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Points:
The exam consists of exercises worth 32 points.
To pass the exam you need 16 points.

Auxiliary help items:
Hand calculators.

Directions:
You can answer the questions in English or Swedish.
Use notations and methods that have been discussed in the course.
In particular, use the definitions, notations and methods in appendices 1-3.
Make reasonable assumptions when an exercise has been under-specified.
Begin each exercise on a new page.
Write only on one side of the paper.
Write clearly and concisely.

Jourhavande: Piotr Rudol, 0703167242. Piotr will arrive for questions around 10:00.
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1. Consider the following theory (where x and y are variables and fido is a constant):

∀x[Dog(x)⇒ Animal(x)] (1)

∀y[Animal(y)⇒ Die(y)] (2)

Dog(fido) (3)

(a) Convert formulas (1) - (3) into clause form. [1p]

(b) Prove that Die(fido) is a logical consequence of (1) - (4) using the resolution proof procedure.
[2p]

• Your answer should be structured using a resolution refutation tree (as used in the book).

• Since the unifications are trivial, it suffices to simply show the binding lists at each resolution
step. Don’t forget to substitute as you resolve each step.

(c) Convert the following formula into clause form with the help of appendix 1. ( x, y and z are
variables and l is a constant). Show each step clearly. [1p]

∀x([A(x) ∧B(x)]⇒ [C(x, l) ∧ ∃y(∃z[C(y, z)]⇒ D(x, y))]) ∨ ∀x(E(x)) (4)

2. Consider the following example:

Aching elbows and aching hands may be the result of arthritis. Arthritis is also a possible
cause of tennis elbow, which in turn may cause aching elbows. Dishpan hands may also cause
aching hands.

(a) Represent these causal links in a Bayesian network. Let ar stand for ”arthritis”, ah for ”aching
hands”, ae for ”aching elbow”, te for ”tennis elbow”, and dh for ”dishpan hands”. [2p]

(b) Given the independence assumptions implicit in the Bayesian network, write the formula for the
full joint probability distribution over all five variables? [2p]

(c) Compute the following probabilities using the formula for the full joint probability distribution
and the probabilities below:

• P (ar | te, ah)[1p]

• P (ar,¬dh,¬te, ah,¬ae)[1p]
• Appendix 2 provides you with some help in answering these questions.

Table 1: probabilities for question 5.

P (ah | ar, dh) = P (ae | ar, te) = 0.1
P (ah | ar,¬dh) = P (ae | ar,¬te) = 0.99
P (ah | ¬ar, dh) = P (ae | ¬ar, te) = 0.99
P (ah | ¬ar,¬dh) = P (ae | ¬ar,¬te) = 0.00001
P (te | ar) = 0.0001
P (te | ¬ar) = 0.01
P (ar) = 0.001
P (dh) = 0.01
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3. A∗ search is the most widely-known form of best-first search. The following questions pertain to A∗

search:

(a) Explain what an admissible heuristic function is using the notation and descriptions in (c). [1p]

(b) Suppose a robot is searching for a path from one location to another in a rectangular grid of
locations in which there are arcs between adjacent pairs of locations and the arcs only go in
north-south (south-north) and east-west (west-east) directions. Furthermore, assume that the
robot can only travel on these arcs and that some of these arcs have obstructions which prevent
passage across such arcs.

The Mahattan distance between two locations is the shortest distance between the locations
ignoring obstructions. Is the Manhattan distance in the example above an admissible heuristic?
Justify your answer explicitly. [2p]

(c) Let h(n) be the estimated cost of the cheapest path from a node n to the goal. Let g(n) be the
path cost from the start node n0 to n. Let f(n) = g(n) + h(n) be the estimated cost of the
cheapest solution through n.

Provide a general proof that A∗ using tree-search is optimal if h(n) is admissible. If possible, use
a diagram to structure the proof. [2p]

4. Constraint satisfaction problems consist of a set of variables, a value domain for each variable and a set
of constraints. A solution to a CS problem is a consistent set of bindings to the variables that satisfy
the contraints. A standard backtracking search algorithm can be used to find solutions to CS problems.
In the simplest case, the algorithm would choose variables to bind and values in the variable’s domain
to be bound to a variable in an arbitrary manner as the search tree is generated. This is inefficient and
there are a number of strategies which can improve the search. Describe the following three strategies:

(a) Minimum remaining value heuristic (MRV). [1p]

(b) Degree heuristic. [1p]

(c) Least constraining value heuristic. [1p]

Constraint propagation is the general term for propagating constraints on one variable onto other
variables. Describe the following:

(d) What is the Forward Checking technique? [1p]

(e) What is arc consistency? [1p]

5. The following questions pertain to STRIPS-based planning. In order to use STRIPS one requires a
language expressive enough to describe a wide variety of problems but restrictive enough to allow
efficient algorithms to operate over it. The STRIPS language is the basic representation language for
classical planners. Using terminology from logic (literals, ground terms, function free terms, etc.),
describe how the following are represented in the STRIPS planning language:

(a) State representation [1p]

(b) Goal representation [1p]

(c) Action representation [1p]

The following questions pertain to non-monotonic reasoning and STRIPS:

(a) What is the Closed World Assumption? [1p]

(b) How is the Closed World Assumption used in the context of STRIPS planning? In particular,
how is it applied to state representation? [1p]
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6. Alan Turing proposed the Turing Test as an operational definition of intelligence.

