Language engineering systems

- Statistical modelling
 - N-gram language models
 - Data generation
- Applications
 - Question-answering,
 - Dialogue systems
 - Information extraction
 - Machine translation
 - Reading and writing aids

Statistical modelling

- Uses
 - Disambiguation / selection
 - Structural ambiguities (e.g. PCFG)
 - Word sense disambiguation
 - Word prediction
 - Data generation
 - Translation data (e.g. bilingual dictionaries)
 - Collocations
- Acquisition
 - Probability (parameter) estimation on training data

Simple models

- A priori models
 - Choose the event with the highest probability
- With knowledge of related event O
 - Choose $E^* = \arg\max p(E|O)$
 - Examples:
 - Bigram language models
 O is previous word and $w^* = \arg\max p(w | w_{i-1})$
 - Trigram model probabilities
 O is two previous words and $w^* = \arg\max p(w | w_{i-2} w_{i-1})$

Specifying a language model

- Collect / Obtain a corpus
 - Separate parts for training and testing
- Create n-gram models, where n depends on the size of the corpus
 - smoothing, back-off
 - test on training corpus first, trying various techniques
- Test on test corpus

N-gram models

- Data sparseness
 - All n-grams of interest cannot be found in the training corpus.
- Solutions
 - “Smoothing” of probability mass onto all n-grams;
 - Rely on shorter n-grams when data is unavailable (“backoff”)

The noisy channel model

- Bayes’ rule
 $p(E|O) = p(E)p(O|E) / p(O)$
 $E^* = \arg\max p(E|O) = \arg\max p(E)p(O|E)$
 $p(E)$ is the a priori model
 (usually an n-gram model if E is a string)
 $p(O|E)$ is the channel model
Bigram model as automaton

- An n-gram model is a statistical automaton (Markov model) where states are associated with symbol sequences of length n-1.
- Bigram models (character sequences):

```
V 0.27 0.73 0.51 0.53 0.20
C 0.38 0.11
```

- \(P(V|O) = 0.27, \ P(V|C) = 0.53, \ P(V|V) = 0.11 \) etc.

Hidden Markov Models

- A HMM is a weighted automaton with a probability distribution over symbols in every state (rather than just a single symbol).
- The Viterbi algorithm
 - Given an observed symbol sequence, \(O \), determines the most likely state sequence to produce \(O \).

Entropy and perplexity

- Both measures "uncertainty in prediction"
 - Entropy: \(H(X) = -\sum_{x \in X} p(x) \log_2 p(x) \)
 - Perplexity: \(2^H \)
- Used for measuring how good a language model is

Co-occurrence statistics

- General idea
 - Two items that have a linguistic relation often also have a similar distribution in texts.
 - Examples
 - If \(w_1 \) and \(w_2 \) are collocates then \(w_2 \) is likely to appear in the vicinity of \(w_1 \) (e.g. komma och ihåg)
 - If \(w_1 \) is a translation of \(w_2 \), then \(w_1 \) is likely to appear in the same relative position in translations, as \(w_1 \) is in the originals (e.g. remember och ihåg).
 - So, by (cleverly) looking for items with similar distributions we are likely to find items with interesting relations

Co-occurrence statistics

- Dice koefficient
 \[
 \frac{2|X \cap Y|}{|X| + |Y|}
 \]

- t-variable
 \[
 \sqrt{\frac{|X \cap Y| - |X||Y|}{|X||Y|}}
 \]

Question Answering (Q&A)

- Collect an answer (a phrase, sentence or paragraph) from a corpus (open domain) to a (factual) question in natural language
- Main issues
 - Question interpretation (yes/no, "why", indirect, commands)
 - Answer extraction (length, multiple sources)
 - Presentation
- Approaches
 - Shallow, words + poss. syntactic analysis
 - Deep, semantics + poss. Logic
Question Answering (Q&A)

- Techniques, algorithms etc
 - Question type hierarchies/Taxonomies (Wordnet)
 - Semantic interpretation
 - Document retrieval (Indexing, semantic interpretations)
 - Named entity recognition (Regular expressions/finite state rule-based, ML/HMM)

- Articles
 - Harabagiu et al. FALCON – architecture, knowledge sources, processing, evaluation
 - Mann. Algorithm – Statistical approach

Dialogue systems

- Natural language dialogue is used to achieve a task (problem, information, teaching) through joint effort of user and system
- Main issues
 - Utterance interpretations (utterance segmentation, questions, answers)
 - User modelling
 - Dialogue management (Anaphora, ellipsis, turn-taking, clarifications, common ground)
 - Domain knowledge management
 - Generation in dialogue
Dialogue systems: phase architecture (NLPLab)

