TDDB56 – DALGOPT-D

Algorithms and optimization

Lecture 7

Splay Trees.
Priority Queues, Heap

Splay Tree – basic idea...

Recall the basic BST:
- Simple insert and reasonable delete when balanced, but...
- The "balance" is determined by order of inserts and deletes...

Combine with the "keep recent objects first" heuristics for lists?
- Often-used elements should be near the root!

Splay Tree properties

- A new operation Splay(r, T) modifies tree T:
 - Element r becomes the new root of T if it exists
 - Otherwise, the new root will be the inorder predecessor (or successor) of the "non-existent" r
- All operations are implemented using Splay:
 - LookUp(k, T):
 - Splay(k, T); if root(T) = k, return <k,i>
 - Insert(k, i, T):
 - Splay(k, T); if root(T) = k, update <k,i>, else insert new root <k,i> in T.
 - Delete(k, T):special, but it also involves "Splay" ☺
The Splay(k, T) operation:
1. Perform a normal search for k, remember all nodes we pass...
2. Label the last node we inspect P
 - If k is in T, then k is in node P
 - Otherwise P is an empty (external) child
3. Return back to root, at each node do a rotation to move P up the tree... (3 cases)

Case 1: Parent(P) is the root: rotate around P

Case 2: P and Parent(P) are both left children (or both right children): perform two rotations to shift up P:

Case 3: One of P and Parent(P) is a left child and the other is a right child: Perform two rotations in different directions:

Note: These rotations may increase the height of the tree...

Delete (k, T)
- We need help procedure Concat (T_i, T_j) where T_1 and T_2 are trees such that: $\forall k_i \in T_i, \forall k_j \in T_j : k_i < k_j$
- $\text{Concat} (T_i, T_j)$:
 - $\text{Splay}(\infty, T_i)$...will re-structure T_i to have the largest element as root, and the root has no right child.
 - $\text{setRightChild}(T_i, T_j)$...reinstall T_j as right child.
- $\text{Delete}(k, T)$:
 - $\text{Splay}(k, T)$...if root does not contain k, ok
 - $\text{Concat}(\text{leftChild}(k), \text{rightChild}(k))$

∞ is a dummy key larger than all existing, valid keys...
Splay Trees - performance

- Each operation may face a totally unbalanced tree – thus not guaranteed to operate in $O(\log n)$ in worst case
- Amortized time is logarithmic:
 - Any sequence of length m of these operations, starting with an empty tree, will take a total amount of $O(m \log n)$ time...
 - Thus, the amortized cost/time is $O(\log n)$ although individual op’s may be significantly worse...

Priority Queues

Commonly encountered situation:
- Waiting list (tasks, passengers, vehicles entering a ferry, phone calls)
- If a resource is freed, choose an element from the waiting list
- The choice is based on some partial ordering:
 - some tasks are more essential to achieve the goal,
 - some passengers should be served before the others (children, sick people)
 - fire dept. and first aid vehicles have priority

How to organize prioritized service?

ADT Priority Queue

- Linearly ordered set K of keys
- We store pairs $<k, i>$ (as in Dictionary), multiple pairs with same key are allowed.
- A frequent operation is retrieving pairs with minimal key.

Operations on a Priority Queue PQ:

- $\text{MakeEmpty}(PQ)$
- $\text{IsEmpty}(PQ)$
- $\text{Insert}(PQ, k, i)$
- $\text{FindMin}(PQ)$ find $(k, i) \in PQ$ with minimal k, return (k, i)
- $\text{DeleteMin}(PQ)$ delete $(k, i) \in PQ$ with minimal k, return i
- $\text{DecreaseKey}(PQ, k, i, k')$ change priority k of $(k, i) \in PQ$ to k'

Implementing Priority Queues

Searching for a minimal element in a search tree (BST, AVL, 2-3, ...)

- BST does not admit repeated keys, extension needed
- Skip list: OK, FindMin in $O(1)$ time, but worst-case insert/delete $O(n)$

Another idea: keep the minimal element as the root of the tree

- Partially ordered tree

This is a complete binary tree!

Partially ordered binary tree:
- the key of a parent is less than or equal to the key of each child
- "last" leaf

This is also called a HEAP
Updates on a Heap Structure

- **DeleteMin** = deletion of the root
 - Replace root by *last leaf*
 - Restore partial order by swapping nodes downwards “down-heap bubbling”

- **Insert**
 - Insert new node after last leaf
 - Restore partial ordering by “up-heap bubbling”

HEAP Properties:
- `size()`, `FindMin()`: \(O(1) \)
- `insertItem()`, `DeleteMin()`: \(O(\log n) \)

Recall vector representation of BST!
- A complete binary tree...
- Compact vector representation
- Bubble-up and bubble-down have fast implementations

Variant of Heaps:
- Kind of partial ordering:
 - `minKey` in the root
 - `maxKey` in the root

- Kind of vector representation:
 - Forward level-order numbering (starting with 0 or 1)
 - Backward level-order numbering (starting with 0 or 1)