Purpose

The participants of the course should acquire theoretical and practical knowledge of methods and techniques used in natural language engineering. More precisely:

- the ability to analyse and evaluate language engineering systems and system components,
- the ability to design and implement/customise systems and system components for various tasks,
- theoretical and practical knowledge of techniques used in various applications.

Language engineering systems

- "computer systems that process language for some task usually other than modelling language itself"
- Different perspectives
 - Systems that manage a specific task (L-system)
 - System that are a module/component of a larger system (L-subsystem)
 - Systems that perform a task in a work flow
Aspects of LE systems

- **Purpose**
 - Functions, input/output, users, …
- **Language modelling**
 - General language vs sub-language
 - Monolingual, multilingual, …
 - Text type, domain, …
- **Design and development**
 - Language resources and data generation
 - Handling variation, ambiguities and error
- **Evaluation**

Development – Lingware

- **Grammar engineering**
 - Time and resource consuming
 - Hard to update and modify
 - Experts might not be available or disagree
- **Data-driven learning** (“Training”)
 - Increased portability
 - Good coverage of examples
 - Data can be sparse or expensive to create

Resources

- **Corpora**
 - Training vs test
- **Lexica and grammars**
 - machine-readable dictionaries
 - lexical databases
- **Taxonomies, Thesauri, Ontologies**

Types of language processing

- **Recognition and modelling**
- **Analysis**
 - Classifying
 - Parsing
 - Interpretation
- **Synthesis**
 - Generation (from fact representations to natural language)
 - Translation (from a text written in a different language)
 - Dialogue management (from user’s input)
- **Disambiguation**
- **Data (lingware) generation**

Language engineering - components

- **Tokenizers**
- **Stemmers**
- **Lemmatizers**
- **Morphological analysers**
- **Part-of-speech taggers**
- **Chunkers**
- **Parsers**
- **Word-sense disambiguators**
- **Named-entity recognizers**
- …

In LE linguistic objects are primarily modelled as strings

Any object in the hierarchy can be analysed as a string of objects of lower rank.
Analysis (associates strings with other stuff)

- String ~ Class
 - boy is N
- String ~ Structure
 - boys > boy + s
- String ~ Description
 - boys > [cat=N, number=PL, case=NOM, ...]
- String ~ Meaning
 - boys > {x; BOY(x)}
- String ~ Fact representations

Generation means going in the reverse direction.

Two major approaches to language modelling

- Discrete models
 - Given an alphabet, A, the language (string set) is some subset of A*, that can be characterized by a set of rules.
- Stochastic models
 - Given an alphabet, A, the language is A*, coupled with a probability distribution p(s) for s in A*.

Discrete models

- Lists of objects e.g., word lists
- Finite-state automata / regular expressions
- Formal grammars
 - Context-free grammar
 - Dependency grammar
 - Augmented grammars
 - Linguistic formalisms: HPSG, LFG, ...

Functional Dependency Grammar

Output from FDG ("Nova sleeps on the screen"):

<table>
<thead>
<tr>
<th>Word</th>
<th>Stem</th>
<th>Form</th>
<th>Func Dep</th>
<th>POS</th>
<th>PGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova</td>
<td>nova</td>
<td>subj:>2</td>
<td>%NH</td>
<td>N</td>
<td>SG</td>
</tr>
<tr>
<td>sover</td>
<td>sove</td>
<td>main:>0</td>
<td>%MV</td>
<td>V</td>
<td>PRES</td>
</tr>
<tr>
<td>på</td>
<td>på</td>
<td>advl:>2</td>
<td>%AH</td>
<td>PREP</td>
<td></td>
</tr>
<tr>
<td>bildskärmen</td>
<td>bild#skärm</td>
<td>pcomp:>3</td>
<td>%NH</td>
<td>N</td>
<td>SG</td>
</tr>
</tbody>
</table>

Related distinctions

- Linguistic vs data-driven modelling
- Deep vs shallow analysis
- Discrete vs stochastic models

Phrase structure tree

```
S
  |
  V
  |
  N
  |
  NP
  |
  V
  |
  NP
```

Nova sover på bildskärmen
Feature structure

- CAT S
- HEAD CAT V
- STEM Nova
- SUBJ CAT NP
- HEAD CAT PN
- STEM Nov
- COMP CAT PP
- HEAD CAT P
- STEM på
- OBJ CAT NP
- HEAD CAT N
- STEM bildskärm

N-gram models

- Data sparseness
 - All n-grams of interest cannot be found in the training corpus.
- Solutions
 - "Smoothing" of probability mass onto all n-grams;
 - Rely on shorter n-grams when data is unavailable ("backoff")

Stochastic models

- N-gram language models
- Weighted automata
- Hidden Markov models
- Probabilistic grammars
- ...

