Language engineering systems 2

- Syntactic-semantic representation
 - Functional Dependency Grammar,
 - Feature-based grammars,
 - Semantic roles,
- Parsing and interpretation
 - Unification-based chart parsing,
 - Word sense disambiguation
- Generation
Typed feature structure

```
sentence
  head-comp-phr head-DTR
  head-DTR
  var ORTH "sover"
  NONHEAD-DTR head-comp-phr head-DTR
  prep ORTH "på"
  NONHEAD-DTR unary-phr head-DTR
  noun ORTH "bildskärmen"
NONHEAD-DTR unary-phr head noun ORTH "Nova"
```

Implementing cascades

- Composing finite-state transducers
 - (or similar modules using e.g. Perl)
- Enforcing same format on all communicated data
 - E.g. TIPSTER-architecture implemented in GATE
- Iterative constraint-based filtering

Type hierarchies

```
sign
  phrase
    <HEAD-DTR sign>
    word ORTH string
  unary-phrase
    <NONHEAD-DTR sign>
```

Functional Dependency Grammar

Parsing

- Based on Constraint Grammar (SWECG)
 - Rules are used to SELECT or REMOVE interpretations
 - The rules are applied if conditions on the context are fulfilled, e.g. REMOVE (V) IF (-1C DET)
 - Processing phases:
 - Morphological analysis (all possible readings collected from lexicon)
 - Morphological heuristics (words that are not in the lexicon)
 - Morphological disambiguation (remove faulty readings)
 - Morpho-syntactic mapping (verb, head, modifier)
 - Syntactic disambiguation (remove faulty readings)
 - Ambiguities may remain, but are kept at the lexical level

Analysis: Cascading processors

- Tokenisation
- Part-of-speech tagging of tokens
- Chunking of tokens
- Relating / joining chunks
- Solving coreference relations
- Building discourse structure
- …

Functional Dependency Grammar

- FDG make dependencies explicit in a tree structure
- Context tests in the rules use information about the heads and the depending words, and valency information, to create explicit dependencies
- Valency describes the number and types of modifiers a word can have
- Initially partial trees are constructed (for the verbs)
- Iterative application of the rules eliminates most faulty interpretations
Parsing unification-based grammars

- Chart-parser
 - A separate set of slides treat chart-parsing
 - Chapter 10 of Jurafsky & Martin
- Feature structure unifier
 - Chapter 11 in Jurafsky & Martin

Semantic roles

- Predicate-argument structure
- The surface structure of the argument of verbs are linked to roles in the semantic representation
- Alternation is the possible mappings between grammatical function and semantic roles
- Verb can have selectional restrictions that restrict the type of argument to a suitable type of concept

Chartparsing

Control

Agenda
(List of things to do)

Input
(String)

Chart
(monitor data structures, represents partial results)

Rules
(Grammar and Lexicon)

Semantic roles – Thematic roles

- From general (proto-agent and proto-patient) to very deep/specific (for each type of event/verb)
- Common thematic roles
 - Agent
 - Patient
 - Object
 - Instrument
 - Location
 - Source
 - Goal

Linguistic Knowledge Builder (LKB)

- Development environment
 - Open source (http://wiki.delph-in.net/moin/LkbTop)
 - Typed feature structures
 - Parsing and generation
 - Profiling
 - Resources
 - Large grammars
 - ERG (English)
 - JACY (Japanese)
 - Matrix grammars

Semantic roles – SR lists

- A list of the type of roles the arguments corresponds to
- Verbs can be categorised based on similar semantics and similar SR lists
- Example:
 - Break verbs: bend, fold, shatter, crack
 - Hit verbs: slap, strike, bump, stroke
 - Break: Agent, Instrument, Object
 - Hit: Agent, Instrument, Location
Semantic roles – Direct mapping

- Rules for syntactic realisation of argument structure
- Example
 - Agent in a (non-passive) sentence is in most cases Subject NP
 - Object is in most cases Subject if the verb is intransitive, and Direct object if the verb is transitive

Word sense disambiguation

- Most words are ambiguous
- Meaning depends on the context
- Approaches
 - Selectional restrictions (in semantic analysis)
 - Stand alone
 - Supervised ML
 - Bootstrapping ML
 - Unsupervised ML
 - Dictionaries
 - Tagger

WSD – Machine learning

- Input
 - Target word
 - Context
- Processing
 - POS tagging
 - Context modification
 - Stemming or morphological analysis
- Feature vector
 - Collocation
 - Co-occurrence

WSD – Selectional restrictions

- Use restrictions on thematic roles
- Utilise type hierarchies
- Example:
 I’m looking for a restaurant that serve vegetarian dishes
- Problems
 - Violations
 - Approximations
 - Metaphors

WSD – Supervised ML

- Input: vector + correct category/label
- \textit{Naive Bayes classifier}
 - Maximise the probability of a sense given the input vector
 - \[\text{Sense}^* = \arg\max_s p(\text{vector} | \text{senses}) \]
- Decision list
 - A sequence of tests created due to accuracy
- Problem
 - Requires large amount of data
 - Requires key

WSD – Bootstrapping ML

- Small training set used as seeds
- Create an initial classifier through supervised ML
- Generate new data with the classifier
- Iterative development of classifiers with improving coverage and accuracy
WSD – Dictionaries

- Use definitions of senses to find overlaps of the word to be disambiguated and the words in the context
- Problem
 - Short definitions

NLG – Templates

- Congruency
 - [a, the] NOUN-SING is COLOUR
 - an W-NOUN-SING is COLOUR
 - [the]? NOUN-PL are COLOUR
 - en NOUN-N-SING är COLOUR-N-SING
 - ett NOUN-T-SING är COLOUR-T-SING
 - NOUN-PL är COLOUR-A
 - NOUN-DEF är COLOUR-A

Natural language generation

- NLG is the process of creating a written or spoken "text" to achieve a specific communicative goal
- Based on knowledge representation
 - A sentence
 - A paragraph
 - A text
 - An utterance in a dialogue
- NLG is not reversed parsing, has its own problems and solutions

NLG - Choices

- Content – user expertise, context
- Structures (rhetorical) – order, relations
- Choice of word, referring expressions, syntax, lexicalisation, aggregation, passive/active, etc.
- Realisation – morphology, linear order, punctuation, etc.

NLG – Techniques

- Canned text – ready made messages
- Templates – messages with holes that take different values
- Complete generation

NLG - Lexicalisation

- Lexeme
- Synonyms
- Referring expression
 - Mary’s car | her car | Mary’s new car
 - Expression to introduce and refer back
NLG - Aggregation

- Remove redundancy
 - Coordinate
 - Group similar information
 - Ellipsis
 - Embedded segment
 - Subordinate clause

NLG – Traditional reference architecture (Reiter and Dale, 2000)

NLG – RAGS architecture

- Defines high-level data types, data models, … but no specific pipe-line
- Considers 7 low level generation tasks
 - Lexicalisation
 - Aggregation
 - Rhetorical structuring
 - Generating referring expressions
 - Ordering
 - Segmentation
 - Centering/salience tracking