
Fast Downward Visualiser

1 What is the Fast Downward Visualiser?

The Fast Downward Visualiser is a plugin for the Graph Visualiser that can visualise the
search process that the logging fork of Fast Downward does. This is done by processing
the log file that is created by the planner during the search. The program takes one
argument and that’s the path to the log file. No configuration flags can be passed to the
visualiser at the moment.

This visualizer is written for use in the TDDC17 and TDDD48 courses at IDA, LiU.

2 Fast Downward naming

There are a couple of things that Fast Downward does behind the scenes which causes
changes in the naming compared to the domain and problem files. Among these are:

• Transformation to state variables. Fast Downward will transform all the predicates
to state variables. In some cases, this yields a variable that directly corresponds
to a predicate being true or false (compared to having a variable that corresponds
to multiple different predicates that are mutex). This causes the name to change
when transforming back to the predicate. Namely, there are now two possible
names “Atom” followed by the predicate name and “NegatedAtom” followed by
the predicate name. If the negated atom is in the state, then it means that the
atom is false. Similarly, for state variables which represent multiple predicates there
can be a case where none of them are true. This can cause the naming “none of
those” to appear.

In conclusion, Fast Downward works internally with state variables which are named
“var” followed by a number. These are presented in the node information. More-
over, the predicates that are true that those variable represents are also presented
in the node information, within parenthesises. However, there can be some called
“NegatedAtom” or “none of those” which can safely be ignored for the purpose of
the TDDC17 lab.

3 The interface

The visualiser has three main areas (see figure 1):

• The canvas for the graph. This is simply a view of how the search graph looks at
a particular point in the search process.

One can mark nodes in the graph by selecting them with the left mouse button
just like icons in most operative systems. Once the nodes are marked one can move
them by using the middle mouse button (or alt+the left mouse button). However,
the nodes might also be moved automatically, depending on which algorithm is
used to place the nodes.

1



Fig. 1: Overview of the interface of the Fast Downward Visualiser.

If no nodes are selected, one can move the view port of the graph (“scroll it”)
by pressing the middle button and moving it. (If you have selected nodes or edges,
this won’t have the expected effect – to get rid of the selection, draw an outline
where there are no nodes or edges.)

The view port can also be moved using the arrow keys, as long as you have clicked
in the canvas to “activate” it.

Finally, it’s possible to zoom in or out by using the scroll wheel.

• Global information. This section, at the right hand side of the interface, shows
global information about the graph.

The upper part contains information such as how many nodes that have been ex-
panded, how many nodes that have been visited and how many heuristic values
that have been calculated.

The lower part displays the queue that the planner used to select which node to
visit next. Here you can see which alternatives the planner was considering at the
given point in the search process, and how those alternatives were ranked.

– NodeID: The index number of the search node (state), in order of node gen-
eration.

– Action: The action that was applied in order to generate the new state.

– ParentID: The ID of the parent state

– h goal count: The value of the hgoalcount heuristic for the state that you

get after applying the given action. There can of course be other heuristics
shown instead of h goal count, depending on the parameters you gave to Fast
Downward!

2



– h sum eval(g, goal count): This column shows the cost of f = g + h, the
cost g of reaching the given state plus the estimated cost h of reaching the
closest goal state from there.

As you should know, some algorithms (such as A∗) base their heuristic decisions on
the value of f = g + h. Others, such as greedy forms of search, ignore g and only
care about h.

If multiple queues are used (for example the alternating queue of Fast Downward or
a preferred queue) then this view will show the queue that will be used to select the
next node. Note that the view doesn’t support any randomisation in the queues.

• Control panel and selection information. This area consists of the controller for the
visualiser and information about the current selection in the graph. The controller
will be explained in more details below.

3.1 Control panel

Fig. 2: The control panel for the Fast Downward Visualiser.

The control panel is divided into multiple sub areas (see figure 2): Stepping and
Animation, View, and Layout.

3.1.1 Stepping and Animation

This tab handles how to step through the search process. There are two different ways
of stepping. The first is by stepping in discrete time steps. This is the recommended
way for all tested search engines except for the enforced hill climbing since one step in
that equals one phase (see the documentation for Fast Downward with logging). For all
other tested search engines, one time step means going through all the events until the
next node is expanded. This leads to the second option for stepping through the search
process: events. An event in the search process is defined as one log entry or a group
of log entries. This could be everything from visiting a node to reporting an updated
heuristic value or boosting the preferred queues. However, the log entries are most often
grouped together so that each event should contain visiting a node or expanding a node.
For most cases this is completely unnecessary to use.