The noisy channel model

- Bayes' rule
 \[P(E|O) = \frac{P(E)p(O|E)}{p(O)} \]
 \[E^* = \text{argmax } p(E|O) = \text{argmax } p(E)p(O|E) \]
 \[p(E) \text{ is the a priori model} \]
 \[p(O|E) \text{ is the channel model} \]

Simple models

- A priori models
 - Choose the event with the highest probability
- With knowledge of related event O
 - Choose \(E^* = \text{argmax } p(O|E) \)
 - Examples:
 - Bigram language models
 - \(O \) is previous word and \(w^* = \text{argmax } p(w_i|w_{i-1}) \)
 - Trigram model probabilities
 - \(O \) is two previous words and
 \(w^* = \text{argmax } p(w_i|w_{i-1}, w_{i-2}) \)

Bigram model as automaton

- An n-gram model is a statistical automaton (Markov model) where states are associated with symbol sequences of length n-1.
- Bigram models (character sequences)
Hidden Markov Models

- A HMM is a weighted automaton with a probability distribution over symbols in every state (rather than just a single symbol)
- The Viterbi algorithm
 - Given an observed symbol sequence, O, determines the most likely state sequence to produce O.

Evaluation - Extent

- "Black-box"
 - Looks only at the relation between input-output
- "Glass-box"
 - Looks at (some) system properties

Evaluation

- Why (purpose, user)
- What (aspects to evaluate)
- How (methods)

Evaluation - Purpose

- Adequacy
 - To what extent does the system fit the task (and/or a larger system)?
- Progress
 - How far have the system been developed compared to
 - requirements
 - best possible performance

Evaluation - Focus

- Task – How well does the system perform a task?
 - Correct (key/fact, gold standard),
 - Standards (benchmarking)
 - Minimum (base line)
- Function – How well does the system perform a service in an activity?
- Usability – How easy is it to use the system?
 - What knowledge and resources are needed?

Evaluation –Criteria and measures

- Criteria
 - Informal descriptions of desirable system properties
- Measures
 - Formal definitions that corresponds to criteria
 - Methods for measurements
 - Process that leads to values for measures
Evaluation – Phases

- Task description
- What are the properties of the system?
- What properties are interesting?
- Planning
- Decide on criteria, measures, methods to fulfill requirements
- Realisation
 - Create test data, perform measurements, data analysis and conclusions

Evaluation measures: Recall, Precision

<table>
<thead>
<tr>
<th>System/Source</th>
<th>Correct</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>p</td>
<td>fp</td>
</tr>
<tr>
<td>Fault</td>
<td>fn</td>
<td>n</td>
</tr>
</tbody>
</table>

$p = \text{positive}$ \hspace{0.5cm} $fp = \text{false positive}$ \hspace{0.5cm} $n = \text{negative}$ \hspace{0.5cm} $fn = \text{false negative}$

Recall = $p / (p + fn)$
Precision = $p / (p + fp)$

Evaluation – Realisation

- Separate test data from training data
- Decide on the correct answer
- Differentiate judge from developer
 - “Gold standards” – data is decide on beforehand and calculations can be done automatically
- Analyse results
 - Type of errors, cause of errors

Evaluation measure: F-measure

F-measure combines recall and precision

$F = 2 * P * R / (P + R)$, eller mer generelt

$F = P * R / (\alpha P + (1- \alpha)R)$

Evaluation – Measures

- Classification
- Accuracy
- Degree of ambiguity
- Retrieval
- Precision
- Recall
- F-measure
- Application

Evaluation in applications

- There be many correct answers
- Translation, Question answering, generation ...
- Hard to evaluate a components contribution to the whole
 - Components later on might enhance or reduce
Evaluation – Other aspects

- Subjective evaluation
- Experts or users
- Expensive and time consuming
- Economic evaluation
- Resources
- Dynamic aspects
- Scalability
- Portability