal and initial state statements for the example in Figure 1.4:

goal at(personi,city3) A at(person2,cityl) A at(person3,city3) A at(person4,city3) A at(person5,cityl)

obs ity [ [0] at(personi,city) < city = city0 |
obs ity [ [0] at(person2,city) < city = city0 ]
obs Vcity [ [0] at(planel,city) < city = city2 ]
obs [0] fuel(planel) = fI5

The main statement types for goal and plan narratives have now been introduced. A
goal narrative is input to the forward-chaining TALplanner system and if possible, a TAL
plan narrative is output from the planner which contains action occurrence statements and
timings for such statements which entail the goal and control statements originally included
in the goal narrative.

It was stated that the strategy used in TALplanner is not "planning as theorem-proving”,
but using TAL as a specification language for developing planners. Perhaps a better way
to describe TAL and its relation to TALplanner is not only as a specification framework,
but as "theorem-proving as an aid to plan generation”. One can clearly see from Figure 1.3
that in the plan generation process, one can use TAL to reason about partial plans being
generated. In fact, during plan generation, a simple form of inference is currently used
to verify that control formulas are satisfied in theories associated with partial plans. In
the plan execution process, one can use TAL to verify and monitor the plan execution
process by querying the current state of a robotic system with TAL formulas. This is a
form of on-line model-checking similar to the progression algorithms used in TALplanner
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and TLplan. TALplanner also uses a limited form of resolution to reason about control
formulas and operators during the initial (preprocessing) phase of the planning process,
inferring a set of facts that must necessarily be true during the invocation of an operator
and thereby improving the performance of checking control formulas during the planning
phase. The flexible framework described in this section offers great potential for leveraging
the use of logic with planning in a pragmatic and efficient manner.

1.12 Summary

This chapter provides a presentation of the latest stable version of TAL, a temporal
action logic for reasoning about action and change. In the article, we present the basic nar-
rative framework for specifying action scenarios using two languagbd) and L(FL).

A definition of the circumscription policy used for TAL is provided in addition to propos-

als for partial solutions to the frame, ramification and qualification problems. Solutions are
obviously dependent on the nature of the application domains to which they are applied.
We say the solutions are partial because it is unclear whether such solutions would hold up
practically unless one had specifications of the environments in which TAL would be used
and a means of assessing whether the formalism would cover the spectrum of reasoning
problems associated with a particular domain. Such a qualification would apply to any ac-
tion and change formalism and assessments should be done using either formal assessment
frameworks such as that described in the introduction to this chapter or empirical testing.
TAL has been partially assessed for a particular type of application domain but much re-
mains to be done in terms of assessing many of the newer extensions to TAL. That being
said, TAL is one of the most expressive logical formalisms for reasoning about action and
change, the underlying semantic framework is highly intuitive and TAL has been shown
to correctly model the majority of benchmark problems proposed in the action and change
research community. In the chapter, we have also provided a description as to how one
could deal with the very complex problem of true concurrent actions and their interactions.
We have concluded with an application of TAL to an award winning automated planner,
TALplanner.
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