The stepping through the time points (or events) can be done manually or automat-
ically. The most simple way is to use the arrow buttons to go forward or backward one
time point/event. One can also enter the event number or the time point and press enter
to jump to a specific point. The final manual way of progressing or regressing is to use

3



the “Go to start” and “Go to end” button. However, one should be warned that using a
jumping method (to the end, start or specified time point or event) can take some time
for larger graphs. This is because all the events to the selected event/time point have to
be applied or undone, one by one.

Automatic progression can be done by using the “Auto-step” and “Stop” buttons.
These options step forward in time points and events, respectively. The frequency for the
stepping can be set in the “Auto-steps per second” field. However, to update the speed
one has to press enter after the value has been updated.

There are two options of automatically zooming so that the graph fits the canvas.
The first button is the “Fit graph to window” button which forces the graph in its current
form to fit the graph. “Auto fit graph (continuously)”, the second button, makes this
behaviour automatic (and may be active from the start). This means that the zoom and
positioning will always be updated so that the graph fits the canvas even as it is modified
and moved.

Also, there are a few additional commands, mostly related to how nodes are positioned
on screen in order to avoid overlaps.

• Rotate: Rotates the graph 90 degree around the origin (not possible with the
default force directed layout).

• Use the force: Turns on the forces that (a) pull nodes closer to each other if they
are connected by edges, and (b) push nodes apart if they are too close to each other.
This can be useful if you want nodes to stay still so you can rearrange them.

• Stop using the force: Stop moving nodes according to node/edge forces.

• Unstick nodes: Some layouts that incrementally move nodes will eventually stop
doing so, when they seem to be close to reaching an equilibrium. If the nodes got
stuck before you wanted them to, use this button to unstick them so they continue
moving.

3.1.2 View

These are options to configure how the shown graph components should look. For exam-
ple:

• The non-cheapest edges option decides how to show edges that aren’t part of
the cheapest route to a node. These edges were at some point generated by the
planner, but then it found a better (cheaper) path to reach the same state and the
old edge was discarded.

Hidden (default): Ignore the edge completely.

Dashed: Show the edge as dashed and ignore it when doing force-based layout.

Filled: Show as an ordinary edge, and apply forces along the edges as well. This
can have a large impact on the look of your graph.

• The node colouring option is very important as it decides how nodes in the
graph are coloured, which can provide a lot of information at a glance.

The “Visited/Expanded” option simply differentiates between if a node is expanded
or visited while the rest of the options change the colour of the node between green

4



and red depending on some value. These values consists of some common values
for all graphs (for example, the expansion order and the g-value) as well as all the
heuristics that has been used in the search process.

3.1.3 Layouts

This tab shows the possible selection of layouts. That is, the selection of algorithm to
place the nodes on the canvas. The layouts that are available for the Fast Downward
search graphs are:

• Force Directed: This is an iteratively improving placement of nodes based on the
algorithm family of forced-directed drawing. In essence, nodes will repel each other
and each edge will pull the connected nodes together. This causes the nodes to
move until a stable position is found.

This is a somewhat costly algorithm and to make it a bit more usable for larger
graphs some simplifications have been done. Therefore, the nodes that stay almost
still for a longer period of time will stop moving completely. Unfortunately they can
in some cases stop too early and become quite badly placed. If this happens one
can use the option to unstick nodes (see layout options) which causes the algorithm
to evaluate their positions again.

One can also move the nodes in the graph to help the positioning. To do this, first
select the nodes you want to move (left mouse button), then pull them somewhere
using the middle mouse button. Note that unless you deactivate the forces or switch
to the free layout, your nodes will to a large extent be pulled back when you release
the middle button! Still, this can be enough to fix cases where nodes get entangled
or stuck in the wrong place.

The force directed layout works well to display graphs if one hides all the cheaper
edges or shows them as dashed.

• Free This layout simply places all the nodes until the users moves them to a wanted
placement.

5