(a) Describe the Turing Test using your own diagram and explanations.[2p]

(b) Do you believe this is an adequate test for machine intelligence? Justify your answer.[1p]

7. A learning agent moves through the unknown environment below in episodes, always starting from
state 3 until it reaches the gray terminal states in either 1 or 5. In the terminal states the learning
episode ends and no further actions are possible. The numbers in the squares represent the reward the
agent is given in each state. Actions are {West, East} and the transition function is deterministic (no
uncertainty). The agent uses the Q-learning update, as given in appendix 3, to attempt to calculate
the utility of states and actions. It has a discount factor of 0.9 and a fixed learning rate of 0.5. The
estimated values of the Q-function based on the agent’s experience so far is given in the table below.
a) Construct the policy function for an agent that just choses the action which it thinks maximizes
utility based on its current experience so far, is this policy optimal given the problem parameters
above? [1p]
b) Is the agent guaranteed to eventually always find the optimal policy with the behavior above? Ex-
plain one approach that could be used to improve the agent’s behavior. [1p]
c) For whatever reason the agent now moves west from the start position to the terminal state. Up-
date the Q-function with the new experience and extract a new policy for the agent under the same
assumptions as in a). Show the steps of your calculation. [2p]

20 -1 0 0 10

1 2 3 4 5

State Action Utility
2 W 10
2 E 0
3 W -0.5
3 E 0
4 W 0
4 E 5
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Appendix 1

Converting arbitrary wffs to clause form:

1. Eliminate implication signs.

2. Reduce scopes of negation signs.

3. Standardize variables within the scopes of quantifiers (Each quantifier should have its own unique
variable).

4. Eliminate existential quantifiers. This may involve introduction of Skolem constants or functions.

5. Convert to prenex form by moving all remaining quantifiers to the front of the formula.

6. Put the matrix into conjunctive normal form. Two useful rules are:

• ω1 ∨ (ω2 ∧ ω3) ≡ (ω1 ∨ ω2) ∧ (ω1 ∨ ω3)

• ω1 ∧ (ω2 ∨ ω3) ≡ (ω1 ∧ ω2) ∨ (ω1 ∧ ω3)

7. Eliminate universal quantifiers.

8. Eliminate ∧ symbols.

9. Rename variables so that no variable symbol appears in more than one clause.

Skolemization

Two specific examples. One can of course generalize the technique.

∃xP (x) :

Skolemized: P (c) where c is a fresh constant name.

∀x1, . . . , xk,∃yP (y) :

Skolemized: P (f(x1, . . . , xk)), where f is a fresh function name.
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Appendix 2

A generic entry in a joint probability distribution is the probability of a conjunction of particular assignments
to each variable, such as P (X1 = x1 ∧ . . . ∧ Xn = xn). The notation P (x1, . . . , xn) can be used as an
abbreviation for this.

The chain rule states that any entry in the full joint distribution can be represented as a product of conditional
probabilities:

P (x1, . . . , xn) =

n∏
i=1

P (xi | xi−1, . . . , x1) (5)

Given the independence assumptions implicit in a Bayesian network a more efficient representation of entries
in the full joint distribution may be defined as

P (x1, . . . , xn) =
n∏
i=1

P (xi | parents(Xi)), (6)

where parents(Xi) denotes the specific values of the variables in Parents(Xi).

Recall the following definition of a conditional probability:

P(X | Y ) =
P(X ∧ Y )

P(Y )
(7)

The following is a useful general inference procedure:

Let X be the query variable, let E be the set of evidence variables, let e be the observed values for them,
let Y be the remaining unobserved variables and let α be the normalization constant:

P(X | e) = αP(X, e) = α
∑
y

P(X, e,y) (8)

where the summation is over all possible y’s (i.e. all possible combinations of values of the unobserved
variables Y).

Equivalently, without the normalization constant:

P(X | e) =
P(X, e)

P(e)
=

∑
y P(X, e,y)∑

x

∑
y P(x, e,y)

(9)
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Appendix 3: MDPs and Reinforcement Learning

Value iteration

Value iteration is a way to compute the utility U(s) of all states in a known environment (MDP) under the
optimal policy π∗(s).

It is defined as:

U(s) = R(s) + γmax
α∈A

∑
s′

P (s′|s, a)U(s′) (10)

where R(s) is the reward function, s and s′ are states, γ is the discount factor. P (s′|s, a) is the state tran-
sition function, the probability of ending up in state s′ when taking action a in state s.

Value iteration is usually done by initializing U(s) to zero and then sweeping over all states updating
U(s) in several iterations until it stabilizes.

A policy function defines the behavior of the agent. Once we have the utility function of the optimal policy
from above, Uπ∗(s), we can easily extract the optimal policy π∗(s) itself by simply taking the locally best
action in each state

π∗(s) = arg max
α∈A

∑
s′

P (s′|s, a)Uπ∗(s
′)

Q-learning

Q-learning is a model-free reinforcement learning approach for unknown environments and can be defined
as:

Q(st, at)← Q(st, at) + α(R(st+1) + γ max
at+1∈A

Q(st+1, at+1)−Q(st, at))

where st and st+1 are states in a sequence, Q(st, at) is the estimated utility of taking action at in state st,
γ is the discount factor and α is the learning rate.

The Q-function is usually initialized to zero, and each time the agent performs an action it can be up-
dated based on the observed sequence ..., st, R(st), at, st+1, R(st+1).... The Q-function can then be used to
guide agent behavior, for example by extracting a policy like in value iteration above.
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