Outline of the proposed solutions for selected problems.

1. (5 p)
 (a) The justification is not included. See similar problems in lektionerna.
 - false
 - true
 - false
 - true
 (b) The worst case is when the numbers are relatively prime, in which case $gcd(m, n) = 1$. This means that the algorithm needs to check $\min(m, n)$ numbers. Thus the worst-case complexity is $\Theta(\min(m, n))$.
 - Note that $m > n$ at each step of the algorithm, possibly with except of the initial state. The lemma shows that if $m > n$ then after each two consecutive steps of the algorithm the value of n is reduced at least by half. Thus the algorithm runs in time $\Theta(2 \log(\max(m, n)))$, thus in $\Theta(\log n)$. Proof of the lemma is not included.

2. The answer is based on [G&T] 4th edition p.208. (3 p)
 (a) Minimal size of the ring buffer is 4. This is because for the reasons discussed in p.209 the queue can never hold more than $N - 1$ objects and while performing the given sequence maximal number of objects on the queue is 3.
 The output values appear in the order of their enqueueing, i.e.: 5, 3, 2, 8, 9
 The last number (1) remains in the queue, as there are 6 enqueue operations and only 5 dequeue.
 The final state depends on the size of the buffer. For buffer of size 4 (indexed 0..3) implemented as expained in p.208 of the course book we get:
 $f = 1$, $r = 2$, Buffer = [9,1,2,8]
 (b) Create an empty stack S. Given postfix expression E is read from left to right, item by item. If a consecutive item is a number it is placed on the stack. Otherwise, it is an operation op. In that case the stack is not empty, and its two topmost elements are numbers. We execute then the sequence of operations: $x \leftarrow pop(S), push(op(x, pop(S)), S)$. After processing of the last item of the expression the stack includes only one number which is the value of the expression E.
The complexity of the algorithm is linear on the number of items of E since its items are processed only once and processing of an item consists in at most three stack operations and one arithmetic operation.

- The contents of the stack on the consecutive steps of the evaluation of the example expression is as follows.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

3. (3 p)

(a)

\[[9, 4, 15, 8, 5] \]
\[[4, 9, 15, 8, 5] \]
\[[4, 9, 15, 8, 5] \]
\[[4, 8, 9, 15, 5] \]
\[[4, 5, 8, 9, 15] \]

(b)

\[\text{aba, dab, bbc, ccc, abd, cad} \]
\[\text{dab, cad, aba, bbc, abd, ccc} \]
\[\text{aba, abd, bbc, cad, ccc, dab} \]

(c) As the sequence S has 7 elements, to compute median we call \texttt{quickSelect(S, 4)} [G&T] p.530.

Assuming that the first element is selected as pivot we get the following division: $L = [3, 2]$, $E = [5]$, $G = [8, 7, 9, 12]$. and the recursive call \texttt{quickSelect(G, 1)}. The division gives $[7], [8], [9, 12]$ and the last recursive call is \texttt{quickSelect([7], 1)} immediately returning 7 as the result.

4. (3 p)

(a)

The tree

```
  41(-1)
 /   \
16(-1) 67(1)
  \
 39 49(0) 74
  \
 47 61
```

is an AVL tree, since the balance of each node is 0, 1 or -1.
Insert(40) final result:

\[T_1 = \begin{array}{c}
41 \\
/ \\
39 67 \\
/ \\
16 40 49 74 \\
/ \\
47 61
\end{array} \]

Insert(53) The critical node is 67. Insertion will include 53 as the left child of 61. After that re-balancing is needed. It is achieved by two rotations: left rotation around 49:

\[T_2 = \begin{array}{c}
41 \\
/ \\
16 67 \\
/ \\
39 61 74 \\
/ \\
49 \\
/ \\
47 53
\end{array} \]

and right rotation around 67. Final result:

\[T_3 = \begin{array}{c}
41 \\
/ \\
16 61 \\
/ \\
39 49 67 \\
/ \\
47 53 74
\end{array} \]

Delete(67) First step replaces 67 by its inorder successor 74:

\[T_4 = \begin{array}{c}
41 (-1) \\
/ \\
(-1)16 74 (2) \\
/ \\
39 49 (0) \\
/ \\
47 61
\end{array} \]

This is not an AVL tree; the balance of 74 is to be restored by right rotation. The obtained tree is an AVL tree.

\[T_5 = \begin{array}{c}
41 (-1) \\
/ \\
(-1)16 49 (-1) \\
/ \\
39 47 74 (1) \\
/ \\
61
\end{array} \]
The above solution shows application of each the operations to the original tree. If each of the operation is applied to the result of the previous one then: (1) T2' obtained by insertion of 53 to T1 has the left subtree as in T1 and right subtree as in T2; (2) Removal of 67 from T2' does not destroy the AVL property and does not require any re-balancing.

(b) Heaps: Tables are omitted.

```
  6
   /  
  5   2
  / \  /  
 6  5 4  5
```

```
  2
 / \ 
 4  5  
 /   
 6
```

```
  2
 / \ 
 4  5  
 /   
 6  7
```

```
  1
 / \ 
 4  2
 / \  /  
 6  7  5
```

```
  1
 / \  
 4  2  
 / \   
 6  7  5  3
```