- Interpreter
- Dialogue Tree
- Domain Knowledge Manager
- Structured Information Source
- Lexicons & Grammars
- Dialogue Grammar
- Domain Knowledge Source
- Domain Ontology

Dialogue systems: hub architecture

DARPA Communicator

- Hub
- Language Generation
- Dialogue Management
- Text-to-Speech Conversion
- Speech Recognition
- Frame Constructor
- Audio Server
- Application Backend
- Context Tracking

Dialogue systems

- Techniques, algorithms etc
 - Interpretation (partial/full, statistical/rule-based, syntactic/semantic)
 - Dialogue management (frame, grammar, plan)
 - Domain knowledge management (ontology)
 - Generation (templates)

Dialogue systems

- Evaluation
 - User satisfaction
 - Time
 - Understandability
 - Learnability
 - Task completion cost
 - Time, turns or seconds
 - Number of queries
 - Number of turns for error correction
 - Inappropriateness of questions, answers, clarifications

Dialogue systems

- Trends
 - Portability, frameworks
 - Multi agents
 - Multimodality

- Articles
 - Johansson et al. Development
 - Walker et al. PRADISE – evaluation

Information Extraction (IE)

- Identification of relevant objects and events to be extracted from texts and represented in a structured format
- Main issues
 - Text categorisation
 - Identification of relevant information (NER, …)
 - Merging of information (coreference, …)
- Approaches
 - Hand-coded rules and patterns, syntactic or semantic
 - Statistical, training on tagged data
Information Extraction (IE) architecture

- Tokenisation
- Word segmentation
- Word sense tagging
- POS tagging
- Morphological and syntactic analysis
- Syntactic analysis
- Domain analysis
- Coreference
- Merging partial results

Information Extraction (IE)

- Techniques, algorithms etc
 - POS tagging
 - Partial (domain-oriented) parsing
 - Named entity recognition
 - Co-reference resolution (taxonomies/ontology)
- Evaluation
 - Precision and Recall, F-measure
 - Components
 - Named entities F=95% (<100%)
 - Co-reference F=50-60% (80%)
 - Template elements F=80% (93%)

Information Extraction (IE)

- Trends
 - Adaptability/Portability
 - Interactive/Supervised learning
- Articles
 - Gaizauskas et al. Multi-lingual IE – architecture, knowledge sources
 - Hobbs et al. FASTUS – architecture, development, evaluation

Summarisation

- Interpret and understand text to generate a summary of the information
- Main issues
 - Text interpretation and representation
 - Extraction and generation of summary
- Approaches
 - Shallow – cut and paste
 - Deep – understand, extract, generate

Summarisation architecture (SUMMONS)

- IE templates
- Content planner
- Combiner
- Paragraph planner
- Linguistic generator
 - Ontologizer
 - Lexical choser
 - Sentence generator
 - Operators
 - Addition
 - Trend
 - Agreement

Evaluation

- Comparison of text and summary
- Questions
- Comparison with summaries made by humans
- Function/Usability

Techniques, algorithms etc

- IE + NL generator
- POS tagging and Partial parsing/Phrase recognition
- Named entity recognition
- Co-reference
- Statistic methods for comparison and merging
Summarisation

- Trends
 - Domain/genre specific
 - Multi document summarisation
- Articles
 - Shiffman et al. Biographical summarisation
 - architecture, processing, evaluation
 - Mani. Evaluation

Machine Translation (MT)

- Automatic or semiautomatic translation of texts
- Main issues
 - Interpretation, transfer
 - Data acquisition
- Approaches
 - Rule-based
 - Direct, transfer, Interlingua
 - Data-driven
 - Example-based, Statistical

Machine Translation (MT)

- Techniques, algorithms etc
 - Full parsing transfer models
 - Statistical machine translation (SMT)
 - Example-based machine translation (EBMT)
- Evaluation
 - Comparison with other target texts
 - Human judges
 - Fluency
 - Fidelity
 - Usability

Spelling and Grammar

- Detect faults in spelling and grammar, and suggest corrections
- Challenges
 - Non-word detection
 - Isolated word error detection
 - Context dependent word error detection
 - Grammatical error detection
 - Detecting combinations of spelling and grammar errors
 - Generating and presenting correction alternatives

Machine Translation (MT)

- Trends
 - Assisted MT
- Articles
 - Senellart et al. Systran – architecture, knowledge sources
 - R. Brown: Example-Based Machine Translation in the Pangloss System
 - Papineni et al. BLEU - evaluation

Spelling and Grammar

- Approaches
 - Rule-based
 - Probabilistic models
- Techniques, algorithms etc
 - Minimum edit distance (insertion, deletion, substitution, transposition)
 - Noisy channel
Spelling and Grammar

- Evaluation
 - Precision and recall
 - Usability
- Articles
 - Carlberger et al. GRANSKA – architecture, evaluation